Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Seongjun Park, Sungwon Son, Myungju Shin, Noriyuki Fujii, Takuji Hoshino, SeonJoo Park

ABSTRACT

BACKGROUND: Lychnis kiusiana Makino is an endangered perennial herb native to wetland areas in Korea and Japan. Despite its conservational and evolutionary significance, population genetic resources are lacking for this species. Next-generation sequencing has been accepted as a rapid and cost-effective solution for the identification of microsatellite markers in nonmodel plants. RESULTS: Using Illumina HiSeq 2000 sequencing technology, we assembled 67,498,600 reads into 91,900 contigs and identified 11,403 microsatellite repeat motifs in 9563 contigs. A total of 4510 microsatellite-containing transcripts had Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 124 pathways with significant scores. Many microsatellites in the L. kiusiana leaf transcriptome were linked to genes involved in the plant response to light intensity, salt stress, temperature stimulus, and nutrient and water deprivation. A total of 12,486 single-nucleotide polymorphisms (SNPs) were identified on transcripts harboring microsatellites. The analysis of nucleotide substitution rates for 2389 unigenes indicated that 39 genes were under strong positive selection. The primers of 6911 microsatellites were designed, and 40 of 50 selected primer pairs were consistently and successfully amplified from 51 individuals. Twenty-five of these were polymorphic, and the average number of alleles per SSR locus was 6.96, with a range from 2 to 15. The observed and expected heterozygosities ranged from 0.137 to 0.902 and 0.131 to 0.827, respectively, and locus-specific FIS estimates ranged from - 0.116 to 0.290. Eleven of the 25 primer pairs were successfully amplified in three additional species of Lychnis: 56% in L. wilfordii, 64% in L. cognata and 80% in L. fulgens. CONCLUSIONS: The transcriptomic SSR markers of Lychnis kiusiana provide a valuable resource for understanding the population genetics, evolutionary history, and effective conservation management of this species. Furthermore, the identified microsatellite loci linked to the annotated genes should be useful for developing functional markers of L. kiusiana. The developed markers represent a potentially valuable source of transcriptomic SSR markers for population genetic analyses with moderate levels of cross-taxon portability. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12870-018-1621-x

DOI

http://dx.doi.org/10.1186/s12870-018-1621-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111269231

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30621589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterozygote", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lychnis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsatellite Repeats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Institute of Natural Science, Yeungnam University, 38541, Gyeongsan, Gyeongbuk, South Korea", 
            "Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Gyeongbuk, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Seongjun", 
        "id": "sg:person.016560573550.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560573550.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Forest Service", 
          "id": "https://www.grid.ac/institutes/grid.418977.4", 
          "name": [
            "Plant Conservation Division, Korea National Arboretum, 11186, Pocheon, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Son", 
        "givenName": "Sungwon", 
        "id": "sg:person.016577410322.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016577410322.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Gyeongbuk, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Myungju", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kumamoto University", 
          "id": "https://www.grid.ac/institutes/grid.274841.c", 
          "name": [
            "Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, 860-8555, Kumamoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujii", 
        "givenName": "Noriyuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okayama University of Science", 
          "id": "https://www.grid.ac/institutes/grid.444568.f", 
          "name": [
            "Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-ku, 700-0005, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoshino", 
        "givenName": "Takuji", 
        "id": "sg:person.015224640661.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224640661.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Gyeongbuk, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "SeonJoo", 
        "id": "sg:person.01073413171.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073413171.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2745.2006.01150.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002787452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2006.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003424815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1523-1739.2006.00646.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003890778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2010.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005420306", 
          "https://doi.org/10.1038/hdy.2010.152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molp.2016.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006380732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006727454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1100394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008962620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2009.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011794341", 
          "https://doi.org/10.1038/hdy.2009.34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2009.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011794341", 
          "https://doi.org/10.1038/hdy.2009.34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12870-016-0859-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014222385", 
          "https://doi.org/10.1186/s12870-016-0859-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12870-016-0859-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014222385", 
          "https://doi.org/10.1186/s12870-016-0859-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014785724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.10.7.1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014879103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015011855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/12.10.4127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015628273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015803168", 
          "https://doi.org/10.1038/nbt.1883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017786519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-002-1031-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019511827", 
          "https://doi.org/10.1007/s00122-002-1031-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.5.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021499443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2010.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021913458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genet.39.073003.112420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022487418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022937830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2015.01247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023760492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1672-0229(10)60008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024361771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2008.03971.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025314938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-294x.2002.01643.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025437171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2005.02485.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028829674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12298-013-0179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030728267", 
