Part 2 – Coronary angiography with gadofosveset trisodium: a prospective intra-subject comparison for dose optimization for 100 % efficiency imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Mark A. Ahlman, Fabio S. Raman, Jianing Pang, Filip Zemrak, Veit Sandfort, Scott R. Penzak, Zhaoyang Fan, Songtao Liu, Debiao Li, David A. Bluemke

ABSTRACT

BACKGROUND: Three tesla (3T) coronary magnetic resonance angiography (MRA) may be optimized using gadolinium-based contrast agents (GBCA) such as gadofosveset trisodium. The goal of this study was to evaluate if there is a qualitative or quantitative improvement in the coronary arteries with variation in contrast dose. METHODS: Twenty-eight healthy volunteers were prospectively recruited for coronary MRA at 3T using a steady state injection technique for 3D radial whole-heart image acquisition with retrospective respiratory self-gating (ClinicalTrials.gov identifier: NCT01853592). Nineteen volunteers completed both single- and double-dose imaging instances (0.03 and 0.06 mmol/kg, respectively). Intra-individual comparison of image quality was assessed by measurement of apparent signal/contrast-to-noise ratio (aSNR/aCNR) and subjective evaluation of image quality by 2 independent reviewers. RESULTS: The average duration of coronary MRA acquisition was 7.2 ± 1.2 min. There was significantly higher (60 %, p < 0.001) aSNR of the aorta and right/left ventricle for the double dose compared to single dose injection scheme and aSNR of the coronary arteries increased by 70 % (p < 0.001) for the double dose injection. aCNR increased by +55 % and +60 % in the ventricles and coronary arteries, respectively (p < 0.001). Overall segmental artery visualization for single dose was possible 47 % of the time, which improved to 60 % with double dose (p = 0.019), predominantly driven by improvements in more distal segment visualization (+40 % improvement in mid arterial segments, p = 0.013). CONCLUSIONS: Gadofosveset trisodium dose of 0.06 mmol/kg significantly quantitatively and qualitatively improves the coronary artery image quality compared to 0.03 mmol/kg at 3T for moderate duration (6-8 min) steady state contrast enhanced coronary MRA. More... »

PAGES

58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8

DOI

http://dx.doi.org/10.1186/s12872-015-0152-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030938412

