Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05-27

AUTHORS

Ying Yu, Guangwen Wu, Hongmei Yuan, Lili Cheng, Dongsheng Zhao, Wengong Huang, Shuquan Zhang, Liguo Zhang, Hongyu Chen, Jian Zhang, Fengzhi Guan

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. RESULTS: In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. CONCLUSIONS: Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene expression patterns are reported in this work. These findings will enhance our understanding of flax miRNA regulatory mechanisms under saline, alkaline, and saline-alkaline stresses and provide a foundation for future elucidation of the specific functions of these miRNAs. More... »

PAGES

124

References to SciGraph publications

  • 2011-09-10. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing in PLANTA
  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2012-08-03. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice in BMC PLANT BIOLOGY
  • 2010-10-09. Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2009-04-08. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor in BMC MOLECULAR AND CELL BIOLOGY
  • 2010-02-05. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance in PLANTA
  • 2013-02-14. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis in PLANT GROWTH REGULATION
  • 2014-07-04. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2012-08-03. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot in BMC GENOMICS
  • 2010-03-25. osa-MIR393: a salinity- and alkaline stress-related microRNA gene in MOLECULAR BIOLOGY REPORTS
  • 2013-12-11. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner in BMC PLANT BIOLOGY
  • 2015-04-02. Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1 in PLANTA
  • 2009-06-17. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populustremula and Arabidopsisthaliana in PLANT MOLECULAR BIOLOGY
  • 2011-11-23. Characterization of the stress associated microRNAs in Glycine max by deep sequencing in BMC PLANT BIOLOGY
  • 2014-06-20. Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing in BMC GENETICS
  • 2015-05-05. Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development in PLANTA
  • 2014-02-08. Grapevine microRNAs responsive to exogenous gibberellin in BMC GENOMICS
  • 2014-03-27. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response in BMC GENOMICS
  • 2009-01-16. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis in PLANTA
  • 1987-10. Salt tolerance through increased vigor in a flax line (STS-II) selected for salt tolerance in vitro in THEORETICAL AND APPLIED GENETICS
  • 2013-01-06. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum) in PLANTA
  • 2014-09-03. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis in BMC PLANT BIOLOGY
  • 2013-01-16. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of brassica juncea in BMC GENOMICS
  • 2011-07-15. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing in BMC GENOMICS
  • 2013-01-02. The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem in BMC PLANT BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12870-016-0808-2

    DOI

    http://dx.doi.org/10.1186/s12870-016-0808-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041854750

