Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Ines Rombach, Alastair M. Gray, Crispin Jenkinson, David W. Murray, Oliver Rivero-Arias

ABSTRACT

BACKGROUND: Missing data can introduce bias in the results of randomised controlled trials (RCTs), but are typically unavoidable in pragmatic clinical research, especially when patient reported outcome measures (PROMs) are used. Traditionally applied to the composite PROMs score of multi-item instruments, some recent research suggests that multiple imputation (MI) at the item level may be preferable under certain scenarios. This paper presents practical guidance on the choice of MI models for handling missing PROMs data based on the characteristics of the trial dataset. The comparative performance of complete cases analysis, which is commonly used in the analysis of RCTs, is also considered. METHODS: Realistic missing at random data were simulated using follow-up data from an RCT considering three different PROMs (Oxford Knee Score (OKS), EuroQoL 5 Dimensions 3 Levels (EQ-5D-3L), 12-item Short Form Survey (SF-12)). Data were multiply imputed at the item (using ordinal logit and predicted mean matching models), sub-scale and score level; unadjusted mean outcomes, as well as treatment effects from linear regression models were obtained for 1000 simulations. Performance was assessed by root mean square errors (RMSE) and mean absolute errors (MAE). RESULTS: Convergence problems were observed for MI at the item level. Performance generally improved with increasing sample sizes and lower percentages of missing data. Imputation at the score and subscale level outperformed imputation at the item level in small sample sizes (n ≤ 200). Imputation at the item level is more accurate for high proportions of item-nonresponse. All methods provided similar results for large sample sizes (≥500) in this particular case study. CONCLUSIONS: Many factors, including the prevalence of missing data in the study, sample size, the number of items within the PROM and numbers of levels within the individual items, and planned analyses need consideration when choosing an imputation model for missing PROMs data. More... »

PAGES

87

References to SciGraph publications

  • 2015-04. Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index? in QUALITY OF LIFE RESEARCH
  • 2012-12. Factors associated with non-response in routine use of patient reported outcome measures after elective surgery in England in HEALTH AND QUALITY OF LIFE OUTCOMES
  • 2009-02. Using patient-reported outcomes in clinical practice: challenges and opportunities in QUALITY OF LIFE RESEARCH
  • 2016-12. Impact of a web-based tool (WebCONSORT) to improve the reporting of randomised trials: results of a randomised controlled trial in BMC MEDICINE
  • 2013-11. Can pain and function be distinguished in the Oxford Knee Score in a meaningful way? An exploratory and confirmatory factor analysis in QUALITY OF LIFE RESEARCH
  • 2011-03. Missing data methods for dealing with missing items in quality of life questionnaires. A comparison by simulation of personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques applied to the SF-36 in the French 2003 decennial health survey in QUALITY OF LIFE RESEARCH
  • 2016-07. The current practice of handling and reporting missing outcome data in eight widely used PROMs in RCT publications: a review of the current literature in QUALITY OF LIFE RESEARCH
  • 2008-12. A review of RCTs in four medical journals to assess the use of imputation to overcome missing data in quality of life outcomes in TRIALS
  • 2014-12. Handling missing data in RCTs; a review of the top medical journals in BMC MEDICAL RESEARCH METHODOLOGY
  • 2009-01. The Oxford shoulder score revisited in ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY
  • Journal

    TITLE

    BMC Medical Research Methodology

    ISSUE

    1

    VOLUME

    18

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12874-018-0542-6

    DOI

    http://dx.doi.org/10.1186/s12874-018-0542-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106387885

