New methods for estimating follow-up rates in cohort studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Xiaonan Xue, Ilir Agalliu, Mimi Y. Kim, Tao Wang, Juan Lin, Reza Ghavamian, Howard D. Strickler

ABSTRACT

BACKGROUND: The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the "Percentage Method", defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark's Completeness Index (CCI) also have limitations. METHODS: We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. RESULTS: Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). CONCLUSIONS: The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. More... »

PAGES

155

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12874-017-0436-z

DOI

http://dx.doi.org/10.1186/s12874-017-0436-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093088596

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29191174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kaplan-Meier Estimate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Xiaonan", 
        "id": "sg:person.015121664537.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015121664537.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agalliu", 
        "givenName": "Ilir", 
        "id": "sg:person.0766352654.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766352654.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Mimi Y.", 
        "id": "sg:person.0763471504.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763471504.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Tao", 
        "id": "sg:person.0706222531.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706222531.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Juan", 
        "id": "sg:person.0600327571.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600327571.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Montefiore Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.240283.f", 
          "name": [
            "Department of Urology, Albert Einstein College of Medicine and Montefiore Medical Center, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghavamian", 
        "givenName": "Reza", 
        "id": "sg:person.01307062167.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307062167.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strickler", 
        "givenName": "Howard D.", 
        "id": "sg:person.01365710126.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365710126.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/sim.1114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000709195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(01)00476-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002847287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00043764-199003000-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003489645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780050306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008204596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(01)00474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009429376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013118273", 
          "https://doi.org/10.1038/sj.bjc.6602102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013118273", 
          "https://doi.org/10.1038/sj.bjc.6602102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)04337-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015653792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)08272-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024956855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(01)00473-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028718738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwp107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030339613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwp107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030339613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6601118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031102113", 
          "https://doi.org/10.1038/sj.bjc.6601118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6601118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031102113", 
          "https://doi.org/10.1038/sj.bjc.6601118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009637624440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031512536", 
          "https://doi.org/10.1023/a:1009637624440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0030-1267080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032250587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032504390", 
          "https://doi.org/10.1038/bjc.1995.364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032504390", 
          "https://doi.org/10.1038/bjc.1995.364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1381/096089292765559963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261272", 
          "https://doi.org/10.1381/096089292765559963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0140817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039447465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:ejep.0000036568.02655.f8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042533770", 
          "https://doi.org/10.1023/b:ejep.0000036568.02655.f8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0146-0005(97)80013-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045825785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(96)00075-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047730164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(01)00475-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048742214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00043764-199203000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052504540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-015-0554-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053165237", 
          "https://doi.org/10.1007/s10552-015-0554-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/81.3.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/22.5.950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059675239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v036.i02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069979083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a116396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077066483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1991.9.1.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077974788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079699172", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a112451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083034291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118033005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106886834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470712184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109246181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109246181", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the \"Percentage Method\", defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark's Completeness Index (CCI) also have limitations.\nMETHODS: We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset.\nRESULTS: Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%).\nCONCLUSIONS: The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12874-017-0436-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438800", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "New methods for estimating follow-up rates in cohort studies", 