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27234464


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alkalies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Flax", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sodium Chloride", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stress, Physiological", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086 People\u2019s Republic of China", 
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Ying", 
            "id": "sg:person.01015753140.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015753140.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Guangwen", 
            "id": "sg:person.0707131550.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707131550.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086 People\u2019s Republic of China", 
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuan", 
            "givenName": "Hongmei", 
            "id": "sg:person.0637271231.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637271231.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Lili", 
            "id": "sg:person.01370263550.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370263550.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Dongsheng", 
            "id": "sg:person.01137606550.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137606550.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Wengong", 
            "id": "sg:person.01364422450.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364422450.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Shuquan", 
            "id": "sg:person.0674532633.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674532633.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Liguo", 
            "id": "sg:person.0742646033.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742646033.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Insect-borne Parastitic Disease Control and Prevention, Harbin Center for Disease Control and Prevention, Harbin, 150056 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Division of Insect-borne Parastitic Disease Control and Prevention, Harbin Center for Disease Control and Prevention, Harbin, 150056 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Hongyu", 
            "id": "sg:person.01367220174.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367220174.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Alberta Innovates Technology Futures, Vegreville, Alberta T9C 1 T4 Canada", 
              "id": "http://www.grid.ac/institutes/grid.488584.d", 
              "name": [
                "Alberta Innovates Technology Futures, Vegreville, Alberta T9C 1 T4 Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jian", 
            "id": "sg:person.0722544546.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722544546.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452609.c", 
              "name": [
                "Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086 People\u2019s Republic of China", 
                "Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guan", 
            "givenName": "Fengzhi", 
            "id": "sg:person.0645162710.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645162710.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2229-13-210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011589984", 
              "https://doi.org/10.1186/1471-2229-13-210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-13-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037406447", 
              "https://doi.org/10.1186/1471-2229-13-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-015-2301-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021711254", 
              "https://doi.org/10.1007/s00425-015-2301-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-012-1833-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003679944", 
              "https://doi.org/10.1007/s00425-012-1833-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-12-132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047862807", 
              "https://doi.org/10.1186/1471-2229-12-132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046224542", 
              "https://doi.org/10.1186/1471-2164-12-367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-010-1104-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020673960", 
              "https://doi.org/10.1007/s00425-010-1104-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00247549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000975323", 
              "https://doi.org/10.1007/bf00247549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-010-0100-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006509141", 
              "https://doi.org/10.1007/s11033-010-0100-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009399673", 
              "https://doi.org/10.1186/1471-2164-15-242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-009-0889-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052910096", 
              "https://doi.org/10.1007/s00425-009-0889-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044397288", 
              "https://doi.org/10.1186/1471-2164-14-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-15-s1-s6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002653503", 
              "https://doi.org/10.1186/1471-2156-15-s1-s6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-11-170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032710157", 
              "https://doi.org/10.1186/1471-2229-11-170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10725-013-9792-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009574927", 
              "https://doi.org/10.1007/s10725-013-9792-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016014000", 