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30153796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK", 
                "Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rombach", 
            "givenName": "Ines", 
            "id": "sg:person.01023042246.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023042246.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gray", 
            "givenName": "Alastair M.", 
            "id": "sg:person.01307325071.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Health Services Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jenkinson", 
            "givenName": "Crispin", 
            "id": "sg:person.01020740241.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020740241.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murray", 
            "givenName": "David W.", 
            "id": "sg:person.012633757262.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rivero-Arias", 
            "givenName": "Oliver", 
            "id": "sg:person.01076143105.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076143105.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/10543400600609510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000353628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-016-0736-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002053555", 
              "https://doi.org/10.1186/s12916-016-0736-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-016-0736-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002053555", 
              "https://doi.org/10.1186/s12916-016-0736-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1191/1740774504cn032oa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002117494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1191/1740774504cn032oa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002117494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.3872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002364223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.3872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002364223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.d40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004015866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11136-013-0393-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005403591", 
              "https://doi.org/10.1007/s11136-013-0393-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280206074464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006734313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280206074464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006734313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxh001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007375926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1477-7525-10-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008713728", 
              "https://doi.org/10.1186/1477-7525-10-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10629360600810434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009949609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6215-9-51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013097681", 
              "https://doi.org/10.1186/1745-6215-9-51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1474515115623407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014273565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1474515115623407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014273565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclinepi.2013.08.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015064243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.f167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019437805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cct.2011.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022191648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/pubmed/23.3.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023010356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.c723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024840844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.pubmed.a024606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026309674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<697::aid-sim815>3.0.co;2-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029106238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2288-14-118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029395208", 
              "https://doi.org/10.1186/1471-2288-14-118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hec.1347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030042073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11136-014-0837-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030956400", 
              "https://doi.org/10.1007/s11136-014-0837-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclinepi.2014.08.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034914578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<679::aid-sim814>3.0.co;2-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035957716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.4067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036277791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280216683570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036873837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280216683570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036873837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclinepi.2013.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037329384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclinepi.2013.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037329384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/135581969800300206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041239298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/135581969800300206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041239298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11136-010-9740-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043240574", 
              "https://doi.org/10.1007/s11136-010-9740-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11136-008-9413-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043424383", 
