Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-14

AUTHORS

Gareth P. J. McCray, Andrew C. Titman, Paula Ghaneh, Gillian A. Lancaster

ABSTRACT

BackgroundThe sample size required to power a study to a nominal level in a paired comparative diagnostic accuracy study, i.e. studies in which the diagnostic accuracy of two testing procedures is compared relative to a gold standard, depends on the conditional dependence between the two tests - the lower the dependence the greater the sample size required. A priori, we usually do not know the dependence between the two tests and thus cannot determine the exact sample size required. One option is to use the implied sample size for the maximal negative dependence, giving the largest possible sample size. However, this is potentially wasteful of resources and unnecessarily burdensome on study participants as the study is likely to be overpowered. A more accurate estimate of the sample size can be determined at a planned interim analysis point where the sample size is re-estimated.MethodsThis paper discusses a sample size estimation and re-estimation method based on the maximum likelihood estimates, under an implied multinomial model, of the observed values of conditional dependence between the two tests and, if required, prevalence, at a planned interim. The method is illustrated by comparing the accuracy of two procedures for the detection of pancreatic cancer, one procedure using the standard battery of tests, and the other using the standard battery with the addition of a PET/CT scan all relative to the gold standard of a cell biopsy. Simulation of the proposed method illustrates its robustness under various conditions.ResultsThe results show that the type I error rate of the overall experiment is stable using our suggested method and that the type II error rate is close to or above nominal. Furthermore, the instances in which the type II error rate is above nominal are in the situations where the lowest sample size is required, meaning a lower impact on the actual number of participants recruited.ConclusionWe recommend multinomial model maximum likelihood estimation of the conditional dependence between paired diagnostic accuracy tests at an interim to reduce the number of participants required to power the study to at least the nominal level.Trial registrationISRCTN ISRCTN73852054. Registered 9th of January 2015. Retrospectively registered. More... »

PAGES

102

References to SciGraph publications

  • 1993-07. Sample Size Reestimation for Triple Blind Clinical Trials in THERAPEUTIC INNOVATION & REGULATORY SCIENCE
  • 2015-05-09. Small-study effects and time trends in diagnostic test accuracy meta-analyses: a meta-epidemiological study in SYSTEMATIC REVIEWS
  • 1993-07. The Use of Interim Analysis for Sample Size Adjustment in THERAPEUTIC INNOVATION & REGULATORY SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12874-017-0386-5

    DOI

    http://dx.doi.org/10.1186/s12874-017-0386-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090682366

