GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Yerlan Turuspekov, Aida Baibulatova, Kanat Yermekbayev, Laura Tokhetova, Vladimir Chudinov, Grigoriy Sereda, Martin Ganal, Simon Griffiths, Saule Abugalieva

ABSTRACT

BACKGROUND: Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. RESULTS: Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. CONCLUSIONS: Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan. More... »

PAGES

190

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12870-017-1131-2

DOI

http://dx.doi.org/10.1186/s12870-017-1131-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092689716

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29143598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kazakhstan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triticum", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turuspekov", 
        "givenName": "Yerlan", 
        "id": "sg:person.01170040576.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170040576.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baibulatova", 
        "givenName": "Aida", 
        "id": "sg:person.016101506367.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016101506367.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yermekbayev", 
        "givenName": "Kanat", 
        "id": "sg:person.01153774164.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153774164.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Kazakh Rice Research Institute, 120016, Kyzylorda, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokhetova", 
        "givenName": "Laura", 
        "id": "sg:person.0626776276.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626776276.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Karabalyk Breeding Station, 110908, Kostanai region, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chudinov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01304267176.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304267176.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Karaganda Research Institute of Agriculture, 100435, Karaganda region, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sereda", 
        "givenName": "Grigoriy", 
        "id": "sg:person.014417665021.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417665021.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TraitGenetics Gmbh, 06466, Gatersleben, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganal", 
        "givenName": "Martin", 
        "id": "sg:person.01055350705.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055350705.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "John Innes Centre", 
          "id": "https://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "John Innes Centre, Norwich Research Park, NR47UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griffiths", 
        "givenName": "Simon", 
        "id": "sg:person.01361642000.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361642000.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abugalieva", 
        "givenName": "Saule", 
        "id": "sg:person.01125566476.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125566476.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12864-016-3148-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001843384", 
          "https://doi.org/10.1186/s12864-016-3148-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3148-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001843384", 
          "https://doi.org/10.1186/s12864-016-3148-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-014-2435-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003661287", 
          "https://doi.org/10.1007/s00122-014-2435-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005826250", 
          "https://doi.org/10.1186/1471-2105-13-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-009-9984-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007845883", 
          "https://doi.org/10.1007/s10681-009-9984-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-009-9984-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007845883", 
          "https://doi.org/10.1007/s10681-009-9984-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.14342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010990607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-006-9321-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015759784", 
          "https://doi.org/10.1007/s10681-006-9321-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-006-9321-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015759784", 
          "https://doi.org/10.1007/s10681-006-9321-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220050845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016113105", 
          "https://doi.org/10.1007/s001220050845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220050845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016113105", 
          "https://doi.org/10.1007/s001220050845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0169606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016664480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4290(02)00023-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020250745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-014-2444-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020955555", 
          "https://doi.org/10.1007/s00122-014-2444-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-016-0541-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023123544", 
          "https://doi.org/10.1007/s11032-016-0541-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-016-0541-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023123544", 
          "https://doi.org/10.1007/s11032-016-0541-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1479262115000325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023401085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1022795413020129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025351925", 
          "https://doi.org/10.1134/s1022795413020129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-004-1902-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027950120", 
          "https://doi.org/10.1007/s00122-004-1902-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028217957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2014.00217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033103599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-015-2492-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036217476", 
          "https://doi.org/10.1007/s00122-015-2492-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0108179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036324640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920212800543084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037094372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbi.12183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037877462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pce.12898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039643840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pce.12898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039643840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pce.12898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039643840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-016-2815-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042275779", 
          "https://doi.org/10.1007/s00122-016-2815-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-016-2815-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042275779", 
          "https://doi.org/10.1007/s00122-016-2815-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbi.12538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042412389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0159343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043077176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2016.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043962059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.109.068437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-004-1740-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048722415", 
          "https://doi.org/10.1007/s00122-004-1740-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-004-1740-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048722415", 
          "https://doi.org/10.1007/s00122-004-1740-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbi.12635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049058668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0105593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049274944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.14367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052672863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022050702001602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054793888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1556/aagr.53.2005.3.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067873896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1556/aagr.53.2005.3.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067873896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7868/s0016675813020124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074090002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.00886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085716171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-04028-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086000852", 
          "https://doi.org/10.1038/s41598-017-04028-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "BACKGROUND: Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS.\nRESULTS: Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits.\nCONCLUSIONS: Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12870-017-1131-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7746244", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2766945", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2758505", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2786348", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024638", 
        "issn": [
          "1471-2229"
        ], 
        "name": "BMC Plant Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan", 
    "pagination": "190", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ff9eb5b3041edeebf9dafd7d20c5d1c94871afcccf68a07e50265e01d3b4e24"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29143598"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100967807"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12870-017-1131-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092689716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12870-017-1131-2", 
      "https://app.dimensions.ai/details/publication/pub.1092689716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s12870-017-1131-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12870-017-1131-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12870-017-1131-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12870-017-1131-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12870-017-1131-2'