              "https://doi.org/10.1186/1471-2164-15-111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2199-10-29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021652510", 
              "https://doi.org/10.1186/1471-2199-10-29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-014-0226-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047502276", 
              "https://doi.org/10.1186/s12870-014-0226-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-010-9857-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006537105", 
              "https://doi.org/10.1007/s11240-010-9857-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-009-9508-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030248957", 
              "https://doi.org/10.1007/s11103-009-9508-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045830462", 
              "https://doi.org/10.1186/1471-2164-13-371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-014-0556-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036394479", 
              "https://doi.org/10.1007/s11240-014-0556-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-015-2287-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021495164", 
              "https://doi.org/10.1007/s00425-015-2287-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-011-1514-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012514280", 
              "https://doi.org/10.1007/s00425-011-1514-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-05-27", 
        "datePublishedReg": "2016-05-27", 
        "description": "BACKGROUND: MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses.\nRESULTS: In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax.\nCONCLUSIONS: Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene expression patterns are reported in this work. These findings will enhance our understanding of flax miRNA regulatory mechanisms under saline, alkaline, and saline-alkaline stresses and provide a foundation for future elucidation of the specific functions of these miRNAs.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12870-016-0808-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024638", 
            "issn": [
              "1471-2229"
            ], 
            "name": "BMC Plant Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "saline-alkaline stress", 
          "neutral salt stress", 
          "alkaline stress", 
          "target genes", 
          "WRKY family transcription factors", 
          "expression patterns", 
          "expression profiles", 
          "Gene Ontology (GO) term enrichment analysis", 
          "characterization of miRNAs", 
          "miRNA regulatory mechanisms", 
          "miRNA-target pairs", 
          "term enrichment analysis", 
          "family transcription factors", 
          "putative target genes", 
          "gene expression patterns", 
          "target prediction analysis", 
          "differential expression profiles", 
          "alkaline salt stress", 
          "inverse expression pattern", 
          "degradome sequencing", 
          "abiotic stresses", 
          "qRT-PCR results", 
          "plant species", 
          "small RNAs", 
          "functional annotation", 
          "transcriptome profiling", 
          "salt stress", 
          "gene codes", 
          "transcription factors", 
          "copper/zinc superoxide dismutase", 
          "expression trends", 
          "enrichment analysis", 
          "deep sequencing", 
          "regulatory mechanisms", 
          "seq results", 
          "miRNA-seq", 
          "stress response", 
          "oil crops", 
          "miRNAs", 
          "specific functions", 
          "zinc superoxide dismutase", 
          "genes", 
          "future elucidation", 
          "qRT-PCR", 
          "important fiber", 
          "non-stressed controls", 
          "critical role", 
          "sequencing", 
          "prediction analysis", 
          "superoxide dismutase", 
          "miR398a", 
          "miR530", 
          "micRNAs", 
          "microRNAs", 
          "stress", 
          "RNA", 
          "species", 
          "target", 
          "identification", 
          "library", 
          "crops", 
          "profiling", 
          "annotation", 
          "elucidation", 
          "expression", 
          "characterization", 
          "response", 
          "flax", 
          "large number", 
          "catalytic activity", 
          "patterns", 
          "alkaline", 
          "dismutase", 
          "mechanism", 
          "role", 
          "AS2", 
          "analysis", 
          "activity", 
          "profile", 
          "function", 
          "understanding", 
          "pairs", 
          "CK", 
          "factors", 
          "changes", 
          "stimuli", 
          "number", 
          "results", 
          "control", 
          "findings", 
          "total", 
          "report", 
          "work", 
          "foundation", 
          "fibers", 
          "trends", 
          "saline", 
          "assessment", 
          "code", 
          "accuracy", 
          "reliability", 
          "flax miRNAs", 
          "flax libraries", 
          "NSS libraries", 
          "Lus-miRNAs", 
          "novel Lus-miRNAs", 
          "ontology term enrichment analysis", 
          "stress-induced expression profiles", 
          "saline-alkaline stress response", 
          "flax miRNA regulatory mechanisms"
        ], 
        "name": "Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses", 
        "pagination": "124", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041854750"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12870-016-0808-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27234464"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12870-016-0808-2", 