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27004532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Volunteers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahlman", 
        "givenName": "Mark A.", 
        "id": "sg:person.01070362705.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070362705.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA", 
            "Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raman", 
        "givenName": "Fabio S.", 
        "id": "sg:person.01201275026.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201275026.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Jianing", 
        "id": "sg:person.01067525465.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "William Harvey Research Institute, Centre for Advanced Cardiovascular Imaging, Barts & The London School of Medicine & Dentistry, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zemrak", 
        "givenName": "Filip", 
        "id": "sg:person.01221762133.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221762133.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sandfort", 
        "givenName": "Veit", 
        "id": "sg:person.0705561561.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705561561.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Pharmacotherapy, University of North Texas, Fort Worth, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penzak", 
        "givenName": "Scott R.", 
        "id": "sg:person.01165650034.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165650034.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Songtao", 
        "id": "sg:person.01302651346.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302651346.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bluemke", 
        "givenName": "David A.", 
        "id": "sg:person.01121513432.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121513432.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2293021180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003403719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2363040577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005281396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2383042019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008885785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009370008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1120-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014909188", 
          "https://doi.org/10.1007/s00330-008-1120-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1120-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014909188", 
          "https://doi.org/10.1007/s00330-008-1120-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10140-006-0488-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022172499", 
          "https://doi.org/10.1007/s10140-006-0488-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10140-006-0488-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022172499", 
          "https://doi.org/10.1007/s10140-006-0488-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-010-0049-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026490003", 
          "https://doi.org/10.1007/s13244-010-0049-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031013196", 
          "https://doi.org/10.1186/1532-429x-14-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2010.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036065418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-16-s1-p160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036596211", 
          "https://doi.org/10.1186/1532-429x-16-s1-p160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-013-0192-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037673109", 
          "https://doi.org/10.1007/s10554-013-0192-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.108.191650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039281905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2010.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044945472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181648606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046248970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181648606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046248970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181648606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046248970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181648606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046248970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181648606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046248970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181648606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046248970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050417592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051479478", 
          "https://doi.org/10.1186/1532-429x-14-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052144870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053004858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077508441", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Three tesla (3T) coronary magnetic resonance angiography (MRA) may be optimized using gadolinium-based contrast agents (GBCA) such as gadofosveset trisodium. The goal of this study was to evaluate if there is a qualitative or quantitative improvement in the coronary arteries with variation in contrast dose.\nMETHODS: Twenty-eight healthy volunteers were prospectively recruited for coronary MRA at 3T using a steady state injection technique for 3D radial whole-heart image acquisition with retrospective respiratory self-gating (ClinicalTrials.gov identifier: NCT01853592). Nineteen volunteers completed both single- and double-dose imaging instances (0.03 and 0.06 mmol/kg, respectively). Intra-individual comparison of image quality was assessed by measurement of apparent signal/contrast-to-noise ratio (aSNR/aCNR) and subjective evaluation of image quality by 2 independent reviewers.\nRESULTS: The average duration of coronary MRA acquisition was 7.2 \u00b1 1.2 min. There was significantly higher (60 %, p < 0.001) aSNR of the aorta and right/left ventricle for the double dose compared to single dose injection scheme and aSNR of the coronary arteries increased by 70 % (p < 0.001) for the double dose injection. aCNR increased by +55 % and +60 % in the ventricles and coronary arteries, respectively (p < 0.001). Overall segmental artery visualization for single dose was possible 47 % of the time, which improved to 60 % with double dose (p = 0.019), predominantly driven by improvements in more distal segment visualization (+40 % improvement in mid arterial segments, p = 0.013).\nCONCLUSIONS: Gadofosveset trisodium dose of 0.06 mmol/kg significantly quantitatively and qualitatively improves the coronary artery image quality compared to 0.03 mmol/kg at 3T for moderate duration (6-8 min) steady state contrast enhanced coronary MRA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12872-015-0152-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2725154", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2501448", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024935", 
        "issn": [
          "1471-2261"
        ], 
        "name": "BMC Cardiovascular Disorders", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Part 2 \u2013 Coronary angiography with gadofosveset trisodium: a prospective intra-subject comparison for dose optimization for 100 % efficiency imaging", 
    "pagination": "58", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93633648a9b0ac987808ae2b19d7dbe46aab98912d57d5f0644435083870c9ab"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27004532"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968539"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12872-015-0152-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030938412"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12872-015-0152-8", 
      "https://app.dimensions.ai/details/publication/pub.1030938412"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70032_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12872-015-0152-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12872-015-0152-8'


 

This table displays all metadata directly associated to this object as RDF triples.