              "https://doi.org/10.1007/s11136-008-9413-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11136-015-1206-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044134905", 
              "https://doi.org/10.1007/s11136-015-1206-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11136-015-1206-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044134905", 
              "https://doi.org/10.1007/s11136-015-1206-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00402-007-0549-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053103755", 
              "https://doi.org/10.1007/s00402-007-0549-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00402-007-0549-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053103755", 
              "https://doi.org/10.1007/s00402-007-0549-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1302/0301-620x.80b1.7859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064885821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1302/0301-620x.89b8.19424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064886491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.g.01074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068900655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.g.01074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068900655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.g.01074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068900655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3310/hta18190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071139400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3899/jrheum.110906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071542722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7326/0003-4819-118-8-199304150-00009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073697353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077989087", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Missing data can introduce bias in the results of randomised controlled trials (RCTs), but are typically unavoidable in pragmatic clinical research, especially when patient reported outcome measures (PROMs) are used. Traditionally applied to the composite PROMs score of multi-item instruments, some recent research suggests that multiple imputation (MI) at the item level may be preferable under certain scenarios. This paper presents practical guidance on the choice of MI models for handling missing PROMs data based on the characteristics of the trial dataset. The comparative performance of complete cases analysis, which is commonly used in the analysis of RCTs, is also considered.\nMETHODS: Realistic missing at random data were simulated using follow-up data from an RCT considering three different PROMs (Oxford Knee Score (OKS), EuroQoL 5 Dimensions 3 Levels (EQ-5D-3L), 12-item Short Form Survey (SF-12)). Data were multiply imputed at the item (using ordinal logit and predicted mean matching models), sub-scale and score level; unadjusted mean outcomes, as well as treatment effects from linear regression models were obtained for 1000 simulations. Performance was assessed by root mean square errors (RMSE) and mean absolute errors (MAE).\nRESULTS: Convergence problems were observed for MI at the item level. Performance generally improved with increasing sample sizes and lower percentages of missing data. Imputation at the score and subscale level outperformed imputation at the item level in small sample sizes (n\u2009\u2264\u2009200). Imputation at the item level is more accurate for high proportions of item-nonresponse. All methods provided similar results for large sample sizes (\u2265500) in this particular case study.\nCONCLUSIONS: Many factors, including the prevalence of missing data in the study, sample size, the number of items within the PROM and numbers of levels within the individual items, and planned analyses need consideration when choosing an imputation model for missing PROMs data.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12874-018-0542-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024940", 
            "issn": [
              "1471-2288"
            ], 
            "name": "BMC Medical Research Methodology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level", 
        "pagination": "87", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5d20531007a8599d5d046e831b71e0845e727227376117a70cf6aa0fc301831a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30153796"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100968545"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12874-018-0542-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106387885"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12874-018-0542-6", 
          "https://app.dimensions.ai/details/publication/pub.1106387885"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12874-018-0542-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12874-018-0542-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12874-018-0542-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12874-018-0542-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12874-018-0542-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12874-018-0542-6 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N3b483a71b46449b9a357a251df0c3b98
    4 schema:citation sg:pub.10.1007/s00402-007-0549-7
    5 sg:pub.10.1007/s11136-008-9413-7
    6 sg:pub.10.1007/s11136-010-9740-3
    7 sg:pub.10.1007/s11136-013-0393-x
    8 sg:pub.10.1007/s11136-014-0837-y
    9 sg:pub.10.1007/s11136-015-1206-1
    10 sg:pub.10.1186/1471-2288-14-118
    11 sg:pub.10.1186/1477-7525-10-34
    12 sg:pub.10.1186/1745-6215-9-51
    13 sg:pub.10.1186/s12916-016-0736-x
    14 https://app.dimensions.ai/details/publication/pub.1077989087
    15 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<679::aid-sim814>3.0.co;2-x
    16 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<697::aid-sim815>3.0.co;2-y
    17 https://doi.org/10.1002/hec.1347
    18 https://doi.org/10.1002/sim.3872
    19 https://doi.org/10.1002/sim.4067
    20 https://doi.org/10.1016/j.cct.2011.12.002
    21 https://doi.org/10.1016/j.jclinepi.2013.08.013
    22 https://doi.org/10.1016/j.jclinepi.2013.09.009
    23 https://doi.org/10.1016/j.jclinepi.2014.08.009
    24 https://doi.org/10.1080/10543400600609510
    25 https://doi.org/10.1080/10629360600810434
    26 https://doi.org/10.1093/biostatistics/kxh001
    27 https://doi.org/10.1093/oxfordjournals.pubmed.a024606