          "https://app.dimensions.ai/details/publication/pub.1041854750"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_707.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12870-016-0808-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12870-016-0808-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12870-016-0808-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12870-016-0808-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12870-016-0808-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    384 TRIPLES      22 PREDICATES      170 URIs      137 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12870-016-0808-2 schema:about N129e130ef58549fb9a03c75bef4395d2
    2 N144a2d6281e74fcd8fdbbba0036bcfa8
    3 N503bfd629e0b4f59adb5bbd32ec861f3
    4 N6e091a43652847e3a4243f6b9598cf03
    5 N8069b122df1a49189a86759dac8da444
    6 N85d60a4e048941eeabe015c782f1316b
    7 Na3958394d8324aee8f01496a6a87a13b
    8 Nb1b8b39b76ab4057935cec20f5d30d69
    9 Nff83e0d1a4f44bc086f7dc9f4a9933e9
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N848e8df22fa8432a9c67de4050423f98
    13 schema:citation sg:pub.10.1007/bf00247549
    14 sg:pub.10.1007/s00425-009-0889-3
    15 sg:pub.10.1007/s00425-010-1104-2
    16 sg:pub.10.1007/s00425-011-1514-9
    17 sg:pub.10.1007/s00425-012-1833-5
    18 sg:pub.10.1007/s00425-015-2287-3
    19 sg:pub.10.1007/s00425-015-2301-9
    20 sg:pub.10.1007/s10725-013-9792-9
    21 sg:pub.10.1007/s11033-010-0100-8
    22 sg:pub.10.1007/s11103-009-9508-8
    23 sg:pub.10.1007/s11240-010-9857-7
    24 sg:pub.10.1007/s11240-014-0556-7
    25 sg:pub.10.1038/75556
    26 sg:pub.10.1186/1471-2156-15-s1-s6
    27 sg:pub.10.1186/1471-2164-12-367
    28 sg:pub.10.1186/1471-2164-13-371
    29 sg:pub.10.1186/1471-2164-14-9
    30 sg:pub.10.1186/1471-2164-15-111
    31 sg:pub.10.1186/1471-2164-15-242
    32 sg:pub.10.1186/1471-2199-10-29
    33 sg:pub.10.1186/1471-2229-11-170
    34 sg:pub.10.1186/1471-2229-12-132
    35 sg:pub.10.1186/1471-2229-13-1
    36 sg:pub.10.1186/1471-2229-13-210
    37 sg:pub.10.1186/s12870-014-0226-2
    38 schema:datePublished 2016-05-27
    39 schema:datePublishedReg 2016-05-27
    40 schema:description BACKGROUND: MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. RESULTS: In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. CONCLUSIONS: Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene expression patterns are reported in this work. These findings will enhance our understanding of flax miRNA regulatory mechanisms under saline, alkaline, and saline-alkaline stresses and provide a foundation for future elucidation of the specific functions of these miRNAs.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf Na039a152d6aa40b6b2058442cda65235
    45 Na391b8c496334a59883e1b434600d633
    46 sg:journal.1024638
    47 schema:keywords AS2
    48 CK
    49 Gene Ontology (GO) term enrichment analysis
    50 Lus-miRNAs
    51 NSS libraries
    52 RNA
    53 WRKY family transcription factors
    54 abiotic stresses
    55 accuracy
    56 activity
    57 alkaline
    58 alkaline salt stress
    59 alkaline stress
    60 analysis
    61 annotation
    62 assessment
    63 catalytic activity
    64 changes
    65 characterization
    66 characterization of miRNAs
    67 code
    68 control
    69 copper/zinc superoxide dismutase
    70 critical role
    71 crops
    72 deep sequencing
    73 degradome sequencing
    74 differential expression profiles
    75 dismutase
    76 elucidation
    77 enrichment analysis
    78 expression
    79 expression patterns
    80 expression profiles
    81 expression trends
    82 factors
    83 family transcription factors
    84 fibers
    85 findings
    86 flax
    87 flax libraries
    88 flax miRNA regulatory mechanisms
    89 flax miRNAs
    90 foundation
    91 function
    92 functional annotation
    93 future elucidation
    94 gene codes
    95 gene expression patterns
    96 genes
    97 identification
    98 important fiber
    99 inverse expression pattern
    100 large number
    101 library
    102 mechanism
    103 miR398a
    104 miR530
    105 miRNA regulatory mechanisms
    106 miRNA-seq
    107 miRNA-target pairs
    108 miRNAs
    109 micRNAs
    110 microRNAs
    111 neutral salt stress
    112 non-stressed controls
    113 novel Lus-miRNAs
    114 number
    115 oil crops
    116 ontology term enrichment analysis
    117 pairs
    118 patterns
    119 plant species
    120 prediction analysis
    121 profile
    122 profiling
    123 putative target genes
    124 qRT-PCR
    125 qRT-PCR results
    126 regulatory mechanisms
    127 reliability
    128 report
    129 response
    130 results
    131 role
    132 saline
    133 saline-alkaline stress
    134 saline-alkaline stress response
    135 salt stress
    136 seq results
    137 sequencing
    138 small RNAs
    139 species
    140 specific functions
    141 stimuli
    142 stress
    143 stress response
    144 stress-induced expression profiles
    145 superoxide dismutase
    146 target
    147 target genes
    148 target prediction analysis
    149 term enrichment analysis
    150 total
    151 transcription factors
    152 transcriptome profiling
    153 trends
    154 understanding
    155 work
    156 zinc superoxide dismutase
    157 schema:name Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses
    158 schema:pagination 124
    159 schema:productId N3a9ad339d4884ee290c595bf3b375ab2
    160 Nb30bbc78305446389293d27975a77e04
    161 Nfa6164cc573a4b1ba285b99d040a2aec
    162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041854750
    163 https://doi.org/10.1186/s12870-016-0808-2
    164 schema:sdDatePublished 2021-11-01T18:27
    165 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    166 schema:sdPublisher N466ede064dab4ea0ba2835f67ddb5fcd
    167 schema:url https://doi.org/10.1186/s12870-016-0808-2
    168 sgo:license sg:explorer/license/
    169 sgo:sdDataset articles
    170 rdf:type schema:ScholarlyArticle
    171 N091fcad0d90b41069a767ffa027a5eb8 rdf:first sg:person.01367220174.93
    172 rdf:rest Ne7bb1f5816c34e07a640d30a13197ffb