285 TRIPLES      21 PREDICATES      67 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12872-015-0152-8 schema:about N18267846ddc74e218388c37ece5b3eb4
2 N19ac564a37894dcba3f6980766156d81
3 N1df97cabd071459f94b647e94aceb192
4 N4d7c6c3a1b554a50a69c91453d764de4
5 N4db40ac9f6a649ccbc41ea32d0dcd017
6 N5a03013584284078b1fdb0c31a9a552f
7 N6d93f9b5f74f478280f0e5dd8feda434
8 N6f23502d471c44108aecda34cc9f2a34
9 N7ae3e60b035a4862a5f2c513499b3db0
10 N7c78283327ca46e3b161ca57e9c80463
11 N8631905c053b4344b8838dfdd1fe4aa7
12 N8898b044781f48fa93d7791365f114a0
13 Na0f658296203455c8a8d02569ea06f21
14 Naa4bad309c8d4123934255a7dcfa605f
15 Nbe703bfece314dfbb885eea66cd1d6f0
16 Ndbfc22bad2bd4212a3a21385a1b43ae1
17 Nf6a267adef64450abc58b859bef1bd6d
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author Nf5eefda5cd6946cfa9ca2b34fa670f95
21 schema:citation sg:pub.10.1007/s00330-008-1120-9
22 sg:pub.10.1007/s10140-006-0488-6
23 sg:pub.10.1007/s10554-013-0192-z
24 sg:pub.10.1007/s13244-010-0049-0
25 sg:pub.10.1186/1532-429x-14-18
26 sg:pub.10.1186/1532-429x-14-31
27 sg:pub.10.1186/1532-429x-16-s1-p160
28 https://app.dimensions.ai/details/publication/pub.1077508441
29 https://doi.org/10.1002/jmri.21488
30 https://doi.org/10.1002/jmri.21961
31 https://doi.org/10.1002/mrm.24628
32 https://doi.org/10.1002/mrm.25097
33 https://doi.org/10.1002/mrm.25450
34 https://doi.org/10.1016/j.acra.2010.02.009
35 https://doi.org/10.1016/j.acra.2010.05.022
36 https://doi.org/10.1016/j.jacc.2009.03.016
37 https://doi.org/10.1097/rct.0b013e3181648606
38 https://doi.org/10.1148/radiol.2293021180
39 https://doi.org/10.1148/radiol.2363040577
40 https://doi.org/10.1148/radiol.2383042019
41 https://doi.org/10.1161/circulationaha.108.191650
42 schema:datePublished 2016-12
43 schema:datePublishedReg 2016-12-01
44 schema:description BACKGROUND: Three tesla (3T) coronary magnetic resonance angiography (MRA) may be optimized using gadolinium-based contrast agents (GBCA) such as gadofosveset trisodium. The goal of this study was to evaluate if there is a qualitative or quantitative improvement in the coronary arteries with variation in contrast dose. METHODS: Twenty-eight healthy volunteers were prospectively recruited for coronary MRA at 3T using a steady state injection technique for 3D radial whole-heart image acquisition with retrospective respiratory self-gating (ClinicalTrials.gov identifier: NCT01853592). Nineteen volunteers completed both single- and double-dose imaging instances (0.03 and 0.06 mmol/kg, respectively). Intra-individual comparison of image quality was assessed by measurement of apparent signal/contrast-to-noise ratio (aSNR/aCNR) and subjective evaluation of image quality by 2 independent reviewers. RESULTS: The average duration of coronary MRA acquisition was 7.2 ± 1.2 min. There was significantly higher (60 %, p < 0.001) aSNR of the aorta and right/left ventricle for the double dose compared to single dose injection scheme and aSNR of the coronary arteries increased by 70 % (p < 0.001) for the double dose injection. aCNR increased by +55 % and +60 % in the ventricles and coronary arteries, respectively (p < 0.001). Overall segmental artery visualization for single dose was possible 47 % of the time, which improved to 60 % with double dose (p = 0.019), predominantly driven by improvements in more distal segment visualization (+40 % improvement in mid arterial segments, p = 0.013). CONCLUSIONS: Gadofosveset trisodium dose of 0.06 mmol/kg significantly quantitatively and qualitatively improves the coronary artery image quality compared to 0.03 mmol/kg at 3T for moderate duration (6-8 min) steady state contrast enhanced coronary MRA.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N7b15ba4a89a34fce84545de5647468c4
49 Nfae6ac3d66b941bb96447730ee01caac
50 sg:journal.1024935
51 schema:name Part 2 – Coronary angiography with gadofosveset trisodium: a prospective intra-subject comparison for dose optimization for 100 % efficiency imaging
52 schema:pagination 58
53 schema:productId N064b9def654e412aa3cd0753195c2517
54 N22be954ebf3b4e94beabb16c7fe62c62
55 N429f0949fb574238b8c94d0c888fb144
56 Nbb7326df29054d82976cd86d563d3e4b
57 Nd78c2918d3214da998ce9e54480e7660
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030938412
59 https://doi.org/10.1186/s12872-015-0152-8
60 schema:sdDatePublished 2019-04-11T12:37
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N1a3bf5df956f4544bcb2687e07f9d6ca
63 schema:url https://link.springer.com/10.1186%2Fs12872-015-0152-8
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N064b9def654e412aa3cd0753195c2517 schema:name nlm_unique_id
68 schema:value 100968539
69 rdf:type schema:PropertyValue
70 N06c844900f694144b10bba45355eba87 rdf:first sg:person.01201275026.57
71 rdf:rest N5f65d4137056434b8f0630871ceab67c
72 N18267846ddc74e218388c37ece5b3eb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Adult
74 rdf:type schema:DefinedTerm
75 N19ac564a37894dcba3f6980766156d81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Prospective Studies
77 rdf:type schema:DefinedTerm
78 N1a3bf5df956f4544bcb2687e07f9d6ca schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N1df97cabd071459f94b647e94aceb192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Time Factors