          "https://doi.org/10.1007/s12298-013-0179-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0160-9327(97)01005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031174439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-4-85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031794416", 
          "https://doi.org/10.1186/1756-0500-4-85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2745.2008.01417.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035827471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2014.00135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036701402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-13-194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037229530", 
          "https://doi.org/10.1186/1471-2229-13-194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2745.2011.01919.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038974554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-0443-4_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039010594", 
          "https://doi.org/10.1007/978-94-017-0443-4_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.hdy.6801001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039313885", 
          "https://doi.org/10.1038/sj.hdy.6801001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2011.03079.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040300404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1199/tab.0153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042869501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep39591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042956070", 
          "https://doi.org/10.1038/srep39591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2013.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043266410", 
          "https://doi.org/10.1038/hdy.2013.120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014875206165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044165706", 
          "https://doi.org/10.1023/a:1014875206165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/apps.1600113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045223527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045693921", 
          "https://doi.org/10.1038/nprot.2006.384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045693921", 
          "https://doi.org/10.1038/nprot.2006.384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.24.110193.001245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046214733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1420-9101.2002.00373.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046460499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/apps.1600024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048041582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(96)10045-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-2-r14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050370699", 
          "https://doi.org/10.1186/gb-2006-7-2-r14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2007.03089.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051034705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051381276", 
          "https://doi.org/10.1186/1471-2164-11-719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.92.11.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051934735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1360-1385(96)86898-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054697171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm100888d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055951833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm100888d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055951833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jhered.a111573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083620582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1996.tb02352.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085736716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1984.tb05657.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085737796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.01664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091921822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Lychnis kiusiana Makino is an endangered perennial herb native to wetland areas in Korea and Japan. Despite its conservational and evolutionary significance, population genetic resources are lacking for this species. Next-generation sequencing has been accepted as a rapid and cost-effective solution for the identification of microsatellite markers in nonmodel plants.\nRESULTS: Using Illumina HiSeq 2000 sequencing technology, we assembled 67,498,600 reads into 91,900 contigs and identified 11,403 microsatellite repeat motifs in 9563 contigs. A total of 4510 microsatellite-containing transcripts had Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 124 pathways with significant scores. Many microsatellites in the L. kiusiana leaf transcriptome were linked to genes involved in the plant response to light intensity, salt stress, temperature stimulus, and nutrient and water deprivation. A total of 12,486 single-nucleotide polymorphisms (SNPs) were identified on transcripts harboring microsatellites. The analysis of nucleotide substitution rates for 2389 unigenes indicated that 39 genes were under strong positive selection. The primers of 6911 microsatellites were designed, and 40 of 50 selected primer pairs were consistently and successfully amplified from 51 individuals. Twenty-five of these were polymorphic, and the average number of alleles per SSR locus was 6.96, with a range from 2 to 15. The observed and expected heterozygosities ranged from 0.137 to 0.902 and 0.131 to 0.827, respectively, and locus-specific FIS estimates ranged from -\u20090.116 to 0.290. Eleven of the 25 primer pairs were successfully amplified in three additional species of Lychnis: 56% in L. wilfordii, 64% in L. cognata and 80% in L. fulgens.\nCONCLUSIONS: The transcriptomic SSR markers of Lychnis kiusiana provide a valuable resource for understanding the population genetics, evolutionary history, and effective conservation management of this species. Furthermore, the identified microsatellite loci linked to the annotated genes should be useful for developing functional markers of L. kiusiana. The developed markers represent a potentially valuable source of transcriptomic SSR markers for population genetic analyses with moderate levels of cross-taxon portability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12870-018-1621-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024638", 
        "issn": [
          "1471-2229"
        ], 
        "name": "BMC Plant Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae)", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebc2436d3221a16aa8453bf90de90bab48059439fcd62d35c85f771d5b78020f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30621589"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967807"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12870-018-1621-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111269231"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12870-018-1621-x", 
      "https://app.dimensions.ai/details/publication/pub.1111269231"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60369_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12870-018-1621-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1621-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1621-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1621-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1621-x'


 

This table displays all metadata directly associated to this object as RDF triples.

