Part 2 – Coronary angiography with gadofosveset trisodium: a prospective intra-subject comparison for dose optimization for 100 % efficiency imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-22

AUTHORS

Mark A. Ahlman, Fabio S. Raman, Jianing Pang, Filip Zemrak, Veit Sandfort, Scott R. Penzak, Zhaoyang Fan, Songtao Liu, Debiao Li, David A. Bluemke

ABSTRACT

BackgroundThree tesla (3T) coronary magnetic resonance angiography (MRA) may be optimized using gadolinium-based contrast agents (GBCA) such as gadofosveset trisodium. The goal of this study was to evaluate if there is a qualitative or quantitative improvement in the coronary arteries with variation in contrast dose.MethodsTwenty-eight healthy volunteers were prospectively recruited for coronary MRA at 3T using a steady state injection technique for 3D radial whole-heart image acquisition with retrospective respiratory self-gating (ClinicalTrials.gov identifier: NCT01853592). Nineteen volunteers completed both single- and double-dose imaging instances (0.03 and 0.06 mmol/kg, respectively). Intra-individual comparison of image quality was assessed by measurement of apparent signal/contrast-to-noise ratio (aSNR/aCNR) and subjective evaluation of image quality by 2 independent reviewers.ResultsThe average duration of coronary MRA acquisition was 7.2 ± 1.2 min. There was significantly higher (60 %, p < 0.001) aSNR of the aorta and right/left ventricle for the double dose compared to single dose injection scheme and aSNR of the coronary arteries increased by 70 % (p < 0.001) for the double dose injection. aCNR increased by +55 % and +60 % in the ventricles and coronary arteries, respectively (p < 0.001). Overall segmental artery visualization for single dose was possible 47 % of the time, which improved to 60 % with double dose (p = 0.019), predominantly driven by improvements in more distal segment visualization (+40 % improvement in mid arterial segments, p = 0.013).ConclusionsGadofosveset trisodium dose of 0.06 mmol/kg significantly quantitatively and qualitatively improves the coronary artery image quality compared to 0.03 mmol/kg at 3T for moderate duration (6–8 min) steady state contrast enhanced coronary MRA. More... »

PAGES

58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8

DOI

http://dx.doi.org/10.1186/s12872-015-0152-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030938412

