Expression and testing in plants of ArcLight, a genetically–encoded voltage indicator used in neuroscience research View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-12

AUTHORS

Antonius J.M. Matzke, Marjori Matzke

ABSTRACT

BackgroundIt is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of Cionaintestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana.ResultsTransgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H+ ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of ArcLight fluorescence triggered by eATP most likely reflects changes in pH and not membrane voltage.ConclusionsThe pH sensitivity of ArcLight precludes its use as a direct sensor of membrane voltage in plants. Nevertheless, ArcLight and derivatives situated in the plasma membrane and nuclear membranes may offer robust, fluorescence intensity-based pH indicators for monitoring concurrent changes in pH at these discrete membrane systems. Such tools will assist analyses of pH as a signal and/or messenger at the cell surface and the nuclear periphery in living plants. More... »

PAGES

245

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12870-015-0633-z

DOI

http://dx.doi.org/10.1186/s12870-015-0633-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012092247

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26459340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Luminescent Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Roots", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants, Genetically Modified", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Fusion Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.506932.b", 
          "name": [
            "Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matzke", 
        "givenName": "Antonius J.M.", 
        "id": "sg:person.0604170460.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604170460.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.506932.b", 
          "name": [
            "Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matzke", 
        "givenName": "Marjori", 
        "id": "sg:person.01366677656.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366677656.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00424-008-0457-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019709855", 
          "https://doi.org/10.1007/s00424-008-0457-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017333523", 
          "https://doi.org/10.1038/nmeth.1825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00014672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007506198", 
          "https://doi.org/10.1007/bf00014672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018026768", 
          "https://doi.org/10.1038/nmeth.1235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023108468", 
          "https://doi.org/10.1038/ncomms5625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032626539", 
          "https://doi.org/10.1038/srep05435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002091150", 
          "https://doi.org/10.1038/28190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nplants.2015.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018621107", 
          "https://doi.org/10.1038/nplants.2015.108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018209098", 
          "https://doi.org/10.1038/nature03650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6750-7-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050674522", 
          "https://doi.org/10.1186/1472-6750-7-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010145597", 
          "https://doi.org/10.1038/nrn3293"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-12", 
    "datePublishedReg": "2015-10-12", 
    "description": "BackgroundIt is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of Cionaintestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana.ResultsTransgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H+ ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of ArcLight fluorescence triggered by eATP most likely reflects changes in pH and not membrane voltage.ConclusionsThe pH sensitivity of ArcLight precludes its use as a direct sensor of membrane voltage in plants. Nevertheless, ArcLight and derivatives situated in the plasma membrane and nuclear membranes may offer robust, fluorescence intensity-based pH indicators for monitoring concurrent changes in pH at these discrete membrane systems. Such tools will assist analyses of pH as a signal and/or messenger at the cell surface and the nuclear periphery in living plants.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12870-015-0633-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024638", 