 

This table displays all metadata directly associated to this object as RDF triples.

310 TRIPLES      21 PREDICATES      75 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12870-017-1131-2 schema:about N2824f217d37f4ab8bf6bdb857aaac8fb
2 N2e0ca39bc78347339965f86ea2c45619
3 N3708c65e53234240b34a8c48b8557a96
4 N3fbf090b93034773a675f08887eff982
5 N5717c2f9e28b410eb48dbe64c113e49c
6 N7afedcd6f432479a995ab110e556884a
7 N8b2d44b59e7740eeb965fc5b6aa9ba66
8 N8e6673cb4420456b87d3f122e9b649a5
9 N957e8bbe075441cd845107313abba356
10 Nd80cce78b7ea4c1d94be42f6c9ea9a59
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N9fbc6324031545dc90d388ade05efe0c
14 schema:citation sg:pub.10.1007/s00122-004-1740-7
15 sg:pub.10.1007/s00122-004-1902-7
16 sg:pub.10.1007/s00122-014-2435-3
17 sg:pub.10.1007/s00122-014-2444-2
18 sg:pub.10.1007/s00122-015-2492-2
19 sg:pub.10.1007/s00122-016-2815-y
20 sg:pub.10.1007/s001220050845
21 sg:pub.10.1007/s10681-006-9321-2
22 sg:pub.10.1007/s10681-009-9984-6
23 sg:pub.10.1007/s11032-016-0541-4
24 sg:pub.10.1038/s41598-017-04028-6
25 sg:pub.10.1134/s1022795413020129
26 sg:pub.10.1186/1471-2105-13-219
27 sg:pub.10.1186/s12864-016-3148-6
28 https://doi.org/10.1016/j.fcr.2016.07.019
29 https://doi.org/10.1016/s0378-4290(02)00023-0
30 https://doi.org/10.1017/s0022050702001602
31 https://doi.org/10.1017/s1479262115000325
32 https://doi.org/10.1093/bioinformatics/btm308
33 https://doi.org/10.1105/tpc.109.068437
34 https://doi.org/10.1111/nph.14342
35 https://doi.org/10.1111/nph.14367
36 https://doi.org/10.1111/pbi.12183
37 https://doi.org/10.1111/pbi.12538
38 https://doi.org/10.1111/pbi.12635
39 https://doi.org/10.1111/pce.12898
40 https://doi.org/10.1126/science.1251788
41 https://doi.org/10.1371/journal.pone.0105593
42 https://doi.org/10.1371/journal.pone.0108179
43 https://doi.org/10.1371/journal.pone.0159343
44 https://doi.org/10.1371/journal.pone.0169606
45 https://doi.org/10.1556/aagr.53.2005.3.3
46 https://doi.org/10.2174/138920212800543084
47 https://doi.org/10.3389/fpls.2014.00217
48 https://doi.org/10.3389/fpls.2017.00886
49 https://doi.org/10.7868/s0016675813020124
50 schema:datePublished 2017-11
51 schema:datePublishedReg 2017-11-01
52 schema:description BACKGROUND: Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. RESULTS: Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. CONCLUSIONS: Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N3a3229fdca104f8fb7f21668b4c31654
57 N907b41ad0ff545b19a5fd6a56057fd85
58 sg:journal.1024638
59 schema:name GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan
60 schema:pagination 190
61 schema:productId N29cfc718f6534a12988d4b7db5993789
62 N40fd5b43c9414490ba043bdfa50dea33
63 N55053e74432548e9978d5a2385311466
64 Nc38232811ec945e8871018006cfdf8f8
65 Nfca190126c8e4f6a915392fbb069bb2d
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092689716
67 https://doi.org/10.1186/s12870-017-1131-2
68 schema:sdDatePublished 2019-04-10T16:04
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Na08ded8a284c40559a97ac269893b5ab
71 schema:url http://link.springer.com/10.1186/s12870-017-1131-2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N00736247d1c4419fb9a9181dce8c3039 schema:name Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan
76 rdf:type schema:Organization
77 N083f0524acf14758a795460afbe3646f schema:name Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan
78 rdf:type schema:Organization
79 N1de3968d15384389a6c1f36785969765 rdf:first sg:person.014417665021.39
80 rdf:rest Nc4c84037fade4c9dafa45fcbd497a022
81 N2824f217d37f4ab8bf6bdb857aaac8fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Genetic Markers
83 rdf:type schema:DefinedTerm
84 N29cfc718f6534a12988d4b7db5993789 schema:name readcube_id
85 schema:value 6ff9eb5b3041edeebf9dafd7d20c5d1c94871afcccf68a07e50265e01d3b4e24
86 rdf:type schema:PropertyValue
87 N2e0ca39bc78347339965f86ea2c45619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Genes, Plant
89 rdf:type schema:DefinedTerm
