Genetical genomics of quality related traits in potato tubers using proteomics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Animesh Acharjee, Pierre-Yves Chibon, Bjorn Kloosterman, Twan America, Jenny Renaut, Chris Maliepaard, Richard G. F. Visser

ABSTRACT

BACKGROUND: Recent advances in ~omics technologies such as transcriptomics, metabolomics and proteomics along with genotypic profiling have permitted the genetic dissection of complex traits such as quality traits in non-model species. To get more insight into the genetic factors underlying variation in quality traits related to carbohydrate and starch metabolism and cold sweetening, we determined the protein content and composition in potato tubers using 2D-gel electrophoresis in a diploid potato mapping population. Upon analyzing we made sure that the proteins from the patatin family were excluded to ensure a better representation of the other proteins. RESULTS: We subsequently performed pQTL analyses for all other proteins with a sufficient representation in the population and established a relationship between proteins and 26 potato tuber quality traits (e.g. flesh colour, enzymatic discoloration) by co-localization on the genetic map and a direct correlation study of protein abundances and phenotypic traits. Over 1643 unique protein spots were detected in total over the two harvests. We were able to map pQTLs for over 300 different protein spots some of which co-localized with traits such as starch content and cold sweetening. pQTLs were observed on every chromosome although not evenly distributed over the chromosomes. The largest number of pQTLs was found for chromosome 8 and the lowest for chromosome number 10. For some 20 protein spots multiple QTLs were observed. CONCLUSIONS: From this analysis, hotspot areas for protein QTLs were identified on chromosomes three, five, eight and nine. The hotspot on chromosome 3 coincided with a QTL previously identified for total protein content and had more than 23 pQTLs in the region from 70 to 80 cM. Some of the co-localizing protein spots associated with some of the most interesting tuber quality traits were identified, albeit far less than we had anticipated at the onset of the experiments. More... »

PAGES

20

References to SciGraph publications

  • 2005-09. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix in HEREDITY
  • 2009-02. System-wide molecular evidence for phenotypic buffering in Arabidopsis in NATURE GENETICS
  • 2015-03. Identification and mapping of stable QTL for protein content in soybean seeds in MOLECULAR BREEDING
  • 2003-03. Genetics of gene expression surveyed in maize, mouse and man in NATURE
  • 2006-07. The genetics of plant metabolism in NATURE GENETICS
  • 2010-12. From QTL to candidate gene: Genetical genomics of simple and complex traits in potato using a pooling strategy in BMC GENOMICS
  • 2010-08. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers in PLANT MOLECULAR BIOLOGY
  • 2006-09. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism in AMERICAN JOURNAL OF POTATO RESEARCH
  • 2002-01. Multifactorial genetics: Mapping and analysis of quantitative trait loci in experimental populations in NATURE REVIEWS GENETICS
  • 2007-06-26. Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis in THEORETICAL AND APPLIED GENETICS
  • 1992-10. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers in HEREDITY
  • 2016-06. Integration of multi-omics data for prediction of phenotypic traits using random forest in BMC BIOINFORMATICS
  • 2010-06. A pipeline for high throughput detection and mapping of SNPs from EST databases in MOLECULAR BREEDING
  • 2012-12. Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source-sink tissues in a segregating potato population in BMC PLANT BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12870-018-1229-1

    DOI

    http://dx.doi.org/10.1186/s12870-018-1229-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100558746

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29361908


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbohydrate Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Food Quality", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Tubers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solanum tuberosum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Starch", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University Hospitals Birmingham NHS Foundation Trust", 
              "id": "https://www.grid.ac/institutes/grid.412563.7", 
              "name": [
                "Graduate School Experimental Plant Sciences, Wageningen, The Netherlands", 
                "Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands", 
                "Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, Birmingham, UK", 
                "Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Acharjee", 
            "givenName": "Animesh", 
            "id": "sg:person.01201366413.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201366413.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Graduate School Experimental Plant Sciences, Wageningen, The Netherlands", 
                "Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chibon", 
            "givenName": "Pierre-Yves", 
            "id": "sg:person.0670212437.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670212437.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands", 
                "Present address: Keygene NV, PO Box 216, 6700 AE, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kloosterman", 
            "givenName": "Bjorn", 