    28 https://doi.org/10.1093/pubmed/23.3.187
    29 https://doi.org/10.1136/bmj.c723
    30 https://doi.org/10.1136/bmj.d40
    31 https://doi.org/10.1136/bmj.f167
    32 https://doi.org/10.1177/0962280206074464
    33 https://doi.org/10.1177/0962280216683570
    34 https://doi.org/10.1177/135581969800300206
    35 https://doi.org/10.1177/1474515115623407
    36 https://doi.org/10.1191/1740774504cn032oa
    37 https://doi.org/10.1302/0301-620x.80b1.7859
    38 https://doi.org/10.1302/0301-620x.89b8.19424
    39 https://doi.org/10.2106/jbjs.g.01074
    40 https://doi.org/10.3310/hta18190
    41 https://doi.org/10.3899/jrheum.110906
    42 https://doi.org/10.7326/0003-4819-118-8-199304150-00009
    43 schema:datePublished 2018-12
    44 schema:datePublishedReg 2018-12-01
    45 schema:description BACKGROUND: Missing data can introduce bias in the results of randomised controlled trials (RCTs), but are typically unavoidable in pragmatic clinical research, especially when patient reported outcome measures (PROMs) are used. Traditionally applied to the composite PROMs score of multi-item instruments, some recent research suggests that multiple imputation (MI) at the item level may be preferable under certain scenarios. This paper presents practical guidance on the choice of MI models for handling missing PROMs data based on the characteristics of the trial dataset. The comparative performance of complete cases analysis, which is commonly used in the analysis of RCTs, is also considered. METHODS: Realistic missing at random data were simulated using follow-up data from an RCT considering three different PROMs (Oxford Knee Score (OKS), EuroQoL 5 Dimensions 3 Levels (EQ-5D-3L), 12-item Short Form Survey (SF-12)). Data were multiply imputed at the item (using ordinal logit and predicted mean matching models), sub-scale and score level; unadjusted mean outcomes, as well as treatment effects from linear regression models were obtained for 1000 simulations. Performance was assessed by root mean square errors (RMSE) and mean absolute errors (MAE). RESULTS: Convergence problems were observed for MI at the item level. Performance generally improved with increasing sample sizes and lower percentages of missing data. Imputation at the score and subscale level outperformed imputation at the item level in small sample sizes (n ≤ 200). Imputation at the item level is more accurate for high proportions of item-nonresponse. All methods provided similar results for large sample sizes (≥500) in this particular case study. CONCLUSIONS: Many factors, including the prevalence of missing data in the study, sample size, the number of items within the PROM and numbers of levels within the individual items, and planned analyses need consideration when choosing an imputation model for missing PROMs data.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree true
    49 schema:isPartOf N51b7382c70b74ea4aa15d2cbfad6d31b
    50 Nb95eaffc7d7141b5889f5849e66075d6
    51 sg:journal.1024940
    52 schema:name Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level
    53 schema:pagination 87
    54 schema:productId N1d411abd0c344a03a03bf20d7b2dacda
    55 N58c4434be2d44b8f8552ea76485c70b3
    56 Na0ce5d8a3d594a7c8f1f36b0a334f741
    57 Na4a43cc41ac54b31a097cb501cbe365c
    58 Nbb0f238da2e14447a719bf50339bc00e
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106387885
    60 https://doi.org/10.1186/s12874-018-0542-6
    61 schema:sdDatePublished 2019-04-11T13:57
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Nf4531fb834bb41b592d4c44454493f85
    64 schema:url https://link.springer.com/10.1186%2Fs12874-018-0542-6
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N1d411abd0c344a03a03bf20d7b2dacda schema:name readcube_id
    69 schema:value 5d20531007a8599d5d046e831b71e0845e727227376117a70cf6aa0fc301831a
    70 rdf:type schema:PropertyValue
    71 N3b483a71b46449b9a357a251df0c3b98 rdf:first sg:person.01023042246.72
    72 rdf:rest N4f375a53dce8455cbb3ebd2b90563e36
    73 N4f375a53dce8455cbb3ebd2b90563e36 rdf:first sg:person.01307325071.02
    74 rdf:rest N7aa1373225fc49d7bc6d09ade2641bd6
    75 N51b7382c70b74ea4aa15d2cbfad6d31b schema:issueNumber 1
    76 rdf:type schema:PublicationIssue
    77 N58c4434be2d44b8f8552ea76485c70b3 schema:name doi
    78 schema:value 10.1186/s12874-018-0542-6
    79 rdf:type schema:PropertyValue
    80 N7aa1373225fc49d7bc6d09ade2641bd6 rdf:first sg:person.01020740241.35
    81 rdf:rest N81373bded9914f00a40acb8e12af916f
    82 N81373bded9914f00a40acb8e12af916f rdf:first sg:person.012633757262.69
    83 rdf:rest Nf8edbf46ee194e6bb9e8f65875dd584f
    84 Na0ce5d8a3d594a7c8f1f36b0a334f741 schema:name nlm_unique_id
    85 schema:value 100968545
    86 rdf:type schema:PropertyValue
    87 Na4a43cc41ac54b31a097cb501cbe365c schema:name dimensions_id
    88 schema:value pub.1106387885
    89 rdf:type schema:PropertyValue
    90 Nb95eaffc7d7141b5889f5849e66075d6 schema:volumeNumber 18
    91 rdf:type schema:PublicationVolume
    92 Nbb0f238da2e14447a719bf50339bc00e schema:name pubmed_id
    93 schema:value 30153796
    94 rdf:type schema:PropertyValue
    95 Nf4531fb834bb41b592d4c44454493f85 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Nf8edbf46ee194e6bb9e8f65875dd584f rdf:first sg:person.01076143105.13
    98 rdf:rest rdf:nil
    99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Mathematical Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Statistics
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1024940 schema:issn 1471-2288
    106 schema:name BMC Medical Research Methodology
    107 rdf:type schema:Periodical
    108 sg:person.01020740241.35 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    109 schema:familyName Jenkinson
    110 schema:givenName Crispin
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020740241.35
    112 rdf:type schema:Person
    113 sg:person.01023042246.72 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    114 schema:familyName Rombach
    115 schema:givenName Ines
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023042246.72
    117 rdf:type schema:Person
    118 sg:person.01076143105.13 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    119 schema:familyName Rivero-Arias
    120 schema:givenName Oliver
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076143105.13
    122 rdf:type schema:Person
    123 sg:person.012633757262.69 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    124 schema:familyName Murray