90 N3708c65e53234240b34a8c48b8557a96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Quantitative Trait Loci
92 rdf:type schema:DefinedTerm
93 N38509ede9bd54287bb3adcd2181302ce schema:name Karabalyk Breeding Station, 110908, Kostanai region, Kazakhstan
94 rdf:type schema:Organization
95 N3a3229fdca104f8fb7f21668b4c31654 schema:issueNumber Suppl 1
96 rdf:type schema:PublicationIssue
97 N3fbf090b93034773a675f08887eff982 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Triticum
99 rdf:type schema:DefinedTerm
100 N40fd5b43c9414490ba043bdfa50dea33 schema:name doi
101 schema:value 10.1186/s12870-017-1131-2
102 rdf:type schema:PropertyValue
103 N4764413487db428c854c2cb63e8a5237 schema:name Karaganda Research Institute of Agriculture, 100435, Karaganda region, Kazakhstan
104 rdf:type schema:Organization
105 N55053e74432548e9978d5a2385311466 schema:name pubmed_id
106 schema:value 29143598
107 rdf:type schema:PropertyValue
108 N5717c2f9e28b410eb48dbe64c113e49c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Genotype
110 rdf:type schema:DefinedTerm
111 N60c0c42aa8b14c39846ac3a43a807518 schema:name TraitGenetics Gmbh, 06466, Gatersleben, Germany
112 rdf:type schema:Organization
113 N6b3ad59c1a934d669abf50f6d49f5dc7 rdf:first sg:person.01304267176.18
114 rdf:rest N1de3968d15384389a6c1f36785969765
115 N7afedcd6f432479a995ab110e556884a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Phenotype
117 rdf:type schema:DefinedTerm
118 N8765e65d46fd4dbcb5140ada4b91ff48 rdf:first sg:person.016101506367.57
119 rdf:rest Nca3d5def5c5c49b18990b100ebdaf4a0
120 N8b2d44b59e7740eeb965fc5b6aa9ba66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Genome-Wide Association Study
122 rdf:type schema:DefinedTerm
123 N8e6673cb4420456b87d3f122e9b649a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Genetic Variation
125 rdf:type schema:DefinedTerm
126 N907b41ad0ff545b19a5fd6a56057fd85 schema:volumeNumber 17
127 rdf:type schema:PublicationVolume
128 N957e8bbe075441cd845107313abba356 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Polymorphism, Single Nucleotide
130 rdf:type schema:DefinedTerm
131 N9fbc6324031545dc90d388ade05efe0c rdf:first sg:person.01170040576.91
132 rdf:rest N8765e65d46fd4dbcb5140ada4b91ff48
133 Na08ded8a284c40559a97ac269893b5ab schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Na5c8f99e5af34a65bde0e73b6ad90626 schema:name Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan
136 rdf:type schema:Organization
137 Nb79218c7c8a148ac842082a8fbcb7b13 schema:name Kazakh Rice Research Institute, 120016, Kyzylorda, Kazakhstan
138 rdf:type schema:Organization
139 Nc38232811ec945e8871018006cfdf8f8 schema:name nlm_unique_id
140 schema:value 100967807
141 rdf:type schema:PropertyValue
142 Nc4c84037fade4c9dafa45fcbd497a022 rdf:first sg:person.01055350705.68
143 rdf:rest Nc618139bc348407b9e022115f7e3d31d
144 Nc618139bc348407b9e022115f7e3d31d rdf:first sg:person.01361642000.03
145 rdf:rest Ncfbb2ab7dc9542178c61b750e4c9e70d
146 Nca3d5def5c5c49b18990b100ebdaf4a0 rdf:first sg:person.01153774164.38
147 rdf:rest Nd134545d25dc4e909a11d631517a8a2b
148 Ncfbb2ab7dc9542178c61b750e4c9e70d rdf:first sg:person.01125566476.53
149 rdf:rest rdf:nil
150 Nd134545d25dc4e909a11d631517a8a2b rdf:first sg:person.0626776276.02
151 rdf:rest N6b3ad59c1a934d669abf50f6d49f5dc7
152 Nd80cce78b7ea4c1d94be42f6c9ea9a59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Kazakhstan
154 rdf:type schema:DefinedTerm
155 Nfb0c375383664c29a5c28a36cb6336e6 schema:name Institute of Plant Biology and Biotechnology, 050040, Almaty, Kazakhstan
156 rdf:type schema:Organization
157 Nfca190126c8e4f6a915392fbb069bb2d schema:name dimensions_id
158 schema:value pub.1092689716
159 rdf:type schema:PropertyValue
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:grant.2758505 http://pending.schema.org/fundedItem sg:pub.10.1186/s12870-017-1131-2
167 rdf:type schema:MonetaryGrant
168 sg:grant.2766945 http://pending.schema.org/fundedItem sg:pub.10.1186/s12870-017-1131-2
169 rdf:type schema:MonetaryGrant
170 sg:grant.2786348 http://pending.schema.org/fundedItem sg:pub.10.1186/s12870-017-1131-2
