The Sydney Triage to Admission Risk Tool (START) to predict Emergency Department Disposition: A derivation and internal validation study using ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Michael M. Dinh, Saartje Berendsen Russell, Kendall J. Bein, Kris Rogers, David Muscatello, Richard Paoloni, Jon Hayman, Dane R. Chalkley, Rebecca Ivers

ABSTRACT

BACKGROUND: Disposition decisions are critical to the functioning of Emergency Departments. The objectives of the present study were to derive and internally validate a prediction model for inpatient admission from the Emergency Department to assist with triage, patient flow and clinical decision making. METHODS: This was a retrospective analysis of State-wide Emergency Department data in New South Wales, Australia. Adult patients (age ≥ 16 years) were included if they presented to a Level five or six (tertiary level) Emergency Department in New South Wales, Australia between 2013 and 2014. The outcome of interest was in-patient admission from the Emergency Department. This included all admissions to short stay and medical assessment units and being transferred out to another hospital. Analyses were performed using logistic regression. Discrimination was assessed using area under curve and derived risk scores were plotted to assess calibration. RESULTS: 1,721,294 presentations from twenty three Level five or six hospitals were analysed. Of these 49.38% were male and the mean (sd) age was 49.85 years (22.13). Level 6 hospitals accounted for 47.70% of cases and 40.74% of cases were classified as an in-patient admission based on their mode of separation. The final multivariable model including age, arrival by ambulance, triage category, previous admission and presenting problem had an AUC of 0.82 (95% CI 0.81, 0.82). CONCLUSION: By deriving and internally validating a risk score model to predict the need for in-patient admission based on basic demographic and triage characteristics, patient flow in ED, clinical decision making and overall quality of care may be improved. Further studies are now required to establish clinical effectiveness of this risk score model. More... »

PAGES

46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12873-016-0111-4

DOI

http://dx.doi.org/10.1186/s12873-016-0111-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045581250

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27912757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Decision-Making", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Emergency Service, Hospital", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "New South Wales", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Admission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Prince Alfred Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413249.9", 
          "name": [
            "Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia", 
            "Discipline of Emergency Medicine, The University of Sydney, Sydney, NSW, Australia", 
            "Emergency Department, Royal Prince Alfred Hospital, Missenden Rd, 2050, Camperdown, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dinh", 
        "givenName": "Michael M.", 
        "id": "sg:person.01261101105.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261101105.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia", 
            "Faculty of Nursing, The University of Sydney, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russell", 
        "givenName": "Saartje Berendsen", 
        "id": "sg:person.015365637571.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365637571.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Prince Alfred Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413249.9", 
          "name": [
            "Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bein", 
        "givenName": "Kendall J.", 
        "id": "sg:person.01147372045.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147372045.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Institute for Global Health", 
          "id": "https://www.grid.ac/institutes/grid.415508.d", 
          "name": [
            "The George Institute for Global Health, The University of Sydney, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Kris", 
        "id": "sg:person.01207566342.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207566342.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UNSW Australia", 
          "id": "https://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muscatello", 
        "givenName": "David", 
        "id": "sg:person.0734552034.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734552034.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Discipline of Emergency Medicine, The University of Sydney, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paoloni", 
        "givenName": "Richard", 
        "id": "sg:person.01223253652.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223253652.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New South Wales Department of Health", 
          "id": "https://www.grid.ac/institutes/grid.416088.3", 
          "name": [
            "Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia", 