            "id": "sg:person.0750643451.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750643451.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for BioSystems Genomics", 
              "id": "https://www.grid.ac/institutes/grid.450019.9", 
              "name": [
                "Centre for BioSystems Genomics, P.O. Box 98, 6700 AA, Wageningen, The Netherlands", 
                "Business unit BiosciencesWageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "America", 
            "givenName": "Twan", 
            "id": "sg:person.0776122205.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776122205.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Luxembourg Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.423669.c", 
              "name": [
                "Centre de Recherche Public - Gabriel Lippmann Department of Environment and Agrobiotechnologies (EVA) 41, rue du Brill, L-4422, Belvaux, Luxembourg"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Renaut", 
            "givenName": "Jenny", 
            "id": "sg:person.01176445346.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176445346.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maliepaard", 
            "givenName": "Chris", 
            "id": "sg:person.01247501613.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247501613.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for BioSystems Genomics", 
              "id": "https://www.grid.ac/institutes/grid.450019.9", 
              "name": [
                "Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands", 
                "Centre for BioSystems Genomics, P.O. Box 98, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Visser", 
            "givenName": "Richard G. F.", 
            "id": "sg:person.07374343732.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jprot.2015.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000552180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erh207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001728668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1992.131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003515428", 
              "https://doi.org/10.1038/hdy.1992.131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1992.131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003515428", 
              "https://doi.org/10.1038/hdy.1992.131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-015-0285-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008780756", 
              "https://doi.org/10.1007/s11032-015-0285-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-12-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009026174", 
              "https://doi.org/10.1186/1471-2229-12-17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijms160920913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010377978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.113.229054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011714990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.108522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012254159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.108522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012254159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/pbr.12179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016081967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pmic.201000687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016958547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jprot.2016.04.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016963451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plaphy.2016.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017452987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plaphy.2016.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017452987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2011.03.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018135175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1023039600", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1023039600", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-010-9647-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023255330", 
              "https://doi.org/10.1007/s11103-010-9647-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-010-9647-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023255330", 
              "https://doi.org/10.1007/s11103-010-9647-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-1043-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025872318", 
              "https://doi.org/10.1186/s12859-016-1043-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-1043-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025872318", 
              "https://doi.org/10.1186/s12859-016-1043-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(01)02310-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026477807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0008598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031233791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033471111", 
              "https://doi.org/10.1038/ng1815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033471111", 
              "https://doi.org/10.1038/ng1815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0560-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033526515", 
              "https://doi.org/10.1007/s00122-007-0560-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0560-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033526515", 