    173 N129e130ef58549fb9a03c75bef4395d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Gene Expression Profiling
    175 rdf:type schema:DefinedTerm
    176 N144a2d6281e74fcd8fdbbba0036bcfa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name RNA, Plant
    178 rdf:type schema:DefinedTerm
    179 N3a9ad339d4884ee290c595bf3b375ab2 schema:name doi
    180 schema:value 10.1186/s12870-016-0808-2
    181 rdf:type schema:PropertyValue
    182 N466ede064dab4ea0ba2835f67ddb5fcd schema:name Springer Nature - SN SciGraph project
    183 rdf:type schema:Organization
    184 N503bfd629e0b4f59adb5bbd32ec861f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Plant Proteins
    186 rdf:type schema:DefinedTerm
    187 N5d1805e127314faca5b33df2d700c99a rdf:first sg:person.0645162710.78
    188 rdf:rest rdf:nil
    189 N66f2c66eb7654e899ba7d666e63475a8 rdf:first sg:person.0742646033.15
    190 rdf:rest N091fcad0d90b41069a767ffa027a5eb8
    191 N6d79715e1fe74a70990cb6d910e9de79 rdf:first sg:person.0637271231.38
    192 rdf:rest N845ede46c930496aab804296c12c29f7
    193 N6e091a43652847e3a4243f6b9598cf03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Flax
    195 rdf:type schema:DefinedTerm
    196 N79c49060b436470999cac9dcdb29126a rdf:first sg:person.0707131550.98
    197 rdf:rest N6d79715e1fe74a70990cb6d910e9de79
    198 N8069b122df1a49189a86759dac8da444 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Sodium Chloride
    200 rdf:type schema:DefinedTerm
    201 N845ede46c930496aab804296c12c29f7 rdf:first sg:person.01370263550.30
    202 rdf:rest N984975b7801a4a61a70f45e24572bcd6
    203 N848e8df22fa8432a9c67de4050423f98 rdf:first sg:person.01015753140.70
    204 rdf:rest N79c49060b436470999cac9dcdb29126a
    205 N85d60a4e048941eeabe015c782f1316b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Gene Expression Regulation, Plant
    207 rdf:type schema:DefinedTerm
    208 N984975b7801a4a61a70f45e24572bcd6 rdf:first sg:person.01137606550.33
    209 rdf:rest Nf872315580f24c3489c272c9a1a27d77
    210 Na039a152d6aa40b6b2058442cda65235 schema:issueNumber 1
    211 rdf:type schema:PublicationIssue
    212 Na391b8c496334a59883e1b434600d633 schema:volumeNumber 16
    213 rdf:type schema:PublicationVolume
    214 Na3958394d8324aee8f01496a6a87a13b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name MicroRNAs
    216 rdf:type schema:DefinedTerm
    217 Nb1b8b39b76ab4057935cec20f5d30d69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Alkalies
    219 rdf:type schema:DefinedTerm
    220 Nb30bbc78305446389293d27975a77e04 schema:name dimensions_id
    221 schema:value pub.1041854750
    222 rdf:type schema:PropertyValue
    223 Nd477796368da49b7bde190505bedf304 rdf:first sg:person.0674532633.84
    224 rdf:rest N66f2c66eb7654e899ba7d666e63475a8
    225 Ne7bb1f5816c34e07a640d30a13197ffb rdf:first sg:person.0722544546.44
    226 rdf:rest N5d1805e127314faca5b33df2d700c99a
    227 Nf872315580f24c3489c272c9a1a27d77 rdf:first sg:person.01364422450.19
    228 rdf:rest Nd477796368da49b7bde190505bedf304
    229 Nfa6164cc573a4b1ba285b99d040a2aec schema:name pubmed_id
    230 schema:value 27234464
    231 rdf:type schema:PropertyValue
    232 Nff83e0d1a4f44bc086f7dc9f4a9933e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    233 schema:name Stress, Physiological
    234 rdf:type schema:DefinedTerm
    235 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    236 schema:name Biological Sciences
    237 rdf:type schema:DefinedTerm
    238 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    239 schema:name Genetics
    240 rdf:type schema:DefinedTerm
    241 sg:journal.1024638 schema:issn 1471-2229
    242 schema:name BMC Plant Biology
    243 schema:publisher Springer Nature
    244 rdf:type schema:Periodical
    245 sg:person.01015753140.70 schema:affiliation grid-institutes:grid.452609.c
    246 schema:familyName Yu
    247 schema:givenName Ying
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015753140.70
    249 rdf:type schema:Person
    250 sg:person.01137606550.33 schema:affiliation grid-institutes:grid.452609.c
    251 schema:familyName Zhao
    252 schema:givenName Dongsheng
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137606550.33
    254 rdf:type schema:Person
    255 sg:person.01364422450.19 schema:affiliation grid-institutes:grid.452609.c
    256 schema:familyName Huang
    257 schema:givenName Wengong
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364422450.19
    259 rdf:type schema:Person
    260 sg:person.01367220174.93 schema:affiliation grid-institutes:None
    261 schema:familyName Chen
    262 schema:givenName Hongyu
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367220174.93
    264 rdf:type schema:Person
    265 sg:person.01370263550.30 schema:affiliation grid-institutes:grid.452609.c
    266 schema:familyName Cheng
    267 schema:givenName Lili
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370263550.30
    269 rdf:type schema:Person
    270 sg:person.0637271231.38 schema:affiliation grid-institutes:grid.452609.c
    271 schema:familyName Yuan
    272 schema:givenName Hongmei
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637271231.38
    274 rdf:type schema:Person
    275 sg:person.0645162710.78 schema:affiliation grid-institutes:grid.452609.c
    276 schema:familyName Guan
    277 schema:givenName Fengzhi
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645162710.78
    279 rdf:type schema:Person
    280 sg:person.0674532633.84 schema:affiliation grid-institutes:grid.452609.c
    281 schema:familyName Zhang
    282 schema:givenName Shuquan
    283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674532633.84
    284 rdf:type schema:Person
    285 sg:person.0707131550.98 schema:affiliation grid-institutes:grid.452609.c
    286 schema:familyName Wu
    287 schema:givenName Guangwen
    288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707131550.98
    289 rdf:type schema:Person