            "Health Education and Training Institute, New South Wales Ministry of Health, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayman", 
        "givenName": "Jon", 
        "id": "sg:person.01120534075.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120534075.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Prince Alfred Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413249.9", 
          "name": [
            "Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chalkley", 
        "givenName": "Dane R.", 
        "id": "sg:person.01101664631.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101664631.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Flinders University", 
          "id": "https://www.grid.ac/institutes/grid.1014.4", 
          "name": [
            "The George Institute for Global Health, The University of Sydney, Sydney, NSW, Australia", 
            "School of Nursing and Midwifery, Flinders University, Adelaide, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivers", 
        "givenName": "Rebecca", 
        "id": "sg:person.01216102531.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216102531.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aenj.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003557744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1742-6723.12542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009646810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/emermed-2013-202421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014079514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199701233360402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018073258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/emermed-2012-201404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021686397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.293.10.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022409298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.annemergmed.2008.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023523054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/emj.2010.103531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028003225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/emermed-2014-204174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038205470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aenj.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038307203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/acem.12244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043074726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5694/mja11.10955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073072228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5694/mja11.10955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073072228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077197294", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5694/j.1326-5377.2006.tb00203.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077197294"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Disposition decisions are critical to the functioning of Emergency Departments. The objectives of the present study were to derive and internally validate a prediction model for inpatient admission from the Emergency Department to assist with triage, patient flow and clinical decision making.\nMETHODS: This was a retrospective analysis of State-wide Emergency Department data in New South Wales, Australia. Adult patients (age\u2009\u2265\u200916\u00a0years) were included if they presented to a Level five or six (tertiary level) Emergency Department in New South Wales, Australia between 2013 and 2014. The outcome of interest was in-patient admission from the Emergency Department. This included all admissions to short stay and medical assessment units and being transferred out to another hospital. Analyses were performed using logistic regression. Discrimination was assessed using area under curve and derived risk scores were plotted to assess calibration.\nRESULTS: 1,721,294 presentations from twenty three Level five or six hospitals were analysed. Of these 49.38% were male and the mean (sd) age was 49.85\u00a0years (22.13). Level 6 hospitals accounted for 47.70% of cases and 40.74% of cases were classified as an in-patient admission based on their mode of separation. The final multivariable model including age, arrival by ambulance, triage category, previous admission and presenting problem had an AUC of 0.82 (95% CI 0.81, 0.82).\nCONCLUSION: By deriving and internally validating a risk score model to predict the need for in-patient admission based on basic demographic and triage characteristics, patient flow in ED, clinical decision making and overall quality of care may be improved. Further studies are now required to establish clinical effectiveness of this risk score model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12873-016-0111-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024938", 
        "issn": [
          "1471-227X"
        ], 
        "name": "BMC Emergency Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "The Sydney Triage to Admission Risk Tool (START) to predict Emergency Department Disposition: A derivation and internal validation study using retrospective state-wide data from New South Wales, Australia", 