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27004532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Volunteers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahlman", 
        "givenName": "Mark A.", 
        "id": "sg:person.01070362705.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070362705.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA", 
            "Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raman", 
        "givenName": "Fabio S.", 
        "id": "sg:person.01201275026.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201275026.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Jianing", 
        "id": "sg:person.01067525465.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "William Harvey Research Institute, Centre for Advanced Cardiovascular Imaging, Barts & The London School of Medicine & Dentistry, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "William Harvey Research Institute, Centre for Advanced Cardiovascular Imaging, Barts & The London School of Medicine & Dentistry, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zemrak", 
        "givenName": "Filip", 
        "id": "sg:person.01221762133.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221762133.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sandfort", 
        "givenName": "Veit", 
        "id": "sg:person.0705561561.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705561561.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmacotherapy, University of North Texas, Fort Worth, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Pharmacotherapy, University of North Texas, Fort Worth, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penzak", 
        "givenName": "Scott R.", 
        "id": "sg:person.01165650034.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165650034.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Songtao", 
        "id": "sg:person.01302651346.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302651346.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bluemke", 
        "givenName": "David A.", 
        "id": "sg:person.01121513432.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121513432.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13244-010-0049-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026490003", 
          "https://doi.org/10.1007/s13244-010-0049-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-16-s1-p160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036596211", 
          "https://doi.org/10.1186/1532-429x-16-s1-p160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031013196", 
          "https://doi.org/10.1186/1532-429x-14-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10140-006-0488-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022172499", 
          "https://doi.org/10.1007/s10140-006-0488-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1120-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014909188", 
          "https://doi.org/10.1007/s00330-008-1120-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-013-0192-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037673109", 
          "https://doi.org/10.1007/s10554-013-0192-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051479478", 
          "https://doi.org/10.1186/1532-429x-14-18"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03-22", 
    "datePublishedReg": "2016-03-22", 
    "description": "BackgroundThree tesla (3T) coronary magnetic resonance angiography (MRA) may be optimized using gadolinium-based contrast agents (GBCA) such as gadofosveset trisodium. The goal of this study was to evaluate if there is a qualitative or quantitative improvement in the coronary arteries with variation in contrast dose.MethodsTwenty-eight healthy volunteers were prospectively recruited for coronary MRA at 3T using a steady state injection technique for 3D radial whole-heart image acquisition with retrospective respiratory self-gating (ClinicalTrials.gov identifier: NCT01853592). Nineteen volunteers completed both single- and double-dose imaging instances (0.03 and 0.06 mmol/kg, respectively). Intra-individual comparison of image quality was assessed by measurement of apparent signal/contrast-to-noise ratio (aSNR/aCNR) and subjective evaluation of image quality by 2 independent reviewers.ResultsThe average duration of coronary MRA acquisition was 7.2 \u00b1 1.2 min. There was significantly higher (60 %, p < 0.001) aSNR of the aorta and right/left ventricle for the double dose compared to single dose injection scheme and aSNR of the coronary arteries increased by 70 % (p < 0.001) for the double dose injection. aCNR increased by +55 % and +60 % in the ventricles and coronary arteries, respectively (p < 0.001). Overall segmental artery visualization for single dose was possible 47 % of the time, which improved to 60 % with double dose (p = 0.019), predominantly driven by improvements in more distal segment visualization (+40 % improvement in mid arterial segments, p = 0.013).ConclusionsGadofosveset trisodium dose of 0.06 mmol/kg significantly quantitatively and qualitatively improves the coronary artery image quality compared to 0.03 mmol/kg at 3T for moderate duration (6\u20138 min) steady state contrast enhanced coronary MRA.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12872-015-0152-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2725154", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2501448", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024935", 
        "issn": [
          "1471-2261"
        ], 