325 TRIPLES      21 PREDICATES      93 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12870-018-1621-x schema:about N5c87f4876c5642e185363ece64df7421
2 N6a44e4581d4a482ab2f39e050e4e449f
3 Ne1c8476099ad48cb9f96ae47645051f4
4 Ne6b842739e524d0e98ee5199639bdbda
5 Nf4933a02782e48bbb4b6aacc6fd4a156
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N915b2d20ae614978bf89e20f9898360f
9 schema:citation sg:pub.10.1007/978-94-017-0443-4_7
10 sg:pub.10.1007/s00122-002-1031-0
11 sg:pub.10.1007/s12298-013-0179-1
12 sg:pub.10.1023/a:1014875206165
13 sg:pub.10.1038/hdy.2009.34
14 sg:pub.10.1038/hdy.2010.152
15 sg:pub.10.1038/hdy.2013.120
16 sg:pub.10.1038/nbt.1883
17 sg:pub.10.1038/nmeth.1923
18 sg:pub.10.1038/nprot.2006.384
19 sg:pub.10.1038/sj.hdy.6801001
20 sg:pub.10.1038/srep39591
21 sg:pub.10.1186/1471-2164-11-719
22 sg:pub.10.1186/1471-2229-13-194
23 sg:pub.10.1186/1756-0500-4-85
24 sg:pub.10.1186/gb-2006-7-2-r14
25 sg:pub.10.1186/s12870-016-0859-4
26 https://doi.org/10.1016/0169-5347(96)10045-8
27 https://doi.org/10.1016/j.molp.2016.02.003
28 https://doi.org/10.1016/j.tibtech.2004.11.005
29 https://doi.org/10.1016/j.tig.2006.03.005
30 https://doi.org/10.1016/j.tplants.2010.02.006
31 https://doi.org/10.1016/s0160-9327(97)01005-3
32 https://doi.org/10.1016/s1360-1385(96)86898-0
33 https://doi.org/10.1016/s1672-0229(10)60008-3
34 https://doi.org/10.1021/jm100888d
35 https://doi.org/10.1046/j.1365-294x.2002.01643.x
36 https://doi.org/10.1046/j.1420-9101.2002.00373.x
37 https://doi.org/10.1073/pnas.89.5.1790
38 https://doi.org/10.1093/bioinformatics/btp352
39 https://doi.org/10.1093/molbev/msh073
40 https://doi.org/10.1093/nar/12.10.4127
41 https://doi.org/10.1093/nar/gkn176
42 https://doi.org/10.1093/nar/gks596
43 https://doi.org/10.1093/oxfordjournals.jhered.a111573
44 https://doi.org/10.1105/tpc.10.7.1075
45 https://doi.org/10.1111/j.1365-2745.2006.01150.x
46 https://doi.org/10.1111/j.1365-2745.2008.01417.x
47 https://doi.org/10.1111/j.1365-2745.2011.01919.x
48 https://doi.org/10.1111/j.1365-294x.2005.02485.x
49 https://doi.org/10.1111/j.1365-294x.2007.03089.x
50 https://doi.org/10.1111/j.1365-294x.2008.03971.x
51 https://doi.org/10.1111/j.1523-1739.2006.00646.x
52 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
53 https://doi.org/10.1111/j.1558-5646.1996.tb02352.x
54 https://doi.org/10.1111/j.1755-0998.2011.03079.x
55 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
56 https://doi.org/10.1146/annurev.es.24.110193.001245
57 https://doi.org/10.1146/annurev.genet.39.073003.112420
58 https://doi.org/10.1199/tab.0153
59 https://doi.org/10.1371/journal.pgen.1000999
60 https://doi.org/10.2307/2532296
61 https://doi.org/10.3389/fpls.2014.00135
62 https://doi.org/10.3389/fpls.2015.01247
63 https://doi.org/10.3389/fpls.2017.01664
64 https://doi.org/10.3732/ajb.1100394
65 https://doi.org/10.3732/ajb.92.11.1853
66 https://doi.org/10.3732/apps.1600024
67 https://doi.org/10.3732/apps.1600113
68 schema:datePublished 2019-12
69 schema:datePublishedReg 2019-12-01
70 schema:description BACKGROUND: Lychnis kiusiana Makino is an endangered perennial herb native to wetland areas in Korea and Japan. Despite its conservational and evolutionary significance, population genetic resources are lacking for this species. Next-generation sequencing has been accepted as a rapid and cost-effective solution for the identification of microsatellite markers in nonmodel plants. RESULTS: Using Illumina HiSeq 2000 sequencing technology, we assembled 67,498,600 reads into 91,900 contigs and identified 11,403 microsatellite repeat motifs in 9563 contigs. A total of 4510 microsatellite-containing transcripts had Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 124 pathways with significant scores. Many microsatellites in the L. kiusiana leaf transcriptome were linked to genes involved in the plant response to light intensity, salt stress, temperature stimulus, and nutrient and water deprivation. A total of 12,486 single-nucleotide polymorphisms (SNPs) were identified on transcripts harboring microsatellites. The analysis of nucleotide substitution rates for 2389 unigenes indicated that 39 genes were under strong positive selection. The primers of 6911 microsatellites were designed, and 40 of 50 selected primer pairs were consistently and successfully amplified from 51 individuals. Twenty-five of these were polymorphic, and the average number of alleles per SSR locus was 6.96, with a range from 2 to 15. The observed and expected heterozygosities ranged from 0.137 to 0.902 and 0.131 to 0.827, respectively, and locus-specific FIS estimates ranged from - 0.116 to 0.290. Eleven of the 25 primer pairs were successfully amplified in three additional species of Lychnis: 56% in L. wilfordii, 64% in L. cognata and 80% in L. fulgens. CONCLUSIONS: The transcriptomic SSR markers of Lychnis kiusiana provide a valuable resource for understanding the population genetics, evolutionary history, and effective conservation management of this species. Furthermore, the identified microsatellite loci linked to the annotated genes should be useful for developing functional markers of L. kiusiana. The developed markers represent a potentially valuable source of transcriptomic SSR markers for population genetic analyses with moderate levels of cross-taxon portability.