    "pagination": "46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d91fc13fbd5b6ad680840079b5afe52c08756cbd601197e4bf84caae456c4c39"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27912757"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968543"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12873-016-0111-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045581250"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12873-016-0111-4", 
      "https://app.dimensions.ai/details/publication/pub.1045581250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12873-016-0111-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12873-016-0111-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12873-016-0111-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12873-016-0111-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12873-016-0111-4'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      62 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12873-016-0111-4 schema:about N037239084e5c44269d5d5c3ae63f5763
2 N061d17571b624d94bc50394f68fd4e1e
3 N15dbac927fd24ecaa302e8534b1ba38e
4 N1c1a4b9b771f4b1b9e427f377c6071b5
5 N2110c107c3c0443797c182a627bd1277
6 N24e52951648c4335a7b2990f0b038702
7 N2b54f57741fe47d188244215dd42debf
8 N39343277f35e4c2caa695e0b8d89318d
9 N3a89025d487e48418f31aceffe75dfe6
10 N419482964be84463a1a2a6fa021b8951
11 N610b702a9f8045d9a98363819dcc1117
12 N6718d22ef3084987996a8bd0d0f9c86f
13 N70c189f821884b8782a016cb36772226
14 N8176a6ef06ec4ece9c65d859db10d6c1
15 N87ac3c4e59df48198aebe2403c3dc5f8
16 N8cbee66520da427f939bdea495d89f41
17 Ndb83640505cb4441b9bc67bffab8a009
18 Ndc1d967740664e60a8b3cc074e882a3a
19 Ne5daea7d17fb403abdd73429a14fa007
20 anzsrc-for:11
21 anzsrc-for:1117
22 schema:author N30175afc455f41078000b4072bd9bc1f
23 schema:citation https://app.dimensions.ai/details/publication/pub.1077197294
24 https://doi.org/10.1001/jama.293.10.1223
25 https://doi.org/10.1016/j.aenj.2012.12.003
26 https://doi.org/10.1016/j.aenj.2014.07.003
27 https://doi.org/10.1016/j.annemergmed.2008.03.014
28 https://doi.org/10.1056/nejm199701233360402
29 https://doi.org/10.1111/1742-6723.12542
30 https://doi.org/10.1111/acem.12244
31 https://doi.org/10.1136/emermed-2012-201404
32 https://doi.org/10.1136/emermed-2013-202421
33 https://doi.org/10.1136/emermed-2014-204174
34 https://doi.org/10.1136/emj.2010.103531
35 https://doi.org/10.5694/j.1326-5377.2006.tb00203.x
36 https://doi.org/10.5694/mja11.10955
37 schema:datePublished 2016-12
38 schema:datePublishedReg 2016-12-01
39 schema:description BACKGROUND: Disposition decisions are critical to the functioning of Emergency Departments. The objectives of the present study were to derive and internally validate a prediction model for inpatient admission from the Emergency Department to assist with triage, patient flow and clinical decision making. METHODS: This was a retrospective analysis of State-wide Emergency Department data in New South Wales, Australia. Adult patients (age ≥ 16 years) were included if they presented to a Level five or six (tertiary level) Emergency Department in New South Wales, Australia between 2013 and 2014. The outcome of interest was in-patient admission from the Emergency Department. This included all admissions to short stay and medical assessment units and being transferred out to another hospital. Analyses were performed using logistic regression. Discrimination was assessed using area under curve and derived risk scores were plotted to assess calibration. RESULTS: 1,721,294 presentations from twenty three Level five or six hospitals were analysed. Of these 49.38% were male and the mean (sd) age was 49.85 years (22.13). Level 6 hospitals accounted for 47.70% of cases and 40.74% of cases were classified as an in-patient admission based on their mode of separation. The final multivariable model including age, arrival by ambulance, triage category, previous admission and presenting problem had an AUC of 0.82 (95% CI 0.81, 0.82). CONCLUSION: By deriving and internally validating a risk score model to predict the need for in-patient admission based on basic demographic and triage characteristics, patient flow in ED, clinical decision making and overall quality of care may be improved. Further studies are now required to establish clinical effectiveness of this risk score model.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N355aba003a0b41349b38b110db5abd92
44 Ncae07149a57e4a67bf3e5c398faeef4d
45 sg:journal.1024938
46 schema:name The Sydney Triage to Admission Risk Tool (START) to predict Emergency Department Disposition: A derivation and internal validation study using retrospective state-wide data from New South Wales, Australia
47 schema:pagination 46
48 schema:productId N22d537d8dead4cbb8adab8d007422948
49 N36ef7bc2991b48caaf43d86c4e8deb16
50 N753a9cf0a56141239b30288c82a4d6b1
51 N7cb4f09ec8d34568877d7f8faa1f9313
52 Nc5d941e5e54f4e92b4d9466afe230c32
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045581250
54 https://doi.org/10.1186/s12873-016-0111-4
55 schema:sdDatePublished 2019-04-11T12:40
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N6e224bd1126d4aa0932f2264e5de798e