              "https://doi.org/10.1007/s00122-007-0560-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.hdy.6800717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034994515", 
              "https://doi.org/10.1038/sj.hdy.6800717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.hdy.6800717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034994515", 
              "https://doi.org/10.1038/sj.hdy.6800717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-009-9377-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035325845", 
              "https://doi.org/10.1007/s11032-009-9377-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-009-9377-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035325845", 
              "https://doi.org/10.1007/s11032-009-9377-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035744248", 
              "https://doi.org/10.1038/nature01434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035744248", 
              "https://doi.org/10.1038/nature01434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jproteome.5b01061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038341768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(90)81281-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039489980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039905920", 
              "https://doi.org/10.1038/nrg703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039905920", 
              "https://doi.org/10.1038/nrg703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042647978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043854389", 
              "https://doi.org/10.1186/1471-2164-11-158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048649124", 
              "https://doi.org/10.1038/ng.308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1399-3054.1994.tb00389.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050376087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02872013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050778389", 
              "https://doi.org/10.1007/bf02872013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02872013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050778389", 
              "https://doi.org/10.1007/bf02872013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cryobiol.2015.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051312896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf030016j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055900889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf030016j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055900889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/pr4005635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056293545"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Recent advances in ~omics technologies such as transcriptomics, metabolomics and proteomics along with genotypic profiling have permitted the genetic dissection of complex traits such as quality traits in non-model species. To get more insight into the genetic factors underlying variation in quality traits related to carbohydrate and starch metabolism and cold sweetening, we determined the protein content and composition in potato tubers using 2D-gel electrophoresis in a diploid potato mapping population. Upon analyzing we made sure that the proteins from the patatin family were excluded to ensure a better representation of the other proteins.\nRESULTS: We subsequently performed pQTL analyses for all other proteins with a sufficient representation in the population and established a relationship between proteins and 26 potato tuber quality traits (e.g. flesh colour, enzymatic discoloration) by co-localization on the genetic map and a direct correlation study of protein abundances and phenotypic traits. Over 1643 unique protein spots were detected in total over the two harvests. We were able to map pQTLs for over 300 different protein spots some of which co-localized with traits such as starch content and cold sweetening. pQTLs were observed on every chromosome although not evenly distributed over the chromosomes. The largest number of pQTLs was found for chromosome 8 and the lowest for chromosome number 10. For some 20 protein spots multiple QTLs were observed.\nCONCLUSIONS: From this analysis, hotspot areas for protein QTLs were identified on chromosomes three, five, eight and nine. The hotspot on chromosome 3 coincided with a QTL previously identified for total protein content and had more than 23 pQTLs in the region from 70 to 80\u00a0cM. Some of the co-localizing protein spots associated with some of the most interesting tuber quality traits were identified, albeit far less than we had anticipated at the onset of the experiments.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12870-018-1229-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024638", 
            "issn": [
              "1471-2229"
            ], 
            "name": "BMC Plant Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Genetical genomics of quality related traits in potato tubers using proteomics", 
        "pagination": "20", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6dd8696400cc27f5af60146b10e9bb807ce63d93deeb43f02d2708e4f4ed89b4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29361908"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100967807"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12870-018-1229-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100558746"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12870-018-1229-1", 