71 schema:genre research_article
72 schema:inLanguage en
73 schema:isAccessibleForFree true
74 schema:isPartOf N2d218db04ea64a9e8a0c3dbadfd8707c
75 Nb20f364ce24f46719a0c1afbc2df4631
76 sg:journal.1024638
77 schema:name Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae)
78 schema:pagination 14
79 schema:productId N327eb2a0e3844ff69ab1b3852db78937
80 N3ec7265bd10d4d0297bcdf9186eb3c45
81 N58cf75bafcf54691a5dcb9b29647fad4
82 Nb2c94e8f93ae4b25a625c187b50cfc9b
83 Nbb3de29600c043cb9b659d88324c9b9b
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111269231
85 https://doi.org/10.1186/s12870-018-1621-x
86 schema:sdDatePublished 2019-04-11T11:05
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N0026677fa00746888bcc20954f3269c1
89 schema:url https://link.springer.com/10.1186%2Fs12870-018-1621-x
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N0026677fa00746888bcc20954f3269c1 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N1f3f9702cef746fbb98ad1c9476c608f schema:affiliation https://www.grid.ac/institutes/grid.274841.c
96 schema:familyName Fujii
97 schema:givenName Noriyuki
98 rdf:type schema:Person
99 N1f549d8d3a3345fc8589644a778cc4d1 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
100 schema:familyName Shin
101 schema:givenName Myungju
102 rdf:type schema:Person
103 N28d4368dffbe48248d9c0fea2249d60e rdf:first N1f3f9702cef746fbb98ad1c9476c608f
104 rdf:rest N6341a4162e48443586c38bd363701f40
105 N2d218db04ea64a9e8a0c3dbadfd8707c schema:volumeNumber 19
106 rdf:type schema:PublicationVolume
107 N327eb2a0e3844ff69ab1b3852db78937 schema:name readcube_id
108 schema:value ebc2436d3221a16aa8453bf90de90bab48059439fcd62d35c85f771d5b78020f
109 rdf:type schema:PropertyValue
110 N3ec7265bd10d4d0297bcdf9186eb3c45 schema:name doi
111 schema:value 10.1186/s12870-018-1621-x
112 rdf:type schema:PropertyValue
113 N4d1e647487344b5381cca45d59099afa rdf:first sg:person.016577410322.10
114 rdf:rest Nfa818ab59dc8404a87d37259c4191de8
115 N58cf75bafcf54691a5dcb9b29647fad4 schema:name dimensions_id
116 schema:value pub.1111269231
117 rdf:type schema:PropertyValue
118 N5c87f4876c5642e185363ece64df7421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Lychnis
120 rdf:type schema:DefinedTerm
121 N6341a4162e48443586c38bd363701f40 rdf:first sg:person.015224640661.59
122 rdf:rest N78b7079803d547d2a4f161f8a3956e0f
123 N6a44e4581d4a482ab2f39e050e4e449f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Transcriptome
125 rdf:type schema:DefinedTerm
126 N78b7079803d547d2a4f161f8a3956e0f rdf:first sg:person.01073413171.62
127 rdf:rest rdf:nil
128 N915b2d20ae614978bf89e20f9898360f rdf:first sg:person.016560573550.34
129 rdf:rest N4d1e647487344b5381cca45d59099afa
130 Nb20f364ce24f46719a0c1afbc2df4631 schema:issueNumber 1
131 rdf:type schema:PublicationIssue
132 Nb2c94e8f93ae4b25a625c187b50cfc9b schema:name pubmed_id
133 schema:value 30621589
134 rdf:type schema:PropertyValue
135 Nbb3de29600c043cb9b659d88324c9b9b schema:name nlm_unique_id
136 schema:value 100967807
137 rdf:type schema:PropertyValue
138 Ne1c8476099ad48cb9f96ae47645051f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Heterozygote
140 rdf:type schema:DefinedTerm
141 Ne6b842739e524d0e98ee5199639bdbda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Microsatellite Repeats
143 rdf:type schema:DefinedTerm
144 Nf4933a02782e48bbb4b6aacc6fd4a156 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Polymorphism, Single Nucleotide
146 rdf:type schema:DefinedTerm
147 Nfa818ab59dc8404a87d37259c4191de8 rdf:first N1f549d8d3a3345fc8589644a778cc4d1
148 rdf:rest N28d4368dffbe48248d9c0fea2249d60e
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
153 schema:name Genetics
154 rdf:type schema:DefinedTerm
155 sg:journal.1024638 schema:issn 1471-2229
156 schema:name BMC Plant Biology
157 rdf:type schema:Periodical
158 sg:person.01073413171.62 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
159 schema:familyName Park
160 schema:givenName SeonJoo
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073413171.62
162 rdf:type schema:Person
163 sg:person.015224640661.59 schema:affiliation https://www.grid.ac/institutes/grid.444568.f
164 schema:familyName Hoshino
165 schema:givenName Takuji
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224640661.59
167 rdf:type schema:Person