58 schema:url https://link.springer.com/10.1186%2Fs12873-016-0111-4
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N037239084e5c44269d5d5c3ae63f5763 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Female
64 rdf:type schema:DefinedTerm
65 N061d17571b624d94bc50394f68fd4e1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name New South Wales
67 rdf:type schema:DefinedTerm
68 N15dbac927fd24ecaa302e8534b1ba38e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Reproducibility of Results
70 rdf:type schema:DefinedTerm
71 N1c1a4b9b771f4b1b9e427f377c6071b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Patient Admission
73 rdf:type schema:DefinedTerm
74 N2110c107c3c0443797c182a627bd1277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Models, Theoretical
76 rdf:type schema:DefinedTerm
77 N22d537d8dead4cbb8adab8d007422948 schema:name readcube_id
78 schema:value d91fc13fbd5b6ad680840079b5afe52c08756cbd601197e4bf84caae456c4c39
79 rdf:type schema:PropertyValue
80 N24e52951648c4335a7b2990f0b038702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Risk Assessment
82 rdf:type schema:DefinedTerm
83 N2b54f57741fe47d188244215dd42debf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Aged
85 rdf:type schema:DefinedTerm
86 N30175afc455f41078000b4072bd9bc1f rdf:first sg:person.01261101105.22
87 rdf:rest Na9ae8f117a9c4a60926f614d47b39659
88 N355aba003a0b41349b38b110db5abd92 schema:volumeNumber 16
89 rdf:type schema:PublicationVolume
90 N36ef7bc2991b48caaf43d86c4e8deb16 schema:name dimensions_id
91 schema:value pub.1045581250
92 rdf:type schema:PropertyValue
93 N39343277f35e4c2caa695e0b8d89318d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Young Adult
95 rdf:type schema:DefinedTerm
96 N3a89025d487e48418f31aceffe75dfe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Retrospective Studies
98 rdf:type schema:DefinedTerm
99 N419482964be84463a1a2a6fa021b8951 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Adolescent
101 rdf:type schema:DefinedTerm
102 N46edbf75b6904952ba40edef793e2f7d rdf:first sg:person.01101664631.66
103 rdf:rest Nfdfa9af096d347d4bf516e36ff101a9e
104 N610b702a9f8045d9a98363819dcc1117 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Clinical Decision-Making
106 rdf:type schema:DefinedTerm
107 N6718d22ef3084987996a8bd0d0f9c86f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Emergency Service, Hospital
109 rdf:type schema:DefinedTerm
110 N6e224bd1126d4aa0932f2264e5de798e schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N70c189f821884b8782a016cb36772226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Adult
114 rdf:type schema:DefinedTerm
115 N753a9cf0a56141239b30288c82a4d6b1 schema:name nlm_unique_id
116 schema:value 100968543
117 rdf:type schema:PropertyValue
118 N7cb4f09ec8d34568877d7f8faa1f9313 schema:name doi
119 schema:value 10.1186/s12873-016-0111-4
120 rdf:type schema:PropertyValue
121 N8176a6ef06ec4ece9c65d859db10d6c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Aged, 80 and over
123 rdf:type schema:DefinedTerm
124 N87ac3c4e59df48198aebe2403c3dc5f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Triage
126 rdf:type schema:DefinedTerm
127 N8cbee66520da427f939bdea495d89f41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Logistic Models
129 rdf:type schema:DefinedTerm
130 Na9ae8f117a9c4a60926f614d47b39659 rdf:first sg:person.015365637571.64
131 rdf:rest Nf74b14d40a49473492c56f559041fe6d
132 Naf97b3384dc3442ab3ffeebf4c32bd19 rdf:first sg:person.01120534075.88
133 rdf:rest N46edbf75b6904952ba40edef793e2f7d
134 Nbfe18f49b87c494facb4dcb5a3f63f1b rdf:first sg:person.01207566342.16
135 rdf:rest Nfd407255f50a45f492c5d4193866905b
136 Nc5d941e5e54f4e92b4d9466afe230c32 schema:name pubmed_id
137 schema:value 27912757
138 rdf:type schema:PropertyValue
139 Ncae07149a57e4a67bf3e5c398faeef4d schema:issueNumber 1
140 rdf:type schema:PublicationIssue
141 Ndb83640505cb4441b9bc67bffab8a009 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Middle Aged
143 rdf:type schema:DefinedTerm
144 Ndc1d967740664e60a8b3cc074e882a3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Male
146 rdf:type schema:DefinedTerm
147 Ne5daea7d17fb403abdd73429a14fa007 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 Ne90c112cb45b468281e92d0024a685b8 rdf:first sg:person.01223253652.03
151 rdf:rest Naf97b3384dc3442ab3ffeebf4c32bd19
152 Nf74b14d40a49473492c56f559041fe6d rdf:first sg:person.01147372045.90
153 rdf:rest Nbfe18f49b87c494facb4dcb5a3f63f1b
154 Nfd407255f50a45f492c5d4193866905b rdf:first sg:person.0734552034.28
155 rdf:rest Ne90c112cb45b468281e92d0024a685b8
156 Nfdfa9af096d347d4bf516e36ff101a9e rdf:first sg:person.01216102531.00
157 rdf:rest rdf:nil
158 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
159 schema:name Medical and Health Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
162 schema:name Public Health and Health Services
163 rdf:type schema:DefinedTerm
164 sg:journal.1024938 schema:issn 1471-227X
165 schema:name BMC Emergency Medicine
166 rdf:type schema:Periodical
167 sg:person.01101664631.66 schema:affiliation https://www.grid.ac/institutes/grid.413249.9
168 schema:familyName Chalkley
169 schema:givenName Dane R.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101664631.66
171 rdf:type schema:Person