    290 sg:person.0722544546.44 schema:affiliation grid-institutes:grid.488584.d
    291 schema:familyName Zhang
    292 schema:givenName Jian
    293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722544546.44
    294 rdf:type schema:Person
    295 sg:person.0742646033.15 schema:affiliation grid-institutes:grid.452609.c
    296 schema:familyName Zhang
    297 schema:givenName Liguo
    298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742646033.15
    299 rdf:type schema:Person
    300 sg:pub.10.1007/bf00247549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000975323
    301 https://doi.org/10.1007/bf00247549
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/s00425-009-0889-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052910096
    304 https://doi.org/10.1007/s00425-009-0889-3
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s00425-010-1104-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020673960
    307 https://doi.org/10.1007/s00425-010-1104-2
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s00425-011-1514-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012514280
    310 https://doi.org/10.1007/s00425-011-1514-9
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s00425-012-1833-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003679944
    313 https://doi.org/10.1007/s00425-012-1833-5
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s00425-015-2287-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021495164
    316 https://doi.org/10.1007/s00425-015-2287-3
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s00425-015-2301-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021711254
    319 https://doi.org/10.1007/s00425-015-2301-9
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1007/s10725-013-9792-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009574927
    322 https://doi.org/10.1007/s10725-013-9792-9
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1007/s11033-010-0100-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006509141
    325 https://doi.org/10.1007/s11033-010-0100-8
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1007/s11103-009-9508-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030248957
    328 https://doi.org/10.1007/s11103-009-9508-8
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1007/s11240-010-9857-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006537105
    331 https://doi.org/10.1007/s11240-010-9857-7
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1007/s11240-014-0556-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036394479
    334 https://doi.org/10.1007/s11240-014-0556-7
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    337 https://doi.org/10.1038/75556
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/1471-2156-15-s1-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002653503
    340 https://doi.org/10.1186/1471-2156-15-s1-s6
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/1471-2164-12-367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046224542
    343 https://doi.org/10.1186/1471-2164-12-367
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1186/1471-2164-13-371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045830462
    346 https://doi.org/10.1186/1471-2164-13-371
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1186/1471-2164-14-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044397288
    349 https://doi.org/10.1186/1471-2164-14-9
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1186/1471-2164-15-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016014000
    352 https://doi.org/10.1186/1471-2164-15-111
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1186/1471-2164-15-242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009399673
    355 https://doi.org/10.1186/1471-2164-15-242
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1186/1471-2199-10-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021652510
    358 https://doi.org/10.1186/1471-2199-10-29
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1186/1471-2229-11-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032710157
    361 https://doi.org/10.1186/1471-2229-11-170
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1186/1471-2229-12-132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047862807
    364 https://doi.org/10.1186/1471-2229-12-132
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1186/1471-2229-13-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037406447
    367 https://doi.org/10.1186/1471-2229-13-1
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1186/1471-2229-13-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011589984
    370 https://doi.org/10.1186/1471-2229-13-210
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1186/s12870-014-0226-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047502276
    373 https://doi.org/10.1186/s12870-014-0226-2
    374 rdf:type schema:CreativeWork
    375 grid-institutes:None schema:alternateName Division of Insect-borne Parastitic Disease Control and Prevention, Harbin Center for Disease Control and Prevention, Harbin, 150056 People’s Republic of China
    376 schema:name Division of Insect-borne Parastitic Disease Control and Prevention, Harbin Center for Disease Control and Prevention, Harbin, 150056 People’s Republic of China
    377 rdf:type schema:Organization
    378 grid-institutes:grid.452609.c schema:alternateName Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
    379 schema:name Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086 People’s Republic of China
    380 Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
    381 rdf:type schema:Organization
    382 grid-institutes:grid.488584.d schema:alternateName Alberta Innovates Technology Futures, Vegreville, Alberta T9C 1 T4 Canada
    383 schema:name Alberta Innovates Technology Futures, Vegreville, Alberta T9C 1 T4 Canada
    384 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...