        "name": "BMC Cardiovascular Disorders", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "magnetic resonance angiography", 
      "coronary magnetic resonance angiography", 
      "coronary artery", 
      "gadolinium-based contrast agents", 
      "double dose", 
      "coronary artery image quality", 
      "gadofosveset trisodium", 
      "double-dose injection", 
      "intra-individual comparison", 
      "single dose", 
      "contrast dose", 
      "dose injection", 
      "Nineteen volunteers", 
      "healthy volunteers", 
      "independent reviewers", 
      "resonance angiography", 
      "artery visualization", 
      "dose optimization", 
      "intra-subject comparison", 
      "average duration", 
      "artery", 
      "dose", 
      "angiography", 
      "ventricle", 
      "volunteers", 
      "contrast agents", 
      "steady-state contrast", 
      "injection technique", 
      "trisodium", 
      "aorta", 
      "image quality", 
      "Self-Gating", 
      "injection", 
      "reviewers", 
      "subjective evaluation", 
      "duration", 
      "contrast", 
      "improvement", 
      "agents", 
      "min", 
      "quality", 
      "MRA acquisition", 
      "evaluation", 
      "study", 
      "ASNR", 
      "image acquisition", 
      "comparison", 
      "aCNR", 
      "visualization", 
      "quantitative improvement", 
      "acquisition", 
      "ratio", 
      "time", 
      "goal", 
      "part", 
      "technique", 
      "measurements", 
      "instances", 
      "variation", 
      "state contrast", 
      "noise ratio", 
      "efficiency", 
      "optimization", 
      "injection scheme", 
      "scheme"
    ], 
    "name": "Part 2 \u2013 Coronary angiography with gadofosveset trisodium: a prospective intra-subject comparison for dose optimization for 100 % efficiency imaging", 
    "pagination": "58", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030938412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12872-015-0152-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27004532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12872-015-0152-8", 
      "https://app.dimensions.ai/details/publication/pub.1030938412"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_694.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12872-015-0152-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      114 URIs      99 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12872-015-0152-8 schema:about N01c213028b7e4b63a02ea0dba7212d2a
2 N0a85ea31a28a4ec7b262a70ec6730cfd
3 N0dbc6e1fb04647bc874361d38401b941
4 N0ed9d74817c8474dbc2c42b0f091737f
5 N2274f17cd9534de48fc8df8ebf08e331
6 N33a18576ae994afdb53677ea99e5837b
7 N4e81b47dffed4fdfb4e967b1172f5f10
8 N51d3a2bdc8f6406cb1928a62eb0a9719
9 N63d21cd1087d466aa15c543c5056b870
10 N68df980afedc4d8fb2604bbf2a06c945
11 N702ebbdcc21c410389b90b445f86b0cf
12 Nbaed57fed2d04977a85c7422b119ebdb
13 Nbcd3fe141ac4480bb5c688225ee483ec
14 Nc2602e8d5a3045148960919e0ecd602b
15 Nd18e571a2a14416a9ea92e95a2566f7d
16 Ndaa4a5dd12224faabb39be7718a7589c
17 Ndc4e0cdbb67d4032a59deb08d39e1a84
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author Ne562709142ff4de3b222ca666b2d85f0
21 schema:citation sg:pub.10.1007/s00330-008-1120-9
22 sg:pub.10.1007/s10140-006-0488-6
23 sg:pub.10.1007/s10554-013-0192-z
24 sg:pub.10.1007/s13244-010-0049-0
25 sg:pub.10.1186/1532-429x-14-18
26 sg:pub.10.1186/1532-429x-14-31
27 sg:pub.10.1186/1532-429x-16-s1-p160
28 schema:datePublished 2016-03-22
29 schema:datePublishedReg 2016-03-22
30 schema:description BackgroundThree tesla (3T) coronary magnetic resonance angiography (MRA) may be optimized using gadolinium-based contrast agents (GBCA) such as gadofosveset trisodium. The goal of this study was to evaluate if there is a qualitative or quantitative improvement in the coronary arteries with variation in contrast dose.MethodsTwenty-eight healthy volunteers were prospectively recruited for coronary MRA at 3T using a steady state injection technique for 3D radial whole-heart image acquisition with retrospective respiratory self-gating (ClinicalTrials.gov identifier: NCT01853592). Nineteen volunteers completed both single- and double-dose imaging instances (0.03 and 0.06 mmol/kg, respectively). Intra-individual comparison of image quality was assessed by measurement of apparent signal/contrast-to-noise ratio (aSNR/aCNR) and subjective evaluation of image quality by 2 independent reviewers.ResultsThe average duration of coronary MRA acquisition was 7.2 ± 1.2 min. There was significantly higher (60 %, p < 0.001) aSNR of the aorta and right/left ventricle for the double dose compared to single dose injection scheme and aSNR of the coronary arteries increased by 70 % (p < 0.001) for the double dose injection. aCNR increased by +55 % and +60 % in the ventricles and coronary arteries, respectively (p < 0.001). Overall segmental artery visualization for single dose was possible 47 % of the time, which improved to 60 % with double dose (p = 0.019), predominantly driven by improvements in more distal segment visualization (+40 % improvement in mid arterial segments, p = 0.013).ConclusionsGadofosveset trisodium dose of 0.06 mmol/kg significantly quantitatively and qualitatively improves the coronary artery image quality compared to 0.03 mmol/kg at 3T for moderate duration (6–8 min) steady state contrast enhanced coronary MRA.
31 schema:genre article
32 schema:isAccessibleForFree true
33 schema:isPartOf N39ff6138f7984ddba8f967c078efcec2
34 N6fab2bde18df4a5787f3efd85a44af5d
35 sg:journal.1024935
36 schema:keywords ASNR
37 MRA acquisition