    125 schema:givenName David W.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69
    127 rdf:type schema:Person
    128 sg:person.01307325071.02 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    129 schema:familyName Gray
    130 schema:givenName Alastair M.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02
    132 rdf:type schema:Person
    133 sg:pub.10.1007/s00402-007-0549-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053103755
    134 https://doi.org/10.1007/s00402-007-0549-7
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s11136-008-9413-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043424383
    137 https://doi.org/10.1007/s11136-008-9413-7
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s11136-010-9740-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043240574
    140 https://doi.org/10.1007/s11136-010-9740-3
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s11136-013-0393-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005403591
    143 https://doi.org/10.1007/s11136-013-0393-x
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s11136-014-0837-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030956400
    146 https://doi.org/10.1007/s11136-014-0837-y
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s11136-015-1206-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044134905
    149 https://doi.org/10.1007/s11136-015-1206-1
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1186/1471-2288-14-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029395208
    152 https://doi.org/10.1186/1471-2288-14-118
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1186/1477-7525-10-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008713728
    155 https://doi.org/10.1186/1477-7525-10-34
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1186/1745-6215-9-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013097681
    158 https://doi.org/10.1186/1745-6215-9-51
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1186/s12916-016-0736-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002053555
    161 https://doi.org/10.1186/s12916-016-0736-x
    162 rdf:type schema:CreativeWork
    163 https://app.dimensions.ai/details/publication/pub.1077989087 schema:CreativeWork
    164 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<679::aid-sim814>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035957716
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<697::aid-sim815>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029106238
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1002/hec.1347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030042073
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1002/sim.3872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002364223
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1002/sim.4067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036277791
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.cct.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022191648
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.jclinepi.2013.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015064243
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.jclinepi.2013.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037329384
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.jclinepi.2014.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034914578
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1080/10543400600609510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000353628
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1080/10629360600810434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009949609
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1093/biostatistics/kxh001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007375926
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1093/oxfordjournals.pubmed.a024606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026309674
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1093/pubmed/23.3.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023010356
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1136/bmj.c723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024840844
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1136/bmj.d40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004015866
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1136/bmj.f167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019437805
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1177/0962280206074464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006734313
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1177/0962280216683570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036873837
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1177/135581969800300206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041239298
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1177/1474515115623407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014273565
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1191/1740774504cn032oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1002117494
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1302/0301-620x.80b1.7859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064885821
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1302/0301-620x.89b8.19424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064886491
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.2106/jbjs.g.01074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068900655
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.3310/hta18190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139400
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.3899/jrheum.110906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071542722
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.7326/0003-4819-118-8-199304150-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073697353
    219 rdf:type schema:CreativeWork
    220 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
    221 schema:name Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
    222 Health Services Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
    223 National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
    224 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...