82 rdf:type schema:DefinedTerm
83 N22be954ebf3b4e94beabb16c7fe62c62 schema:name readcube_id
84 schema:value 93633648a9b0ac987808ae2b19d7dbe46aab98912d57d5f0644435083870c9ab
85 rdf:type schema:PropertyValue
86 N429f0949fb574238b8c94d0c888fb144 schema:name dimensions_id
87 schema:value pub.1030938412
88 rdf:type schema:PropertyValue
89 N4d7c6c3a1b554a50a69c91453d764de4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Coronary Vessels
91 rdf:type schema:DefinedTerm
92 N4db40ac9f6a649ccbc41ea32d0dcd017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Coronary Angiography
94 rdf:type schema:DefinedTerm
95 N5a03013584284078b1fdb0c31a9a552f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Predictive Value of Tests
97 rdf:type schema:DefinedTerm
98 N5bad40926d1f41b9b90a09403ee95686 rdf:first sg:person.01165650034.66
99 rdf:rest N91e7cdbd02c84ca696312ada7fa81cae
100 N5f65d4137056434b8f0630871ceab67c rdf:first sg:person.01067525465.28
101 rdf:rest Nb4b5ff19c41a459d8fee9a3539ce3f35
102 N6d93f9b5f74f478280f0e5dd8feda434 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Healthy Volunteers
104 rdf:type schema:DefinedTerm
105 N6f23502d471c44108aecda34cc9f2a34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Magnetic Resonance Angiography
107 rdf:type schema:DefinedTerm
108 N7ae3e60b035a4862a5f2c513499b3db0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Gadolinium
110 rdf:type schema:DefinedTerm
111 N7b15ba4a89a34fce84545de5647468c4 schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 N7c78283327ca46e3b161ca57e9c80463 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Organometallic Compounds
115 rdf:type schema:DefinedTerm
116 N8631905c053b4344b8838dfdd1fe4aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Male
118 rdf:type schema:DefinedTerm
119 N8898b044781f48fa93d7791365f114a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Female
121 rdf:type schema:DefinedTerm
122 N91e7cdbd02c84ca696312ada7fa81cae rdf:first sg:person.01136172260.58
123 rdf:rest N96548413137d4a9c9703ecf1c86da924
124 N96548413137d4a9c9703ecf1c86da924 rdf:first sg:person.01302651346.03
125 rdf:rest Nd5eeb763910544099a1b6ec340f99a19
126 Na0f658296203455c8a8d02569ea06f21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Image Interpretation, Computer-Assisted
128 rdf:type schema:DefinedTerm
129 Naa4bad309c8d4123934255a7dcfa605f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 Nb4b5ff19c41a459d8fee9a3539ce3f35 rdf:first sg:person.01221762133.15
133 rdf:rest Nc73d34aeb66345108c1a1a362d7ce7a6
134 Nbb7326df29054d82976cd86d563d3e4b schema:name pubmed_id
135 schema:value 27004532
136 rdf:type schema:PropertyValue
137 Nbe703bfece314dfbb885eea66cd1d6f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Contrast Media
139 rdf:type schema:DefinedTerm
140 Nc73d34aeb66345108c1a1a362d7ce7a6 rdf:first sg:person.0705561561.29
141 rdf:rest N5bad40926d1f41b9b90a09403ee95686
142 Nd5eeb763910544099a1b6ec340f99a19 rdf:first sg:person.01152021525.33
143 rdf:rest Nea9f965bc2e14a5b98edc5ac1a38b80b
144 Nd78c2918d3214da998ce9e54480e7660 schema:name doi
145 schema:value 10.1186/s12872-015-0152-8
146 rdf:type schema:PropertyValue
147 Ndbfc22bad2bd4212a3a21385a1b43ae1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Young Adult
149 rdf:type schema:DefinedTerm
150 Nea9f965bc2e14a5b98edc5ac1a38b80b rdf:first sg:person.01121513432.05
151 rdf:rest rdf:nil
152 Nf5eefda5cd6946cfa9ca2b34fa670f95 rdf:first sg:person.01070362705.53
153 rdf:rest N06c844900f694144b10bba45355eba87
154 Nf6a267adef64450abc58b859bef1bd6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Signal-To-Noise Ratio
156 rdf:type schema:DefinedTerm
157 Nfae6ac3d66b941bb96447730ee01caac schema:volumeNumber 16
158 rdf:type schema:PublicationVolume
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
163 schema:name Cardiorespiratory Medicine and Haematology
164 rdf:type schema:DefinedTerm
165 sg:grant.2501448 http://pending.schema.org/fundedItem sg:pub.10.1186/s12872-015-0152-8
166 rdf:type schema:MonetaryGrant
167 sg:grant.2725154 http://pending.schema.org/fundedItem sg:pub.10.1186/s12872-015-0152-8
168 rdf:type schema:MonetaryGrant
169 sg:journal.1024935 schema:issn 1471-2261
170 schema:name BMC Cardiovascular Disorders
171 rdf:type schema:Periodical
172 sg:person.01067525465.28 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
173 schema:familyName Pang
174 schema:givenName Jianing
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28
176 rdf:type schema:Person
177 sg:person.01070362705.53 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
178 schema:familyName Ahlman
179 schema:givenName Mark A.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070362705.53
181 rdf:type schema:Person
182 sg:person.01121513432.05 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
183 schema:familyName Bluemke
184 schema:givenName David A.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121513432.05
186 rdf:type schema:Person
187 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
188 schema:familyName Fan
189 schema:givenName Zhaoyang
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
191 rdf:type schema:Person
192 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
193 schema:familyName Li