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28705147


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Likelihood Functions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Matched-Pair Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pancreatic Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sample Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Primary Care and Health Sciences, Keele University, David Weatherall Building, ST5 5BG, Stoke-on-Trent, UK", 
              "id": "http://www.grid.ac/institutes/grid.9757.c", 
              "name": [
                "Institute of Primary Care and Health Sciences, Keele University, David Weatherall Building, ST5 5BG, Stoke-on-Trent, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McCray", 
            "givenName": "Gareth P. J.", 
            "id": "sg:person.013612741613.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612741613.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, Lancaster University, Fylde College, LA14YF, Lancaster, UK", 
              "id": "http://www.grid.ac/institutes/grid.9835.7", 
              "name": [
                "Department of Mathematics and Statistics, Lancaster University, Fylde College, LA14YF, Lancaster, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Titman", 
            "givenName": "Andrew C.", 
            "id": "sg:person.01004257537.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004257537.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Translational Medicine, University of Liverpool, Cedar House, L69 3GE, Ashton St, L3 5PS, Liverpool, UK", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Institute of Translational Medicine, University of Liverpool, Cedar House, L69 3GE, Ashton St, L3 5PS, Liverpool, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghaneh", 
            "givenName": "Paula", 
            "id": "sg:person.07372440237.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07372440237.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Primary Care and Health Sciences, Keele University, David Weatherall Building, ST5 5BG, Stoke-on-Trent, UK", 
              "id": "http://www.grid.ac/institutes/grid.9757.c", 
              "name": [
                "Institute of Primary Care and Health Sciences, Keele University, David Weatherall Building, ST5 5BG, Stoke-on-Trent, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lancaster", 
            "givenName": "Gillian A.", 
            "id": "sg:person.01364253402.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364253402.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1177/009286159302700318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063725039", 
              "https://doi.org/10.1177/009286159302700318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1177/009286159302700317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063725038", 
              "https://doi.org/10.1177/009286159302700317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13643-015-0049-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024128238", 
              "https://doi.org/10.1186/s13643-015-0049-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07-14", 
        "datePublishedReg": "2017-07-14", 
        "description": "BackgroundThe sample size required to power a study to a nominal level in a paired comparative diagnostic accuracy study, i.e. studies in which the diagnostic accuracy of two testing procedures is compared relative to a gold standard, depends on the conditional dependence between the two tests - the lower the dependence the greater the sample size required. A priori, we usually do not know the dependence between the two tests and thus cannot determine the exact sample size required. One option is to use the implied sample size for the maximal negative dependence, giving the largest possible sample size. However, this is potentially wasteful of resources and unnecessarily burdensome on study participants as the study is likely to be overpowered. A more accurate estimate of the sample size can be determined at a planned interim analysis point where the sample size is re-estimated.MethodsThis paper discusses a sample size estimation and re-estimation method based on the maximum likelihood estimates, under an implied multinomial model, of the observed values of conditional dependence between the two tests and, if required, prevalence, at a planned interim. The method is illustrated by comparing the accuracy of two procedures for the detection of pancreatic cancer, one procedure using the standard battery of tests, and the other using the standard battery with the addition of a PET/CT scan all relative to the gold standard of a cell biopsy. Simulation of the proposed method illustrates its robustness under various conditions.ResultsThe results show that the type I error rate of the overall experiment is stable using our suggested method and that the type II error rate is close to or above nominal. Furthermore, the instances in which the type II error rate is above nominal are in the situations where the lowest sample size is required, meaning a lower impact on the actual number of participants recruited.ConclusionWe recommend multinomial model maximum likelihood estimation of the conditional dependence between paired diagnostic accuracy tests at an interim to reduce the number of participants required to power the study to at least the nominal level.Trial registrationISRCTN ISRCTN73852054. Registered 9th of January 2015. Retrospectively registered.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12874-017-0386-5", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024940", 