168 sg:person.016560573550.34 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
169 schema:familyName Park
170 schema:givenName Seongjun
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560573550.34
172 rdf:type schema:Person
173 sg:person.016577410322.10 schema:affiliation https://www.grid.ac/institutes/grid.418977.4
174 schema:familyName Son
175 schema:givenName Sungwon
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016577410322.10
177 rdf:type schema:Person
178 sg:pub.10.1007/978-94-017-0443-4_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039010594
179 https://doi.org/10.1007/978-94-017-0443-4_7
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00122-002-1031-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019511827
182 https://doi.org/10.1007/s00122-002-1031-0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s12298-013-0179-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030728267
185 https://doi.org/10.1007/s12298-013-0179-1
186 rdf:type schema:CreativeWork
187 sg:pub.10.1023/a:1014875206165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044165706
188 https://doi.org/10.1023/a:1014875206165
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/hdy.2009.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011794341
191 https://doi.org/10.1038/hdy.2009.34
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/hdy.2010.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005420306
194 https://doi.org/10.1038/hdy.2010.152
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/hdy.2013.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043266410
197 https://doi.org/10.1038/hdy.2013.120
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
200 https://doi.org/10.1038/nbt.1883
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
203 https://doi.org/10.1038/nmeth.1923
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nprot.2006.384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045693921
206 https://doi.org/10.1038/nprot.2006.384
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/sj.hdy.6801001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313885
209 https://doi.org/10.1038/sj.hdy.6801001
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/srep39591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042956070
212 https://doi.org/10.1038/srep39591
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1471-2164-11-719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051381276
215 https://doi.org/10.1186/1471-2164-11-719
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/1471-2229-13-194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037229530
218 https://doi.org/10.1186/1471-2229-13-194
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/1756-0500-4-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031794416
221 https://doi.org/10.1186/1756-0500-4-85
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/gb-2006-7-2-r14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050370699
224 https://doi.org/10.1186/gb-2006-7-2-r14
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/s12870-016-0859-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014222385
227 https://doi.org/10.1186/s12870-016-0859-4
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/0169-5347(96)10045-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274901
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.molp.2016.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006380732
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.tibtech.2004.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015011855
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.tig.2006.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003424815
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.tplants.2010.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021913458
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0160-9327(97)01005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031174439
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/s1360-1385(96)86898-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054697171
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s1672-0229(10)60008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024361771
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/jm100888d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055951833
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1046/j.1365-294x.2002.01643.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025437171
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1046/j.1420-9101.2002.00373.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046460499
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1073/pnas.89.5.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021499443