    "pagination": "155", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47641213cbf16401d4cb467c4e3c77a0aa687002c2aeb0af5270e8f7496aa32f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29191174"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12874-017-0436-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093088596"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12874-017-0436-z", 
      "https://app.dimensions.ai/details/publication/pub.1093088596"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000602.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s12874-017-0436-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0436-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0436-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0436-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0436-z'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      70 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12874-017-0436-z schema:about N01dffc4aa2ad4deeafccc9a3b1b7d4fa
2 N03723ed96fd84d3e93cc495757635648
3 N1a4db25086dc4b328bd659e6ddcd42cf
4 N28cf89bcbbb546c081dd463d82dacae5
5 N95c7e276af1c4715b5ae3e0d7440df2f
6 Na70ca43fa2ac4d55a924e5a4a20b7235
7 Nad049ce4d95e4a21931daf6810e17348
8 Ndc18b608cd334286b2163a78e2a643d4
9 anzsrc-for:11
10 anzsrc-for:1117
11 schema:author N248e249ec30641a9b1fb4b13922b0e5b
12 schema:citation sg:pub.10.1007/s10552-015-0554-z
13 sg:pub.10.1023/a:1009637624440
14 sg:pub.10.1023/b:ejep.0000036568.02655.f8
15 sg:pub.10.1038/bjc.1995.364
16 sg:pub.10.1038/sj.bjc.6601118
17 sg:pub.10.1038/sj.bjc.6602102
18 sg:pub.10.1381/096089292765559963
19 https://app.dimensions.ai/details/publication/pub.1079699172
20 https://app.dimensions.ai/details/publication/pub.1109246181
21 https://doi.org/10.1002/9780470712184
22 https://doi.org/10.1002/9781118033005
23 https://doi.org/10.1002/sim.1114
24 https://doi.org/10.1002/sim.4780050306
25 https://doi.org/10.1016/0197-2456(96)00075-x
26 https://doi.org/10.1016/s0140-6736(00)04337-3
27 https://doi.org/10.1016/s0140-6736(02)08272-7
28 https://doi.org/10.1016/s0146-0005(97)80013-4
29 https://doi.org/10.1016/s0895-4356(01)00473-5
30 https://doi.org/10.1016/s0895-4356(01)00474-7
31 https://doi.org/10.1016/s0895-4356(01)00475-9
32 https://doi.org/10.1016/s0895-4356(01)00476-0
33 https://doi.org/10.1055/s-0030-1267080
34 https://doi.org/10.1093/aje/kwp107
35 https://doi.org/10.1093/biomet/81.3.618
36 https://doi.org/10.1093/ije/22.5.950
37 https://doi.org/10.1093/oxfordjournals.aje.a112451
38 https://doi.org/10.1093/oxfordjournals.aje.a116396
39 https://doi.org/10.1097/00043764-199003000-00013
40 https://doi.org/10.1097/00043764-199203000-00010
41 https://doi.org/10.1200/jco.1991.9.1.191
42 https://doi.org/10.1371/journal.pone.0140817
43 https://doi.org/10.18637/jss.v036.i02
44 https://doi.org/10.2307/2533856
45 schema:datePublished 2017-12
46 schema:datePublishedReg 2017-12-01
47 schema:description BACKGROUND: The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the "Percentage Method", defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark's Completeness Index (CCI) also have limitations. METHODS: We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. RESULTS: Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). CONCLUSIONS: The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N9ec521ea6dce4c2c9f6dc393c213dc57
52 Na11dae33cbee4baeb8231203b6db91f7
53 sg:journal.1024940
54 schema:name New methods for estimating follow-up rates in cohort studies
55 schema:pagination 155
56 schema:productId N572f14c7dd6e4e0cb0c60f4796f1aed5
57 Na4864e4b584145fe836f97e99fac25ed
58 Nbdd9888245334029bf2a5bc97503c768
59 Nc4978c75441946d89de10ad554530f45
60 Nd687a0b810004279ae627dcb15ba8244
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093088596
62 https://doi.org/10.1186/s12874-017-0436-z
63 schema:sdDatePublished 2019-04-10T18:33
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N339cf3198bb8428f9a16f70aca79dfc0
66 schema:url http://link.springer.com/10.1186/s12874-017-0436-z
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N01dffc4aa2ad4deeafccc9a3b1b7d4fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Kaplan-Meier Estimate
72 rdf:type schema:DefinedTerm
73 N03723ed96fd84d3e93cc495757635648 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Prostatic Neoplasms
75 rdf:type schema:DefinedTerm
76 N1a4db25086dc4b328bd659e6ddcd42cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Neoplasm Recurrence, Local
78 rdf:type schema:DefinedTerm
79 N248e249ec30641a9b1fb4b13922b0e5b rdf:first sg:person.015121664537.31
80 rdf:rest N910412e6b8384b449f91657748141868
81 N28cf89bcbbb546c081dd463d82dacae5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Male
83 rdf:type schema:DefinedTerm
84 N2a07228229aa42488ee11f872cd1cb06 rdf:first sg:person.0706222531.98
85 rdf:rest N81520934ac24450db3585e0be76b0693
86 N339cf3198bb8428f9a16f70aca79dfc0 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N4871089c07bc4feb80b8ecca0861a131 rdf:first sg:person.01365710126.00
89 rdf:rest rdf:nil
90 N572f14c7dd6e4e0cb0c60f4796f1aed5 schema:name readcube_id
91 schema:value 47641213cbf16401d4cb467c4e3c77a0aa687002c2aeb0af5270e8f7496aa32f
92 rdf:type schema:PropertyValue
93 N81520934ac24450db3585e0be76b0693 rdf:first sg:person.0600327571.48
94 rdf:rest N83d402ad43d14027abf5e0e53ec7d0bd
95 N83d402ad43d14027abf5e0e53ec7d0bd rdf:first sg:person.01307062167.82
96 rdf:rest N4871089c07bc4feb80b8ecca0861a131
97 N910412e6b8384b449f91657748141868 rdf:first sg:person.0766352654.03
98 rdf:rest Nfcd71cf6a41e49d5a04c03fd92ac651e
99 N95c7e276af1c4715b5ae3e0d7440df2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 N9ec521ea6dce4c2c9f6dc393c213dc57 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 Na11dae33cbee4baeb8231203b6db91f7 schema:volumeNumber 17
105 rdf:type schema:PublicationVolume
106 Na4864e4b584145fe836f97e99fac25ed schema:name doi
107 schema:value 10.1186/s12874-017-0436-z
108 rdf:type schema:PropertyValue
109 Na70ca43fa2ac4d55a924e5a4a20b7235 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Follow-Up Studies
111 rdf:type schema:DefinedTerm
112 Nad049ce4d95e4a21931daf6810e17348 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Data Interpretation, Statistical
114 rdf:type schema:DefinedTerm
115 Nbdd9888245334029bf2a5bc97503c768 schema:name nlm_unique_id
116 schema:value 100968545
117 rdf:type schema:PropertyValue
118 Nc4978c75441946d89de10ad554530f45 schema:name pubmed_id
119 schema:value 29191174
120 rdf:type schema:PropertyValue
121 Nd687a0b810004279ae627dcb15ba8244 schema:name dimensions_id
122 schema:value pub.1093088596
123 rdf:type schema:PropertyValue
124 Ndc18b608cd334286b2163a78e2a643d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Algorithms
126 rdf:type schema:DefinedTerm