171 rdf:type schema:MonetaryGrant
172 sg:grant.7746244 http://pending.schema.org/fundedItem sg:pub.10.1186/s12870-017-1131-2
173 rdf:type schema:MonetaryGrant
174 sg:journal.1024638 schema:issn 1471-2229
175 schema:name BMC Plant Biology
176 rdf:type schema:Periodical
177 sg:person.01055350705.68 schema:affiliation N60c0c42aa8b14c39846ac3a43a807518
178 schema:familyName Ganal
179 schema:givenName Martin
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055350705.68
181 rdf:type schema:Person
182 sg:person.01125566476.53 schema:affiliation Nfb0c375383664c29a5c28a36cb6336e6
183 schema:familyName Abugalieva
184 schema:givenName Saule
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125566476.53
186 rdf:type schema:Person
187 sg:person.01153774164.38 schema:affiliation Na5c8f99e5af34a65bde0e73b6ad90626
188 schema:familyName Yermekbayev
189 schema:givenName Kanat
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153774164.38
191 rdf:type schema:Person
192 sg:person.01170040576.91 schema:affiliation N00736247d1c4419fb9a9181dce8c3039
193 schema:familyName Turuspekov
194 schema:givenName Yerlan
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170040576.91
196 rdf:type schema:Person
197 sg:person.01304267176.18 schema:affiliation N38509ede9bd54287bb3adcd2181302ce
198 schema:familyName Chudinov
199 schema:givenName Vladimir
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304267176.18
201 rdf:type schema:Person
202 sg:person.01361642000.03 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
203 schema:familyName Griffiths
204 schema:givenName Simon
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361642000.03
206 rdf:type schema:Person
207 sg:person.014417665021.39 schema:affiliation N4764413487db428c854c2cb63e8a5237
208 schema:familyName Sereda
209 schema:givenName Grigoriy
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417665021.39
211 rdf:type schema:Person
212 sg:person.016101506367.57 schema:affiliation N083f0524acf14758a795460afbe3646f
213 schema:familyName Baibulatova
214 schema:givenName Aida
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016101506367.57
216 rdf:type schema:Person
217 sg:person.0626776276.02 schema:affiliation Nb79218c7c8a148ac842082a8fbcb7b13
218 schema:familyName Tokhetova
219 schema:givenName Laura
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626776276.02
221 rdf:type schema:Person
222 sg:pub.10.1007/s00122-004-1740-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048722415
223 https://doi.org/10.1007/s00122-004-1740-7
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00122-004-1902-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027950120
226 https://doi.org/10.1007/s00122-004-1902-7
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00122-014-2435-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003661287
229 https://doi.org/10.1007/s00122-014-2435-3
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s00122-014-2444-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020955555
232 https://doi.org/10.1007/s00122-014-2444-2
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s00122-015-2492-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036217476
235 https://doi.org/10.1007/s00122-015-2492-2
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s00122-016-2815-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042275779
238 https://doi.org/10.1007/s00122-016-2815-y
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s001220050845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016113105
241 https://doi.org/10.1007/s001220050845
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s10681-006-9321-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015759784
244 https://doi.org/10.1007/s10681-006-9321-2
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s10681-009-9984-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007845883
247 https://doi.org/10.1007/s10681-009-9984-6
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s11032-016-0541-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023123544