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/molbev/msh073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017786519
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/nar/12.10.4127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015628273
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/nar/gkn176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022937830
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/nar/gks596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014785724
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/oxfordjournals.jhered.a111573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083620582
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1105/tpc.10.7.1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014879103
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1111/j.1365-2745.2006.01150.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002787452
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/j.1365-2745.2008.01417.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035827471
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1111/j.1365-2745.2011.01919.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038974554
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1111/j.1365-294x.2005.02485.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028829674
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1111/j.1365-294x.2007.03089.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051034705
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1111/j.1365-294x.2008.03971.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314938
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1111/j.1523-1739.2006.00646.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003890778
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737796
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1111/j.1558-5646.1996.tb02352.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085736716
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1111/j.1755-0998.2011.03079.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040300404
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1146/annurev.es.24.110193.001245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046214733
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1146/annurev.genet.39.073003.112420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022487418
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1199/tab.0153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042869501
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1371/journal.pgen.1000999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006727454
296 rdf:type schema:CreativeWork
297 https://doi.org/10.2307/2532296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977714
298 rdf:type schema:CreativeWork
299 https://doi.org/10.3389/fpls.2014.00135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036701402
300 rdf:type schema:CreativeWork
301 https://doi.org/10.3389/fpls.2015.01247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023760492
302 rdf:type schema:CreativeWork
303 https://doi.org/10.3389/fpls.2017.01664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091921822
304 rdf:type schema:CreativeWork
305 https://doi.org/10.3732/ajb.1100394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008962620
306 rdf:type schema:CreativeWork
307 https://doi.org/10.3732/ajb.92.11.1853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051934735
308 rdf:type schema:CreativeWork
309 https://doi.org/10.3732/apps.1600024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048041582
310 rdf:type schema:CreativeWork
311 https://doi.org/10.3732/apps.1600113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045223527
312 rdf:type schema:CreativeWork
313 https://www.grid.ac/institutes/grid.274841.c schema:alternateName Kumamoto University
314 schema:name Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, 860-8555, Kumamoto, Japan
315 rdf:type schema:Organization
316 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
317 schema:name Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Gyeongbuk, South Korea
318 Institute of Natural Science, Yeungnam University, 38541, Gyeongsan, Gyeongbuk, South Korea
319 rdf:type schema:Organization
320 https://www.grid.ac/institutes/grid.418977.4 schema:alternateName Korea Forest Service
321 schema:name Plant Conservation Division, Korea National Arboretum, 11186, Pocheon, Gyeonggi, South Korea
322 rdf:type schema:Organization
323 https://www.grid.ac/institutes/grid.444568.f schema:alternateName Okayama University of Science
324 schema:name Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-ku, 700-0005, Okayama, Japan
325 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...