          "https://app.dimensions.ai/details/publication/pub.1100558746"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/s12870-018-1229-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1229-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1229-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1229-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12870-018-1229-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    273 TRIPLES      21 PREDICATES      71 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12870-018-1229-1 schema:about N5293a259992f46a38c61a39e3e85d1eb
    2 N566e80051df042789fb9a76cf6631a98
    3 N6170892c22744182a7e895f243c2acaf
    4 N7d204621126c43b880566779c1089f3e
    5 Na87a7a94f1364aab9edc23280eb3f03b
    6 Nc3283bca56a04a5e8f6adc124a5c1c99
    7 Ncb75a048a0284680a43d27599479ce95
    8 Ne9f2e957afff4c38bc391861c7807eb4
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Nbfce1235b24440b8a34146910117d00b
    12 schema:citation sg:pub.10.1007/bf02872013
    13 sg:pub.10.1007/s00122-007-0560-y
    14 sg:pub.10.1007/s11032-009-9377-5
    15 sg:pub.10.1007/s11032-015-0285-6
    16 sg:pub.10.1007/s11103-010-9647-y
    17 sg:pub.10.1038/hdy.1992.131
    18 sg:pub.10.1038/nature01434
    19 sg:pub.10.1038/ng.308
    20 sg:pub.10.1038/ng1815
    21 sg:pub.10.1038/nrg703
    22 sg:pub.10.1038/sj.hdy.6800717
    23 sg:pub.10.1186/1471-2164-11-158
    24 sg:pub.10.1186/1471-2229-12-17
    25 sg:pub.10.1186/s12859-016-1043-4
    26 https://app.dimensions.ai/details/publication/pub.1023039600
    27 https://doi.org/10.1002/pmic.201000687
    28 https://doi.org/10.1016/0014-5793(90)81281-r
    29 https://doi.org/10.1016/j.aca.2011.03.050
    30 https://doi.org/10.1016/j.cryobiol.2015.09.006
    31 https://doi.org/10.1016/j.jprot.2015.01.012
    32 https://doi.org/10.1016/j.jprot.2016.04.048
    33 https://doi.org/10.1016/j.plaphy.2016.09.008
    34 https://doi.org/10.1016/s0168-9525(01)02310-1
    35 https://doi.org/10.1021/acs.jproteome.5b01061
    36 https://doi.org/10.1021/jf030016j
    37 https://doi.org/10.1021/pr4005635
    38 https://doi.org/10.1093/jxb/erh207
    39 https://doi.org/10.1104/pp.113.229054
    40 https://doi.org/10.1111/j.1399-3054.1994.tb00389.x
    41 https://doi.org/10.1111/pbr.12179
    42 https://doi.org/10.1371/journal.pgen.1000232
    43 https://doi.org/10.1371/journal.pone.0008598
    44 https://doi.org/10.1534/genetics.109.108522
    45 https://doi.org/10.3390/ijms160920913
    46 schema:datePublished 2018-12
    47 schema:datePublishedReg 2018-12-01
    48 schema:description BACKGROUND: Recent advances in ~omics technologies such as transcriptomics, metabolomics and proteomics along with genotypic profiling have permitted the genetic dissection of complex traits such as quality traits in non-model species. To get more insight into the genetic factors underlying variation in quality traits related to carbohydrate and starch metabolism and cold sweetening, we determined the protein content and composition in potato tubers using 2D-gel electrophoresis in a diploid potato mapping population. Upon analyzing we made sure that the proteins from the patatin family were excluded to ensure a better representation of the other proteins. RESULTS: We subsequently performed pQTL analyses for all other proteins with a sufficient representation in the population and established a relationship between proteins and 26 potato tuber quality traits (e.g. flesh colour, enzymatic discoloration) by co-localization on the genetic map and a direct correlation study of protein abundances and phenotypic traits. Over 1643 unique protein spots were detected in total over the two harvests. We were able to map pQTLs for over 300 different protein spots some of which co-localized with traits such as starch content and cold sweetening. pQTLs were observed on every chromosome although not evenly distributed over the chromosomes. The largest number of pQTLs was found for chromosome 8 and the lowest for chromosome number 10. For some 20 protein spots multiple QTLs were observed. CONCLUSIONS: From this analysis, hotspot areas for protein QTLs were identified on chromosomes three, five, eight and nine. The hotspot on chromosome 3 coincided with a QTL previously identified for total protein content and had more than 23 pQTLs in the region from 70 to 80 cM. Some of the co-localizing protein spots associated with some of the most interesting tuber quality traits were identified, albeit far less than we had anticipated at the onset of the experiments.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree true
    52 schema:isPartOf N049effd1c24042e0b112e633ac2bee3b
    53 N9427534b77c14d169b59b1689decfc10
    54 sg:journal.1024638
    55 schema:name Genetical genomics of quality related traits in potato tubers using proteomics
    56 schema:pagination 20
    57 schema:productId N33357a77d7fb43deb9bf23173f468fe4
    58 Nb0e4e6d1d04e4d259492cf6bd8297478
    59 Nb7ae5775cfe0421ea576b1d883099ca9
    60 Nb84328b6201d4d28be4f92a78126c812
    61 Nf8a365bd21e842b192b47ae4e406d49a
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100558746
    63 https://doi.org/10.1186/s12870-018-1229-1
    64 schema:sdDatePublished 2019-04-10T19:02
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Nb8333f862e4345e4863b8f8997f81a51
    67 schema:url http://link.springer.com/10.1186/s12870-018-1229-1
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N033be02ff73e4b328a2ac5a380663a73 rdf:first sg:person.07374343732.28
    72 rdf:rest rdf:nil
    73 N049effd1c24042e0b112e633ac2bee3b schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 N33357a77d7fb43deb9bf23173f468fe4 schema:name pubmed_id
    76 schema:value 29361908
    77 rdf:type schema:PropertyValue