38 Nineteen volunteers
39 Self-Gating
40 aCNR
41 acquisition
42 agents
43 angiography
44 aorta
45 artery
46 artery visualization
47 average duration
48 comparison
49 contrast
50 contrast agents
51 contrast dose
52 coronary artery
53 coronary artery image quality
54 coronary magnetic resonance angiography
55 dose
56 dose injection
57 dose optimization
58 double dose
59 double-dose injection
60 duration
61 efficiency
62 evaluation
63 gadofosveset trisodium
64 gadolinium-based contrast agents
65 goal
66 healthy volunteers
67 image acquisition
68 image quality
69 improvement
70 independent reviewers
71 injection
72 injection scheme
73 injection technique
74 instances
75 intra-individual comparison
76 intra-subject comparison
77 magnetic resonance angiography
78 measurements
79 min
80 noise ratio
81 optimization
82 part
83 quality
84 quantitative improvement
85 ratio
86 resonance angiography
87 reviewers
88 scheme
89 single dose
90 state contrast
91 steady-state contrast
92 study
93 subjective evaluation
94 technique
95 time
96 trisodium
97 variation
98 ventricle
99 visualization
100 volunteers
101 schema:name Part 2 – Coronary angiography with gadofosveset trisodium: a prospective intra-subject comparison for dose optimization for 100 % efficiency imaging
102 schema:pagination 58
103 schema:productId N65404db7bab3493e8e9e81af1278787a
104 Ne54e02c3ce2c4a9c8ae33ced3c6312d0
105 Ne624688064454e4595dfefead33e5a57
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030938412
107 https://doi.org/10.1186/s12872-015-0152-8
108 schema:sdDatePublished 2022-10-01T06:42
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N5280232486434bd7910f3a6d0f8ed00b
111 schema:url https://doi.org/10.1186/s12872-015-0152-8
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N0015323d80054c3f8b10f3926709e2db rdf:first sg:person.01067525465.28
116 rdf:rest N7c6db9c76ac7498ab9d6449e9c22b97e
117 N01c213028b7e4b63a02ea0dba7212d2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Healthy Volunteers
119 rdf:type schema:DefinedTerm
120 N0a85ea31a28a4ec7b262a70ec6730cfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Organometallic Compounds
122 rdf:type schema:DefinedTerm
123 N0dbc6e1fb04647bc874361d38401b941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Gadolinium
125 rdf:type schema:DefinedTerm
126 N0ed9d74817c8474dbc2c42b0f091737f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Male
128 rdf:type schema:DefinedTerm
129 N190bf0d97bd346738bc99847dc58003e rdf:first sg:person.01201275026.57
130 rdf:rest N0015323d80054c3f8b10f3926709e2db
131 N1a42c67041e04825a7867035ca9fea8c rdf:first sg:person.0705561561.29
132 rdf:rest N4ee21d04ac554358aeb253f414c71216
133 N2274f17cd9534de48fc8df8ebf08e331 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Time Factors
135 rdf:type schema:DefinedTerm
136 N33a18576ae994afdb53677ea99e5837b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Magnetic Resonance Angiography
138 rdf:type schema:DefinedTerm
139 N39ff6138f7984ddba8f967c078efcec2 schema:volumeNumber 16
140 rdf:type schema:PublicationVolume
141 N3bb20d6175fd4625a1e4664d8cea67d9 rdf:first sg:person.01121513432.05
142 rdf:rest rdf:nil
143 N3bf5efcdacef4914ba275a4f88394cff rdf:first sg:person.01136172260.58
144 rdf:rest N4a1503fae2e047f0a6271800c8c98023
145 N4a1503fae2e047f0a6271800c8c98023 rdf:first sg:person.01302651346.03
146 rdf:rest Nc0680837092341dca51c2c0e6cb847c8
147 N4e81b47dffed4fdfb4e967b1172f5f10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Young Adult
149 rdf:type schema:DefinedTerm
150 N4ee21d04ac554358aeb253f414c71216 rdf:first sg:person.01165650034.66
151 rdf:rest N3bf5efcdacef4914ba275a4f88394cff
152 N51d3a2bdc8f6406cb1928a62eb0a9719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Humans
154 rdf:type schema:DefinedTerm
155 N5280232486434bd7910f3a6d0f8ed00b schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 N63d21cd1087d466aa15c543c5056b870 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Image Interpretation, Computer-Assisted
159 rdf:type schema:DefinedTerm
160 N65404db7bab3493e8e9e81af1278787a schema:name doi
161 schema:value 10.1186/s12872-015-0152-8
162 rdf:type schema:PropertyValue
163 N68df980afedc4d8fb2604bbf2a06c945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Adult
165 rdf:type schema:DefinedTerm
166 N6fab2bde18df4a5787f3efd85a44af5d schema:issueNumber 1
167 rdf:type schema:PublicationIssue
168 N702ebbdcc21c410389b90b445f86b0cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Coronary Vessels
170 rdf:type schema:DefinedTerm
171 N7c6db9c76ac7498ab9d6449e9c22b97e rdf:first sg:person.01221762133.15
172 rdf:rest N1a42c67041e04825a7867035ca9fea8c
173 Nbaed57fed2d04977a85c7422b119ebdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Prospective Studies
175 rdf:type schema:DefinedTerm
176 Nbcd3fe141ac4480bb5c688225ee483ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Contrast Media
178 rdf:type schema:DefinedTerm
179 Nc0680837092341dca51c2c0e6cb847c8 rdf:first sg:person.01152021525.33
180 rdf:rest N3bb20d6175fd4625a1e4664d8cea67d9
181 Nc2602e8d5a3045148960919e0ecd602b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Female
183 rdf:type schema:DefinedTerm
184 Nd18e571a2a14416a9ea92e95a2566f7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Signal-To-Noise Ratio
186 rdf:type schema:DefinedTerm
187 Ndaa4a5dd12224faabb39be7718a7589c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Predictive Value of Tests
189 rdf:type schema:DefinedTerm
190 Ndc4e0cdbb67d4032a59deb08d39e1a84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Coronary Angiography
192 rdf:type schema:DefinedTerm
193 Ne54e02c3ce2c4a9c8ae33ced3c6312d0 schema:name pubmed_id