172 sg:person.01120534075.88 schema:affiliation https://www.grid.ac/institutes/grid.416088.3
173 schema:familyName Hayman
174 schema:givenName Jon
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120534075.88
176 rdf:type schema:Person
177 sg:person.01147372045.90 schema:affiliation https://www.grid.ac/institutes/grid.413249.9
178 schema:familyName Bein
179 schema:givenName Kendall J.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147372045.90
181 rdf:type schema:Person
182 sg:person.01207566342.16 schema:affiliation https://www.grid.ac/institutes/grid.415508.d
183 schema:familyName Rogers
184 schema:givenName Kris
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207566342.16
186 rdf:type schema:Person
187 sg:person.01216102531.00 schema:affiliation https://www.grid.ac/institutes/grid.1014.4
188 schema:familyName Ivers
189 schema:givenName Rebecca
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216102531.00
191 rdf:type schema:Person
192 sg:person.01223253652.03 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
193 schema:familyName Paoloni
194 schema:givenName Richard
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223253652.03
196 rdf:type schema:Person
197 sg:person.01261101105.22 schema:affiliation https://www.grid.ac/institutes/grid.413249.9
198 schema:familyName Dinh
199 schema:givenName Michael M.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261101105.22
201 rdf:type schema:Person
202 sg:person.015365637571.64 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
203 schema:familyName Russell
204 schema:givenName Saartje Berendsen
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365637571.64
206 rdf:type schema:Person
207 sg:person.0734552034.28 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
208 schema:familyName Muscatello
209 schema:givenName David
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734552034.28
211 rdf:type schema:Person
212 https://app.dimensions.ai/details/publication/pub.1077197294 schema:CreativeWork
213 https://doi.org/10.1001/jama.293.10.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022409298
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.aenj.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038307203
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.aenj.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003557744
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.annemergmed.2008.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023523054
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1056/nejm199701233360402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018073258
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/1742-6723.12542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009646810
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/acem.12244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043074726
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1136/emermed-2012-201404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021686397
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1136/emermed-2013-202421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014079514
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1136/emermed-2014-204174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038205470
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1136/emj.2010.103531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028003225
234 rdf:type schema:CreativeWork
235 https://doi.org/10.5694/j.1326-5377.2006.tb00203.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077197294
236 rdf:type schema:CreativeWork
237 https://doi.org/10.5694/mja11.10955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073072228
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
240 schema:name School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
243 schema:name Discipline of Emergency Medicine, The University of Sydney, Sydney, NSW, Australia
244 Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
245 Faculty of Nursing, The University of Sydney, Sydney, NSW, Australia
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.1014.4 schema:alternateName Flinders University
248 schema:name School of Nursing and Midwifery, Flinders University, Adelaide, South Australia, Australia
249 The George Institute for Global Health, The University of Sydney, Sydney, NSW, Australia
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.413249.9 schema:alternateName Royal Prince Alfred Hospital
252 schema:name Discipline of Emergency Medicine, The University of Sydney, Sydney, NSW, Australia
253 Emergency Department, Royal Prince Alfred Hospital, Missenden Rd, 2050, Camperdown, NSW, Australia
254 Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.415508.d schema:alternateName George Institute for Global Health
257 schema:name The George Institute for Global Health, The University of Sydney, Sydney, NSW, Australia
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.416088.3 schema:alternateName New South Wales Department of Health
260 schema:name Emergency Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
261 Health Education and Training Institute, New South Wales Ministry of Health, Sydney, NSW, Australia
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...