        "issn": [
          "1471-2229"
        ], 
        "name": "BMC Plant Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "voltage-sensing domain", 
      "plasma membrane", 
      "nuclear membrane", 
      "root cells", 
      "Arabidopsis root cells", 
      "voltage-sensing phosphatase", 
      "super-ecliptic pHluorin", 
      "supra-cellular levels", 
      "pH sensitivity", 
      "non-invasive optical imaging", 
      "transgenic seedlings", 
      "nuclear periphery", 
      "voltage indicators", 
      "reporter protein", 
      "mammalian cells", 
      "environmental cues", 
      "fluorescent protein", 
      "optical electrophysiology", 
      "cell surface", 
      "membrane voltage", 
      "cell membrane", 
      "plants", 
      "optical imaging", 
      "electrical control", 
      "fluorescence intensity", 
      "direct sensor", 
      "fluorescence microscope", 
      "protein", 
      "membrane", 
      "membrane system", 
      "ATP application", 
      "strong shift", 
      "cells", 
      "neuronal circuits", 
      "expression", 
      "Arabidopsis", 
      "rapid response", 
      "similar responses", 
      "pHluorin", 
      "seedlings", 
      "dispensability", 
      "voltage sensitivity", 
      "GEVI", 
      "domain", 
      "fluorescence", 
      "different membranes", 
      "messenger", 
      "ArcLight", 
      "voltage", 
      "GEVIs", 
      "eATP", 
      "phosphatase", 
      "sensitivity", 
      "Cionaintestinalis", 
      "microscope", 
      "sensors", 
      "concurrent changes", 
      "response", 
      "activity", 
      "circuit", 
      "ongoing efforts", 
      "applications", 
      "cues", 
      "voltage changes", 
      "changes", 
      "animals", 
      "surface", 
      "neuroscience research", 
      "substitution", 
      "signals", 
      "neurons", 
      "constructs", 
      "electrical activity", 
      "transient reduction", 
      "periphery", 
      "electrophysiology", 
      "pH", 
      "ability", 
      "ions", 
      "reduction", 
      "derivatives", 
      "intensity", 
      "tool", 
      "high-speed camera", 
      "development", 
      "imaging", 
      "levels", 
      "such tools", 
      "method", 
      "system", 
      "shift", 
      "analysis", 
      "speed camera", 
      "indicators", 
      "control", 
      "testing", 
      "efforts", 
      "neuroscientists", 
      "use", 
      "base", 
      "treatment", 
      "camera", 
      "research", 
      "BackgroundIt"
    ], 
    "name": "Expression and testing in plants of ArcLight, a genetically\u2013encoded voltage indicator used in neuroscience research", 
    "pagination": "245", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012092247"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12870-015-0633-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26459340"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12870-015-0633-z", 
      "https://app.dimensions.ai/details/publication/pub.1012092247"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_672.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12870-015-0633-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12870-015-0633-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12870-015-0633-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12870-015-0633-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12870-015-0633-z'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      153 URIs      134 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12870-015-0633-z schema:about N0d212b281b0e4eb3b754dcd804c905b6
2 N1c4202e1de7845458274d8ef55507ea3
3 N234312f5c0674d4cb92f1d8be6a36586
4 N44fce58baf9043bb9ae3268b1454b0f9
5 N457ed2238d684926a20f6a1ec79d236f
6 N8326f72c19ee47b4b5685ad9350d04ba
7 N83d488fd85134f92b8c06e1d5617ec13
8 Nad13b52dc06644b482e83b10b3d2609e
9 Nb173317ae2024765aa63ce452eb17a9f
10 Nb91bd076beed4cd7ac27a20997f0b9dd
11 Nbea281ce57c443a184dea10e7826010c
12 Nd0b0e405b5204c40b9dd56470310cff1
13 Nd78b1d72bb3547dd96052648354ba073
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N13afba1bac8a42e58cd9283768ae5167
17 schema:citation sg:pub.10.1007/bf00014672
18 sg:pub.10.1007/s00424-008-0457-x
19 sg:pub.10.1038/28190
20 sg:pub.10.1038/nature03650
21 sg:pub.10.1038/ncomms5625
22 sg:pub.10.1038/nmeth.1235
23 sg:pub.10.1038/nmeth.1825
24 sg:pub.10.1038/nplants.2015.108
25 sg:pub.10.1038/nrn3293
26 sg:pub.10.1038/srep05435
27 sg:pub.10.1186/1472-6750-7-37
28 schema:datePublished 2015-10-12
29 schema:datePublishedReg 2015-10-12