194 schema:givenName Debiao
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
196 rdf:type schema:Person
197 sg:person.01165650034.66 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
198 schema:familyName Penzak
199 schema:givenName Scott R.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165650034.66
201 rdf:type schema:Person
202 sg:person.01201275026.57 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
203 schema:familyName Raman
204 schema:givenName Fabio S.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201275026.57
206 rdf:type schema:Person
207 sg:person.01221762133.15 schema:affiliation https://www.grid.ac/institutes/grid.4868.2
208 schema:familyName Zemrak
209 schema:givenName Filip
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221762133.15
211 rdf:type schema:Person
212 sg:person.01302651346.03 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
213 schema:familyName Liu
214 schema:givenName Songtao
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302651346.03
216 rdf:type schema:Person
217 sg:person.0705561561.29 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
218 schema:familyName Sandfort
219 schema:givenName Veit
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705561561.29
221 rdf:type schema:Person
222 sg:pub.10.1007/s00330-008-1120-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014909188
223 https://doi.org/10.1007/s00330-008-1120-9
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s10140-006-0488-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022172499
226 https://doi.org/10.1007/s10140-006-0488-6
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s10554-013-0192-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037673109
229 https://doi.org/10.1007/s10554-013-0192-z
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s13244-010-0049-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026490003
232 https://doi.org/10.1007/s13244-010-0049-0
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1532-429x-14-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051479478
235 https://doi.org/10.1186/1532-429x-14-18
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1532-429x-14-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031013196
238 https://doi.org/10.1186/1532-429x-14-31
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1532-429x-16-s1-p160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036596211
241 https://doi.org/10.1186/1532-429x-16-s1-p160
242 rdf:type schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1077508441 schema:CreativeWork
244 https://doi.org/10.1002/jmri.21488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053004858
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1002/jmri.21961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034340556
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1002/mrm.24628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050417592
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1002/mrm.25097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052144870
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1002/mrm.25450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009370008
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.acra.2010.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036065418
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.acra.2010.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044945472
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jacc.2009.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044738074
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1097/rct.0b013e3181648606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046248970
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1148/radiol.2293021180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003403719
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1148/radiol.2363040577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005281396
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1148/radiol.2383042019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008885785
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1161/circulationaha.108.191650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039281905
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
271 schema:name Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
272 National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
275 schema:name Department of Pharmacotherapy, University of North Texas, Fort Worth, Texas, USA
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
278 schema:name National Institutes of Health, Radiology and Imaging Sciences, Clinical Center, 10 Center Drive, Building 10, Rm B1N264B.7, 20892, Bethesda, MD, USA
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.4868.2 schema:alternateName Queen Mary University of London
281 schema:name William Harvey Research Institute, Centre for Advanced Cardiovascular Imaging, Barts & The London School of Medicine & Dentistry, London, UK
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
284 schema:name Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA
285 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...