250 https://doi.org/10.1007/s11032-016-0541-4
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/s41598-017-04028-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086000852
253 https://doi.org/10.1038/s41598-017-04028-6
254 rdf:type schema:CreativeWork
255 sg:pub.10.1134/s1022795413020129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025351925
256 https://doi.org/10.1134/s1022795413020129
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1471-2105-13-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005826250
259 https://doi.org/10.1186/1471-2105-13-219
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/s12864-016-3148-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001843384
262 https://doi.org/10.1186/s12864-016-3148-6
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.fcr.2016.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043962059
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s0378-4290(02)00023-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020250745
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1017/s0022050702001602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054793888
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1017/s1479262115000325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023401085
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/bioinformatics/btm308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028217957
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1105/tpc.109.068437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047578921
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1111/nph.14342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010990607
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1111/nph.14367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052672863
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/pbi.12183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037877462
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1111/pbi.12538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042412389
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1111/pbi.12635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049058668
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1111/pce.12898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039643840
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1126/science.1251788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469897
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1371/journal.pone.0105593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049274944
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1371/journal.pone.0108179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036324640
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1371/journal.pone.0159343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043077176
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1371/journal.pone.0169606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016664480
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1556/aagr.53.2005.3.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067873896
299 rdf:type schema:CreativeWork
300 https://doi.org/10.2174/138920212800543084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037094372
301 rdf:type schema:CreativeWork
302 https://doi.org/10.3389/fpls.2014.00217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033103599
303 rdf:type schema:CreativeWork
304 https://doi.org/10.3389/fpls.2017.00886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085716171
305 rdf:type schema:CreativeWork
306 https://doi.org/10.7868/s0016675813020124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074090002
307 rdf:type schema:CreativeWork
308 https://www.grid.ac/institutes/grid.14830.3e schema:alternateName John Innes Centre
309 schema:name John Innes Centre, Norwich Research Park, NR47UH, Norwich, UK
310 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...