127 Nfcd71cf6a41e49d5a04c03fd92ac651e rdf:first sg:person.0763471504.12
128 rdf:rest N2a07228229aa42488ee11f872cd1cb06
129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
130 schema:name Medical and Health Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
133 schema:name Public Health and Health Services
134 rdf:type schema:DefinedTerm
135 sg:grant.2438800 http://pending.schema.org/fundedItem sg:pub.10.1186/s12874-017-0436-z
136 rdf:type schema:MonetaryGrant
137 sg:journal.1024940 schema:issn 1471-2288
138 schema:name BMC Medical Research Methodology
139 rdf:type schema:Periodical
140 sg:person.01307062167.82 schema:affiliation https://www.grid.ac/institutes/grid.240283.f
141 schema:familyName Ghavamian
142 schema:givenName Reza
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307062167.82
144 rdf:type schema:Person
145 sg:person.01365710126.00 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
146 schema:familyName Strickler
147 schema:givenName Howard D.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365710126.00
149 rdf:type schema:Person
150 sg:person.015121664537.31 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
151 schema:familyName Xue
152 schema:givenName Xiaonan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015121664537.31
154 rdf:type schema:Person
155 sg:person.0600327571.48 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
156 schema:familyName Lin
157 schema:givenName Juan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600327571.48
159 rdf:type schema:Person
160 sg:person.0706222531.98 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
161 schema:familyName Wang
162 schema:givenName Tao
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706222531.98
164 rdf:type schema:Person
165 sg:person.0763471504.12 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
166 schema:familyName Kim
167 schema:givenName Mimi Y.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763471504.12
169 rdf:type schema:Person
170 sg:person.0766352654.03 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
171 schema:familyName Agalliu
172 schema:givenName Ilir
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766352654.03
174 rdf:type schema:Person
175 sg:pub.10.1007/s10552-015-0554-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053165237
176 https://doi.org/10.1007/s10552-015-0554-z
177 rdf:type schema:CreativeWork
178 sg:pub.10.1023/a:1009637624440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031512536
179 https://doi.org/10.1023/a:1009637624440
180 rdf:type schema:CreativeWork
181 sg:pub.10.1023/b:ejep.0000036568.02655.f8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042533770
182 https://doi.org/10.1023/b:ejep.0000036568.02655.f8
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/bjc.1995.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032504390
185 https://doi.org/10.1038/bjc.1995.364
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/sj.bjc.6601118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031102113
188 https://doi.org/10.1038/sj.bjc.6601118
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/sj.bjc.6602102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013118273
191 https://doi.org/10.1038/sj.bjc.6602102
192 rdf:type schema:CreativeWork
193 sg:pub.10.1381/096089292765559963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034261272
194 https://doi.org/10.1381/096089292765559963
195 rdf:type schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1079699172 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1109246181 schema:CreativeWork
198 https://doi.org/10.1002/9780470712184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109246181
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/9781118033005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106886834
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/sim.1114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000709195
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/sim.4780050306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008204596
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/0197-2456(96)00075-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047730164
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0140-6736(00)04337-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015653792
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0140-6736(02)08272-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024956855
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0146-0005(97)80013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045825785
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0895-4356(01)00473-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028718738
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0895-4356(01)00474-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009429376
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0895-4356(01)00475-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048742214
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0895-4356(01)00476-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002847287
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1055/s-0030-1267080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032250587
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/aje/kwp107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030339613
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/biomet/81.3.618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420509
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/ije/22.5.950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059675239
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/oxfordjournals.aje.a112451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083034291
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/oxfordjournals.aje.a116396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077066483
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1097/00043764-199003000-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003489645
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/00043764-199203000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052504540
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1200/jco.1991.9.1.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077974788
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1371/journal.pone.0140817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039447465
241 rdf:type schema:CreativeWork
242 https://doi.org/10.18637/jss.v036.i02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672545
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2307/2533856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069979083
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.240283.f schema:alternateName Montefiore Medical Center
247 schema:name Department of Urology, Albert Einstein College of Medicine and Montefiore Medical Center, 10461, Bronx, NY, USA
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.251993.5 schema:alternateName Albert Einstein College of Medicine
250 schema:name Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...