    78 N5293a259992f46a38c61a39e3e85d1eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Genomics
    80 rdf:type schema:DefinedTerm
    81 N566e80051df042789fb9a76cf6631a98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Proteomics
    83 rdf:type schema:DefinedTerm
    84 N6170892c22744182a7e895f243c2acaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Solanum tuberosum
    86 rdf:type schema:DefinedTerm
    87 N648fb1b2953640afa804cef8ad72743f rdf:first sg:person.0776122205.81
    88 rdf:rest Ncb12398187794d678a5cb2cc19440c61
    89 N71cccb8e394540128faec4905f4d14c2 rdf:first sg:person.0750643451.31
    90 rdf:rest N648fb1b2953640afa804cef8ad72743f
    91 N7d204621126c43b880566779c1089f3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Phenotype
    93 rdf:type schema:DefinedTerm
    94 N9427534b77c14d169b59b1689decfc10 schema:volumeNumber 18
    95 rdf:type schema:PublicationVolume
    96 Na87a7a94f1364aab9edc23280eb3f03b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Food Quality
    98 rdf:type schema:DefinedTerm
    99 Nb0e4e6d1d04e4d259492cf6bd8297478 schema:name nlm_unique_id
    100 schema:value 100967807
    101 rdf:type schema:PropertyValue
    102 Nb7ae5775cfe0421ea576b1d883099ca9 schema:name doi
    103 schema:value 10.1186/s12870-018-1229-1
    104 rdf:type schema:PropertyValue
    105 Nb8333f862e4345e4863b8f8997f81a51 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Nb84328b6201d4d28be4f92a78126c812 schema:name readcube_id
    108 schema:value 6dd8696400cc27f5af60146b10e9bb807ce63d93deeb43f02d2708e4f4ed89b4
    109 rdf:type schema:PropertyValue
    110 Nbfce1235b24440b8a34146910117d00b rdf:first sg:person.01201366413.30
    111 rdf:rest Nc12bfa78b69646e4a18f6f2d6d340780
    112 Nc12bfa78b69646e4a18f6f2d6d340780 rdf:first sg:person.0670212437.16
    113 rdf:rest N71cccb8e394540128faec4905f4d14c2
    114 Nc2f76d6fff1a410ab92b6d662f69dd0f rdf:first sg:person.01247501613.36
    115 rdf:rest N033be02ff73e4b328a2ac5a380663a73
    116 Nc3283bca56a04a5e8f6adc124a5c1c99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Carbohydrate Metabolism
    118 rdf:type schema:DefinedTerm
    119 Ncb12398187794d678a5cb2cc19440c61 rdf:first sg:person.01176445346.39
    120 rdf:rest Nc2f76d6fff1a410ab92b6d662f69dd0f
    121 Ncb75a048a0284680a43d27599479ce95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Plant Tubers
    123 rdf:type schema:DefinedTerm
    124 Ne9f2e957afff4c38bc391861c7807eb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Starch
    126 rdf:type schema:DefinedTerm
    127 Nf8a365bd21e842b192b47ae4e406d49a schema:name dimensions_id
    128 schema:value pub.1100558746
    129 rdf:type schema:PropertyValue
    130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Biological Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Genetics
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1024638 schema:issn 1471-2229
    137 schema:name BMC Plant Biology
    138 rdf:type schema:Periodical
    139 sg:person.01176445346.39 schema:affiliation https://www.grid.ac/institutes/grid.423669.c
    140 schema:familyName Renaut
    141 schema:givenName Jenny
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176445346.39
    143 rdf:type schema:Person
    144 sg:person.01201366413.30 schema:affiliation https://www.grid.ac/institutes/grid.412563.7
    145 schema:familyName Acharjee
    146 schema:givenName Animesh
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201366413.30
    148 rdf:type schema:Person
    149 sg:person.01247501613.36 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    150 schema:familyName Maliepaard
    151 schema:givenName Chris
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247501613.36
    153 rdf:type schema:Person
    154 sg:person.0670212437.16 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    155 schema:familyName Chibon
    156 schema:givenName Pierre-Yves
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670212437.16
    158 rdf:type schema:Person
    159 sg:person.07374343732.28 schema:affiliation https://www.grid.ac/institutes/grid.450019.9
    160 schema:familyName Visser
    161 schema:givenName Richard G. F.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28
    163 rdf:type schema:Person
    164 sg:person.0750643451.31 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    165 schema:familyName Kloosterman
    166 schema:givenName Bjorn
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750643451.31
    168 rdf:type schema:Person
    169 sg:person.0776122205.81 schema:affiliation https://www.grid.ac/institutes/grid.450019.9
    170 schema:familyName America
    171 schema:givenName Twan
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776122205.81
    173 rdf:type schema:Person
    174 sg:pub.10.1007/bf02872013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050778389
    175 https://doi.org/10.1007/bf02872013
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s00122-007-0560-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033526515
    178 https://doi.org/10.1007/s00122-007-0560-y
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11032-009-9377-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035325845
    181 https://doi.org/10.1007/s11032-009-9377-5
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11032-015-0285-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008780756
    184 https://doi.org/10.1007/s11032-015-0285-6
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11103-010-9647-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023255330
    187 https://doi.org/10.1007/s11103-010-9647-y
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/hdy.1992.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003515428
