The problem with dichotomizing quality improvement measures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-19

AUTHORS

James Harvey Jones, Neal Fleming

ABSTRACT

The Anesthesia Quality Institute (AQI) promotes improvements in clinical care outcomes by managing data entered in the National Anesthesia Clinical Outcomes Registry (NACOR). Each case included in NACOR is classified as “performance met” or “performance not met” and expressed as a percentage for a length of time. The clarity associated with this binary classification is associated with limitations on data analysis and presentations that may not be optimal guides to evaluate the quality of care. High compliance benchmarks present another obstacle for evaluating quality. Traditional approaches for interpreting statistical process control (SPC) charts depend on data points above and below a center line, which may not provide adequate characterizations of a QI process with a low failure rate, or few possible data points below the center line. This article demonstrates the limitations associated with the use of binary datasets to evaluate the quality of care at an individual organization with QI measures, describes a method for characterizing binary data with continuous variables and presents a solution to analyze rare QI events using g charts. More... »

PAGES

297

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12871-022-01833-z

DOI

http://dx.doi.org/10.1186/s12871-022-01833-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1151118690

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/36123624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anesthesia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anesthesiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Improvement", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology, University of North Carolina at Chapel Hill, N2198 UNC Hospitals, CB #7010, 27599-7010, Chapel Hill, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Anesthesiology, University of North Carolina at Chapel Hill, N2198 UNC Hospitals, CB #7010, 27599-7010, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "James Harvey", 
        "id": "sg:person.012331744331.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331744331.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology and Pain Medicine, University of California Davis Medical Center, 4150 V Street, PSSB Suite 1200, 95817, Sacramento, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.413079.8", 
          "name": [
            "Department of Anesthesiology and Pain Medicine, University of California Davis Medical Center, 4150 V Street, PSSB Suite 1200, 95817, Sacramento, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleming", 
        "givenName": "Neal", 
        "id": "sg:person.0730541204.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730541204.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011846412909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006353764", 
          "https://doi.org/10.1023/a:1011846412909"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-19", 
    "datePublishedReg": "2022-09-19", 
    "description": "The Anesthesia Quality Institute (AQI) promotes improvements in clinical care outcomes by managing data entered in the National Anesthesia Clinical Outcomes Registry (NACOR). Each case included in NACOR is classified as \u201cperformance met\u201d or \u201cperformance not met\u201d and expressed as a percentage for a length of time. The clarity associated with this binary classification is associated with limitations on data analysis and presentations that may not be optimal guides to evaluate the quality of care. High compliance benchmarks present another obstacle for evaluating quality. Traditional approaches for interpreting statistical process control (SPC) charts depend on data points above and below a center line, which may not provide adequate characterizations of a QI process with a low failure rate, or few possible data points below the center line. This article demonstrates the limitations associated with the use of binary datasets to evaluate the quality of care at an individual organization with QI measures, describes a method for characterizing binary data with continuous variables and presents a solution to analyze rare QI events using g charts.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12871-022-01833-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024933", 
        "issn": [
          "1471-2253"
        ], 
        "name": "BMC Anesthesiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "National Anesthesia Clinical Outcomes Registry", 
      "quality of care", 
      "Anesthesia Quality Institute", 
      "Clinical Outcomes Registry", 
      "clinical care outcomes", 
      "quality improvement measures", 
      "Outcomes Registry", 
      "QI measures", 
      "care outcomes", 
      "low failure rate", 
      "QI process", 
      "statistical process control charts", 
      "length of time", 
      "continuous variables", 
      "process control charts", 
      "care", 
      "failure rate", 
      "registry", 
      "optimal guide", 
      "charts", 
      "outcomes", 
      "presentation", 
      "measures", 
      "percentage", 
      "quality", 
      "data analysis", 
      "data", 
      "cases", 
      "lines", 
      "Institute", 
      "rate", 
      "events", 
      "improvement", 
      "limitations", 
      "use", 
      "improvement measures", 
      "adequate characterization", 
      "variables", 
      "classification", 
      "guide", 
      "data points", 
      "time", 
      "point", 
      "analysis", 
      "length", 
      "clarity", 
      "binary data", 
      "article", 
      "method", 
      "organization", 
      "binary classification", 
      "obstacles", 
      "approach", 
      "characterization", 
      "possible data points", 
      "traditional approaches", 
      "process", 
      "problem", 
      "performance", 
      "control charts", 
      "dataset", 
      "center line", 
      "individual organizations", 
      "benchmarks", 
      "solution", 
      "binary datasets"
    ], 
    "name": "The problem with dichotomizing quality improvement measures", 
    "pagination": "297", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1151118690"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12871-022-01833-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "36123624"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12871-022-01833-z", 