            "issn": [
              "1471-2288"
            ], 
            "name": "BMC Medical Research Methodology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "keywords": [
          "nominal level", 
          "conditional dependence", 
          "exact sample size", 
          "re-estimation method", 
          "maximum likelihood estimates", 
          "Type II error rates", 
          "maximum likelihood estimation", 
          "possible sample sizes", 
          "sample size estimation", 
          "likelihood estimates", 
          "likelihood estimation", 
          "binary responses", 
          "sample size", 
          "multinomial model", 
          "dependence", 
          "accurate estimates", 
          "size estimation", 
          "estimation", 
          "accuracy", 
          "negative dependence", 
          "estimates", 
          "analysis point", 
          "observed values", 
          "error rate", 
          "low sample size", 
          "accuracy test", 
          "testing procedures", 
          "simulations", 
          "robustness", 
          "size", 
          "comparative diagnostic accuracy study", 
          "procedure", 
          "point", 
          "model", 
          "actual number", 
          "number", 
          "diagnostic accuracy tests", 
          "accuracy studies", 
          "overall experiment", 
          "instances", 
          "values", 
          "batteries", 
          "conditions", 
          "results", 
          "experiments", 
          "situation", 
          "study", 
          "test", 
          "resources", 
          "method", 
          "rate", 
          "low impact", 
          "number of participants", 
          "levels", 
          "MethodsThis paper", 
          "detection", 
          "addition", 
          "type I", 
          "diagnostic accuracy studies", 
          "standards", 
          "options", 
          "interim", 
          "standard battery", 
          "impact", 
          "response", 
          "ResultsThe results", 
          "diagnostic accuracy", 
          "gold standard", 
          "participants", 
          "CT", 
          "study participants", 
          "paper", 
          "prevalence", 
          "pancreatic cancer", 
          "cancer", 
          "cell biopsy", 
          "biopsy", 
          "ConclusionWe", 
          "PET/CT"
        ], 
        "name": "Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response", 
        "pagination": "102", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090682366"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12874-017-0386-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28705147"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12874-017-0386-5", 
          "https://app.dimensions.ai/details/publication/pub.1090682366"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_724.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12874-017-0386-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0386-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0386-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0386-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12874-017-0386-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      21 PREDICATES      123 URIs      112 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12874-017-0386-5 schema:about N044ff5ef04e3493db19403cf16df812f
    2 N0d2369a683934344a8b62fa72a3cf2d2
    3 N14760160e6f245ff94e6d55a5f96e00c
    4 N287f255ff96b4c85ba1e2d6eab6bf7d0
    5 N48170cd31d4c4bc5841cd88cc4dbe8a5
    6 N50780668b69a44a69956adb28934db98
    7 N5205668206554418896733ff0f057e34
    8 N5fd9a2ccb90845c7b095b33b7e264573
    9 N6391600a4fff4f1196739e7c74a73b13
    10 N72a5522cc62f448898e44a8627b4f525
    11 N7cb3950a1bdc474bb156085e1196b6de
    12 N8dc7551221f840148aa86d9532c8f999
    13 N9c5461ccee514a66bb4fa78f5e8f1bd2
    14 Nb6eadbc664144f48aff258e8fc2b8f7a
    15 Nc5d06711a2944ceeb6352a79dc9c05b1
    16 Nddf0bf8694cc432a8d4b0e2f2070a9c4
    17 anzsrc-for:11
    18 anzsrc-for:1117
    19 schema:author N6cf26944fe364dabba7e88661f65b77a
    20 schema:citation sg:pub.10.1177/009286159302700317
    21 sg:pub.10.1177/009286159302700318
    22 sg:pub.10.1186/s13643-015-0049-8
    23 schema:datePublished 2017-07-14
    24 schema:datePublishedReg 2017-07-14