    190 https://doi.org/10.1038/hdy.1992.131
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature01434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035744248
    193 https://doi.org/10.1038/nature01434
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ng.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048649124
    196 https://doi.org/10.1038/ng.308
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ng1815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033471111
    199 https://doi.org/10.1038/ng1815
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nrg703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039905920
    202 https://doi.org/10.1038/nrg703
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/sj.hdy.6800717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034994515
    205 https://doi.org/10.1038/sj.hdy.6800717
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1186/1471-2164-11-158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043854389
    208 https://doi.org/10.1186/1471-2164-11-158
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1186/1471-2229-12-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009026174
    211 https://doi.org/10.1186/1471-2229-12-17
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1186/s12859-016-1043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025872318
    214 https://doi.org/10.1186/s12859-016-1043-4
    215 rdf:type schema:CreativeWork
    216 https://app.dimensions.ai/details/publication/pub.1023039600 schema:CreativeWork
    217 https://doi.org/10.1002/pmic.201000687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016958547
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/0014-5793(90)81281-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1039489980
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.aca.2011.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018135175
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.cryobiol.2015.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051312896
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.jprot.2015.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000552180
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.jprot.2016.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016963451
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.plaphy.2016.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017452987
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/s0168-9525(01)02310-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477807
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1021/acs.jproteome.5b01061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038341768
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1021/jf030016j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055900889
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1021/pr4005635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056293545
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/jxb/erh207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001728668
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1104/pp.113.229054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011714990
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1111/j.1399-3054.1994.tb00389.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050376087
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1111/pbr.12179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016081967
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1371/journal.pgen.1000232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042647978
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1371/journal.pone.0008598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031233791
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1534/genetics.109.108522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012254159
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.3390/ijms160920913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010377978
    254 rdf:type schema:CreativeWork
    255 https://www.grid.ac/institutes/grid.412563.7 schema:alternateName University Hospitals Birmingham NHS Foundation Trust
    256 schema:name Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
    257 Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, Birmingham, UK
    258 Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, B15 2TT, Birmingham, UK
    259 Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
    260 rdf:type schema:Organization
    261 https://www.grid.ac/institutes/grid.423669.c schema:alternateName Luxembourg Institute of Science and Technology
    262 schema:name Centre de Recherche Public - Gabriel Lippmann Department of Environment and Agrobiotechnologies (EVA) 41, rue du Brill, L-4422, Belvaux, Luxembourg
    263 rdf:type schema:Organization
    264 https://www.grid.ac/institutes/grid.450019.9 schema:alternateName Centre for BioSystems Genomics
    265 schema:name Business unit BiosciencesWageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
    266 Centre for BioSystems Genomics, P.O. Box 98, 6700 AA, Wageningen, The Netherlands
    267 Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
    268 rdf:type schema:Organization
    269 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
    270 schema:name Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
    271 Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
    272 Present address: Keygene NV, PO Box 216, 6700 AE, Wageningen, The Netherlands
    273 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...