      "https://app.dimensions.ai/details/publication/pub.1151118690"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_947.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12871-022-01833-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12871-022-01833-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12871-022-01833-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12871-022-01833-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12871-022-01833-z'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      94 URIs      85 LITERALS      10 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12871-022-01833-z schema:about N14ee54a3196f44c4852c20e1161e7ea1
2 N781f676c4e26405eac2576b777a7adc1
3 N945d3d3b2138473586822a99babddc42
4 anzsrc-for:11
5 anzsrc-for:1117
6 schema:author N2b13b9c690684886bb43d5c4c7ffa3ce
7 schema:citation sg:pub.10.1023/a:1011846412909
8 schema:datePublished 2022-09-19
9 schema:datePublishedReg 2022-09-19
10 schema:description The Anesthesia Quality Institute (AQI) promotes improvements in clinical care outcomes by managing data entered in the National Anesthesia Clinical Outcomes Registry (NACOR). Each case included in NACOR is classified as “performance met” or “performance not met” and expressed as a percentage for a length of time. The clarity associated with this binary classification is associated with limitations on data analysis and presentations that may not be optimal guides to evaluate the quality of care. High compliance benchmarks present another obstacle for evaluating quality. Traditional approaches for interpreting statistical process control (SPC) charts depend on data points above and below a center line, which may not provide adequate characterizations of a QI process with a low failure rate, or few possible data points below the center line. This article demonstrates the limitations associated with the use of binary datasets to evaluate the quality of care at an individual organization with QI measures, describes a method for characterizing binary data with continuous variables and presents a solution to analyze rare QI events using g charts.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N9f5c891c53384551940735ff3437ff02
14 Nd65c2920265647669ab6399741bed9a2
15 sg:journal.1024933
16 schema:keywords Anesthesia Quality Institute
17 Clinical Outcomes Registry
18 Institute
19 National Anesthesia Clinical Outcomes Registry
20 Outcomes Registry
21 QI measures
22 QI process
23 adequate characterization
24 analysis
25 approach
26 article
27 benchmarks
28 binary classification
29 binary data
30 binary datasets
31 care
32 care outcomes
33 cases
34 center line
35 characterization
36 charts
37 clarity
38 classification
39 clinical care outcomes
40 continuous variables
41 control charts
42 data
43 data analysis
44 data points
45 dataset
46 events
47 failure rate
48 guide
49 improvement
50 improvement measures
51 individual organizations
52 length
53 length of time
54 limitations
55 lines
56 low failure rate
57 measures
58 method
59 obstacles
60 optimal guide
61 organization
62 outcomes
63 percentage
64 performance
65 point
66 possible data points
67 presentation
68 problem
69 process
70 process control charts
71 quality
72 quality improvement measures
73 quality of care
74 rate
75 registry
76 solution
77 statistical process control charts
78 time
79 traditional approaches
80 use
81 variables
82 schema:name The problem with dichotomizing quality improvement measures
83 schema:pagination 297
84 schema:productId N2d10831b80c34083ac9b9b3391a13872
85 N71186f3ab99c4a6595eb53377107839f
86 Nb6c0feb385734e7e96bcdc947cba9c71
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151118690
88 https://doi.org/10.1186/s12871-022-01833-z
89 schema:sdDatePublished 2022-12-01T06:45
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N715dadfbaf854202bc328734e05f5e97
92 schema:url https://doi.org/10.1186/s12871-022-01833-z
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N14ee54a3196f44c4852c20e1161e7ea1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Quality Improvement
98 rdf:type schema:DefinedTerm
99 N2b13b9c690684886bb43d5c4c7ffa3ce rdf:first sg:person.012331744331.10
100 rdf:rest N50b06e58fcb745f2b6176dd4c0101199
101 N2d10831b80c34083ac9b9b3391a13872 schema:name dimensions_id
102 schema:value pub.1151118690
103 rdf:type schema:PropertyValue
104 N50b06e58fcb745f2b6176dd4c0101199 rdf:first sg:person.0730541204.17
105 rdf:rest rdf:nil
106 N71186f3ab99c4a6595eb53377107839f schema:name doi
107 schema:value 10.1186/s12871-022-01833-z
108 rdf:type schema:PropertyValue
109 N715dadfbaf854202bc328734e05f5e97 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N781f676c4e26405eac2576b777a7adc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Anesthesiology
113 rdf:type schema:DefinedTerm
114 N945d3d3b2138473586822a99babddc42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Anesthesia
116 rdf:type schema:DefinedTerm
117 N9f5c891c53384551940735ff3437ff02 schema:volumeNumber 22
118 rdf:type schema:PublicationVolume
119 Nb6c0feb385734e7e96bcdc947cba9c71 schema:name pubmed_id
120 schema:value 36123624
121 rdf:type schema:PropertyValue
122 Nd65c2920265647669ab6399741bed9a2 schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
128 schema:name Public Health and Health Services
129 rdf:type schema:DefinedTerm
130 sg:journal.1024933 schema:issn 1471-2253
131 schema:name BMC Anesthesiology
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.012331744331.10 schema:affiliation grid-institutes:grid.10698.36
135 schema:familyName Jones
136 schema:givenName James Harvey
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331744331.10
138 rdf:type schema:Person
139 sg:person.0730541204.17 schema:affiliation grid-institutes:grid.413079.8
140 schema:familyName Fleming
141 schema:givenName Neal
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730541204.17
143 rdf:type schema:Person
144 sg:pub.10.1023/a:1011846412909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006353764
145 https://doi.org/10.1023/a:1011846412909
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.10698.36 schema:alternateName Department of Anesthesiology, University of North Carolina at Chapel Hill, N2198 UNC Hospitals, CB #7010, 27599-7010, Chapel Hill, NC, USA
148 schema:name Department of Anesthesiology, University of North Carolina at Chapel Hill, N2198 UNC Hospitals, CB #7010, 27599-7010, Chapel Hill, NC, USA
149 rdf:type schema:Organization
150 grid-institutes:grid.413079.8 schema:alternateName Department of Anesthesiology and Pain Medicine, University of California Davis Medical Center, 4150 V Street, PSSB Suite 1200, 95817, Sacramento, CA, USA
151 schema:name Department of Anesthesiology and Pain Medicine, University of California Davis Medical Center, 4150 V Street, PSSB Suite 1200, 95817, Sacramento, CA, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...