    25 schema:description BackgroundThe sample size required to power a study to a nominal level in a paired comparative diagnostic accuracy study, i.e. studies in which the diagnostic accuracy of two testing procedures is compared relative to a gold standard, depends on the conditional dependence between the two tests - the lower the dependence the greater the sample size required. A priori, we usually do not know the dependence between the two tests and thus cannot determine the exact sample size required. One option is to use the implied sample size for the maximal negative dependence, giving the largest possible sample size. However, this is potentially wasteful of resources and unnecessarily burdensome on study participants as the study is likely to be overpowered. A more accurate estimate of the sample size can be determined at a planned interim analysis point where the sample size is re-estimated.MethodsThis paper discusses a sample size estimation and re-estimation method based on the maximum likelihood estimates, under an implied multinomial model, of the observed values of conditional dependence between the two tests and, if required, prevalence, at a planned interim. The method is illustrated by comparing the accuracy of two procedures for the detection of pancreatic cancer, one procedure using the standard battery of tests, and the other using the standard battery with the addition of a PET/CT scan all relative to the gold standard of a cell biopsy. Simulation of the proposed method illustrates its robustness under various conditions.ResultsThe results show that the type I error rate of the overall experiment is stable using our suggested method and that the type II error rate is close to or above nominal. Furthermore, the instances in which the type II error rate is above nominal are in the situations where the lowest sample size is required, meaning a lower impact on the actual number of participants recruited.ConclusionWe recommend multinomial model maximum likelihood estimation of the conditional dependence between paired diagnostic accuracy tests at an interim to reduce the number of participants required to power the study to at least the nominal level.Trial registrationISRCTN ISRCTN73852054. Registered 9th of January 2015. Retrospectively registered.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N907fe56d4c0e418c920c35fd5c7a68e0
    29 Na7e32421a56f4e8280f06988bf2afbf2
    30 sg:journal.1024940
    31 schema:keywords CT
    32 ConclusionWe
    33 MethodsThis paper
    34 PET/CT
    35 ResultsThe results
    36 Type II error rates
    37 accuracy
    38 accuracy studies
    39 accuracy test
    40 accurate estimates
    41 actual number
    42 addition
    43 analysis point
    44 batteries
    45 binary responses
    46 biopsy
    47 cancer
    48 cell biopsy
    49 comparative diagnostic accuracy study
    50 conditional dependence
    51 conditions
    52 dependence
    53 detection
    54 diagnostic accuracy
    55 diagnostic accuracy studies
    56 diagnostic accuracy tests
    57 error rate
    58 estimates
    59 estimation
    60 exact sample size
    61 experiments
    62 gold standard
    63 impact
    64 instances
    65 interim
    66 levels
    67 likelihood estimates
    68 likelihood estimation
    69 low impact
    70 low sample size
    71 maximum likelihood estimates
    72 maximum likelihood estimation
    73 method
    74 model
    75 multinomial model
    76 negative dependence
    77 nominal level
    78 number
    79 number of participants
    80 observed values
    81 options
    82 overall experiment
    83 pancreatic cancer
    84 paper
    85 participants
    86 point
    87 possible sample sizes
    88 prevalence
    89 procedure
    90 rate
    91 re-estimation method
    92 resources
    93 response
    94 results
    95 robustness
    96 sample size
    97 sample size estimation
    98 simulations
    99 situation
    100 size
    101 size estimation
    102 standard battery
    103 standards
    104 study
    105 study participants
    106 test
    107 testing procedures
    108 type I
    109 values
    110 schema:name Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response
    111 schema:pagination 102
    112 schema:productId N6c35b50daeeb4cce8021d3ce7064030f
    113 N725c4a2b02534923b585ce0cfb89813e
    114 Nbbd6104cffbe4b0c9158261b0538275f
    115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090682366
    116 https://doi.org/10.1186/s12874-017-0386-5
    117 schema:sdDatePublished 2022-09-02T16:00
    118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    119 schema:sdPublisher N67a7b06f265942189600d63cc591fde2
    120 schema:url https://doi.org/10.1186/s12874-017-0386-5
    121 sgo:license sg:explorer/license/
    122 sgo:sdDataset articles
    123 rdf:type schema:ScholarlyArticle
    124 N044ff5ef04e3493db19403cf16df812f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Adult
    126 rdf:type schema:DefinedTerm
    127 N0d2369a683934344a8b62fa72a3cf2d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Likelihood Functions
    129 rdf:type schema:DefinedTerm
    130 N14760160e6f245ff94e6d55a5f96e00c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Computer Simulation
    132 rdf:type schema:DefinedTerm
    133 N287f255ff96b4c85ba1e2d6eab6bf7d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Positron Emission Tomography Computed Tomography
    135 rdf:type schema:DefinedTerm
    136 N48170cd31d4c4bc5841cd88cc4dbe8a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Retrospective Studies
    138 rdf:type schema:DefinedTerm
    139 N50780668b69a44a69956adb28934db98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Male
    141 rdf:type schema:DefinedTerm
    142 N5205668206554418896733ff0f057e34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Female
    144 rdf:type schema:DefinedTerm
    145 N5fd9a2ccb90845c7b095b33b7e264573 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Treatment Outcome
    147 rdf:type schema:DefinedTerm
    148 N6391600a4fff4f1196739e7c74a73b13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Sensitivity and Specificity