194 schema:value 27004532
195 rdf:type schema:PropertyValue
196 Ne562709142ff4de3b222ca666b2d85f0 rdf:first sg:person.01070362705.53
197 rdf:rest N190bf0d97bd346738bc99847dc58003e
198 Ne624688064454e4595dfefead33e5a57 schema:name dimensions_id
199 schema:value pub.1030938412
200 rdf:type schema:PropertyValue
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
205 schema:name Cardiorespiratory Medicine and Haematology
206 rdf:type schema:DefinedTerm
207 sg:grant.2501448 http://pending.schema.org/fundedItem sg:pub.10.1186/s12872-015-0152-8
208 rdf:type schema:MonetaryGrant
209 sg:grant.2725154 http://pending.schema.org/fundedItem sg:pub.10.1186/s12872-015-0152-8
210 rdf:type schema:MonetaryGrant
211 sg:journal.1024935 schema:issn 1471-2261
212 schema:name BMC Cardiovascular Disorders
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01067525465.28 schema:affiliation grid-institutes:grid.50956.3f
216 schema:familyName Pang
217 schema:givenName Jianing
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28
219 rdf:type schema:Person
220 sg:person.01070362705.53 schema:affiliation grid-institutes:grid.410305.3
221 schema:familyName Ahlman
222 schema:givenName Mark A.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070362705.53
224 rdf:type schema:Person
225 sg:person.01121513432.05 schema:affiliation grid-institutes:grid.410305.3
226 schema:familyName Bluemke
227 schema:givenName David A.
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121513432.05
229 rdf:type schema:Person
230 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
231 schema:familyName Fan
232 schema:givenName Zhaoyang
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
234 rdf:type schema:Person
235 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.50956.3f
236 schema:familyName Li
237 schema:givenName Debiao
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
239 rdf:type schema:Person
240 sg:person.01165650034.66 schema:affiliation grid-institutes:grid.266869.5
241 schema:familyName Penzak
242 schema:givenName Scott R.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165650034.66
244 rdf:type schema:Person
245 sg:person.01201275026.57 schema:affiliation grid-institutes:grid.265892.2
246 schema:familyName Raman
247 schema:givenName Fabio S.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201275026.57
249 rdf:type schema:Person
250 sg:person.01221762133.15 schema:affiliation grid-institutes:grid.4868.2
251 schema:familyName Zemrak
252 schema:givenName Filip
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221762133.15
254 rdf:type schema:Person
255 sg:person.01302651346.03 schema:affiliation grid-institutes:grid.410305.3
256 schema:familyName Liu
257 schema:givenName Songtao
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302651346.03
259 rdf:type schema:Person
260 sg:person.0705561561.29 schema:affiliation grid-institutes:grid.410305.3
261 schema:familyName Sandfort
262 schema:givenName Veit
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705561561.29
264 rdf:type schema:Person
265 sg:pub.10.1007/s00330-008-1120-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014909188
266 https://doi.org/10.1007/s00330-008-1120-9
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s10140-006-0488-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022172499
269 https://doi.org/10.1007/s10140-006-0488-6
270 rdf:type schema:CreativeWork
271 sg:pub.10.1007/s10554-013-0192-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037673109
272 https://doi.org/10.1007/s10554-013-0192-z
273 rdf:type schema:CreativeWork
274 sg:pub.10.1007/s13244-010-0049-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026490003
275 https://doi.org/10.1007/s13244-010-0049-0
276 rdf:type schema:CreativeWork
277 sg:pub.10.1186/1532-429x-14-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051479478
278 https://doi.org/10.1186/1532-429x-14-18
279 rdf:type schema:CreativeWork
280 sg:pub.10.1186/1532-429x-14-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031013196
281 https://doi.org/10.1186/1532-429x-14-31
282 rdf:type schema:CreativeWork
283 sg:pub.10.1186/1532-429x-16-s1-p160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036596211
284 https://doi.org/10.1186/1532-429x-16-s1-p160
285 rdf:type schema:CreativeWork
286 grid-institutes:grid.265892.2 schema:alternateName Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
287 schema:name Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
288 National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA
289 rdf:type schema:Organization
290 grid-institutes:grid.266869.5 schema:alternateName Department of Pharmacotherapy, University of North Texas, Fort Worth, Texas, USA
291 schema:name Department of Pharmacotherapy, University of North Texas, Fort Worth, Texas, USA
292 rdf:type schema:Organization
293 grid-institutes:grid.410305.3 schema:alternateName National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA
294 schema:name National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA
295 rdf:type schema:Organization
296 grid-institutes:grid.4868.2 schema:alternateName William Harvey Research Institute, Centre for Advanced Cardiovascular Imaging, Barts & The London School of Medicine & Dentistry, London, UK
297 schema:name William Harvey Research Institute, Centre for Advanced Cardiovascular Imaging, Barts & The London School of Medicine & Dentistry, London, UK
298 rdf:type schema:Organization
299 grid-institutes:grid.50956.3f schema:alternateName Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA
300 schema:name Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...