    150 rdf:type schema:DefinedTerm
    151 N67a7b06f265942189600d63cc591fde2 schema:name Springer Nature - SN SciGraph project
    152 rdf:type schema:Organization
    153 N68331a75f67b4516aaa108d0afcd9ba1 rdf:first sg:person.01004257537.63
    154 rdf:rest Nf20784dfd4a14362bc20e9d97a2388f0
    155 N6c35b50daeeb4cce8021d3ce7064030f schema:name pubmed_id
    156 schema:value 28705147
    157 rdf:type schema:PropertyValue
    158 N6cf26944fe364dabba7e88661f65b77a rdf:first sg:person.013612741613.94
    159 rdf:rest N68331a75f67b4516aaa108d0afcd9ba1
    160 N725c4a2b02534923b585ce0cfb89813e schema:name dimensions_id
    161 schema:value pub.1090682366
    162 rdf:type schema:PropertyValue
    163 N72a5522cc62f448898e44a8627b4f525 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Matched-Pair Analysis
    165 rdf:type schema:DefinedTerm
    166 N7cb3950a1bdc474bb156085e1196b6de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Sample Size
    168 rdf:type schema:DefinedTerm
    169 N8dc7551221f840148aa86d9532c8f999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Algorithms
    171 rdf:type schema:DefinedTerm
    172 N8efba91b5d5c4b808b1729b2147affc7 rdf:first sg:person.01364253402.41
    173 rdf:rest rdf:nil
    174 N907fe56d4c0e418c920c35fd5c7a68e0 schema:issueNumber 1
    175 rdf:type schema:PublicationIssue
    176 N9c5461ccee514a66bb4fa78f5e8f1bd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Pancreatic Neoplasms
    178 rdf:type schema:DefinedTerm
    179 Na7e32421a56f4e8280f06988bf2afbf2 schema:volumeNumber 17
    180 rdf:type schema:PublicationVolume
    181 Nb6eadbc664144f48aff258e8fc2b8f7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Reproducibility of Results
    183 rdf:type schema:DefinedTerm
    184 Nbbd6104cffbe4b0c9158261b0538275f schema:name doi
    185 schema:value 10.1186/s12874-017-0386-5
    186 rdf:type schema:PropertyValue
    187 Nc5d06711a2944ceeb6352a79dc9c05b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Humans
    189 rdf:type schema:DefinedTerm
    190 Nddf0bf8694cc432a8d4b0e2f2070a9c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Models, Statistical
    192 rdf:type schema:DefinedTerm
    193 Nf20784dfd4a14362bc20e9d97a2388f0 rdf:first sg:person.07372440237.86
    194 rdf:rest N8efba91b5d5c4b808b1729b2147affc7
    195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Medical and Health Sciences
    197 rdf:type schema:DefinedTerm
    198 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Public Health and Health Services
    200 rdf:type schema:DefinedTerm
    201 sg:journal.1024940 schema:issn 1471-2288
    202 schema:name BMC Medical Research Methodology
    203 schema:publisher Springer Nature
    204 rdf:type schema:Periodical
    205 sg:person.01004257537.63 schema:affiliation grid-institutes:grid.9835.7
    206 schema:familyName Titman
    207 schema:givenName Andrew C.
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004257537.63
    209 rdf:type schema:Person
    210 sg:person.013612741613.94 schema:affiliation grid-institutes:grid.9757.c
    211 schema:familyName McCray
    212 schema:givenName Gareth P. J.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612741613.94
    214 rdf:type schema:Person
    215 sg:person.01364253402.41 schema:affiliation grid-institutes:grid.9757.c
    216 schema:familyName Lancaster
    217 schema:givenName Gillian A.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364253402.41
    219 rdf:type schema:Person
    220 sg:person.07372440237.86 schema:affiliation grid-institutes:grid.10025.36
    221 schema:familyName Ghaneh
    222 schema:givenName Paula
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07372440237.86
    224 rdf:type schema:Person
    225 sg:pub.10.1177/009286159302700317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063725038
    226 https://doi.org/10.1177/009286159302700317
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1177/009286159302700318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063725039
    229 https://doi.org/10.1177/009286159302700318
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/s13643-015-0049-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024128238
    232 https://doi.org/10.1186/s13643-015-0049-8
    233 rdf:type schema:CreativeWork
    234 grid-institutes:grid.10025.36 schema:alternateName Institute of Translational Medicine, University of Liverpool, Cedar House, L69 3GE, Ashton St, L3 5PS, Liverpool, UK
    235 schema:name Institute of Translational Medicine, University of Liverpool, Cedar House, L69 3GE, Ashton St, L3 5PS, Liverpool, UK
    236 rdf:type schema:Organization
    237 grid-institutes:grid.9757.c schema:alternateName Institute of Primary Care and Health Sciences, Keele University, David Weatherall Building, ST5 5BG, Stoke-on-Trent, UK
    238 schema:name Institute of Primary Care and Health Sciences, Keele University, David Weatherall Building, ST5 5BG, Stoke-on-Trent, UK
    239 rdf:type schema:Organization
    240 grid-institutes:grid.9835.7 schema:alternateName Department of Mathematics and Statistics, Lancaster University, Fylde College, LA14YF, Lancaster, UK
    241 schema:name Department of Mathematics and Statistics, Lancaster University, Fylde College, LA14YF, Lancaster, UK
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...