30 schema:description BackgroundIt is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of Cionaintestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana.ResultsTransgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H+ ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of ArcLight fluorescence triggered by eATP most likely reflects changes in pH and not membrane voltage.ConclusionsThe pH sensitivity of ArcLight precludes its use as a direct sensor of membrane voltage in plants. Nevertheless, ArcLight and derivatives situated in the plasma membrane and nuclear membranes may offer robust, fluorescence intensity-based pH indicators for monitoring concurrent changes in pH at these discrete membrane systems. Such tools will assist analyses of pH as a signal and/or messenger at the cell surface and the nuclear periphery in living plants.
31 schema:genre article
32 schema:isAccessibleForFree true
33 schema:isPartOf N48a2b81719fc43649a15af10e30c58d6
34 Ne393c887b15b417ea44899e5a2931496
35 sg:journal.1024638
36 schema:keywords ATP application
37 Arabidopsis
38 Arabidopsis root cells
39 ArcLight
40 BackgroundIt
41 Cionaintestinalis
42 GEVI
43 GEVIs
44 ability
45 activity
46 analysis
47 animals
48 applications
49 base
50 camera
51 cell membrane
52 cell surface
53 cells
54 changes
55 circuit
56 concurrent changes
57 constructs
58 control
59 cues
60 derivatives
61 development
62 different membranes
63 direct sensor
64 dispensability
65 domain
66 eATP
67 efforts
68 electrical activity
69 electrical control
70 electrophysiology
71 environmental cues
72 expression
73 fluorescence
74 fluorescence intensity
75 fluorescence microscope
76 fluorescent protein
77 high-speed camera
78 imaging
79 indicators
80 intensity
81 ions
82 levels
83 mammalian cells
84 membrane
85 membrane system
86 membrane voltage
87 messenger
88 method
89 microscope
90 neuronal circuits
91 neurons
92 neuroscience research
93 neuroscientists
94 non-invasive optical imaging
95 nuclear membrane
96 nuclear periphery
97 ongoing efforts
98 optical electrophysiology
99 optical imaging
100 pH
101 pH sensitivity
102 pHluorin
103 periphery
104 phosphatase
105 plants
106 plasma membrane
107 protein
108 rapid response
109 reduction
110 reporter protein
111 research
112 response
113 root cells
114 seedlings
115 sensitivity
116 sensors
117 shift
118 signals
119 similar responses
120 speed camera
121 strong shift
122 substitution
123 such tools
124 super-ecliptic pHluorin
125 supra-cellular levels
126 surface
127 system
128 testing
129 tool
130 transgenic seedlings
131 transient reduction
132 treatment
133 use
134 voltage
135 voltage changes
136 voltage indicators
137 voltage sensitivity
138 voltage-sensing domain
139 voltage-sensing phosphatase
140 schema:name Expression and testing in plants of ArcLight, a genetically–encoded voltage indicator used in neuroscience research
141 schema:pagination 245
142 schema:productId N0946481d33064439a7c645c472b40f56
143 N1e056b52abc94613a382020a7c1ca50a
144 N86e9e5fff6e34847bb69ec9fb7c9a5c0
145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012092247
146 https://doi.org/10.1186/s12870-015-0633-z
147 schema:sdDatePublished 2022-12-01T06:33
148 schema:sdLicense https://scigraph.springernature.com/explorer/license/
149 schema:sdPublisher N1b414fdf0a2240c58db4ecb2f9539153
150 schema:url https://doi.org/10.1186/s12870-015-0633-z
151 sgo:license sg:explorer/license/
152 sgo:sdDataset articles
153 rdf:type schema:ScholarlyArticle
154 N0946481d33064439a7c645c472b40f56 schema:name pubmed_id
155 schema:value 26459340
156 rdf:type schema:PropertyValue
157 N0d212b281b0e4eb3b754dcd804c905b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Cell Membrane
159 rdf:type schema:DefinedTerm
160 N13afba1bac8a42e58cd9283768ae5167 rdf:first sg:person.0604170460.05
161 rdf:rest Nfccdae2973a54330907777b00a04ac85
162 N1b414fdf0a2240c58db4ecb2f9539153 schema:name Springer Nature - SN SciGraph project
163 rdf:type schema:Organization
164 N1c4202e1de7845458274d8ef55507ea3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Animals
166 rdf:type schema:DefinedTerm
167 N1e056b52abc94613a382020a7c1ca50a schema:name dimensions_id
168 schema:value pub.1012092247
169 rdf:type schema:PropertyValue
170 N234312f5c0674d4cb92f1d8be6a36586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Recombinant Fusion Proteins
172 rdf:type schema:DefinedTerm
173 N44fce58baf9043bb9ae3268b1454b0f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Luminescent Proteins
175 rdf:type schema:DefinedTerm
176 N457ed2238d684926a20f6a1ec79d236f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Arabidopsis
178 rdf:type schema:DefinedTerm
179 N48a2b81719fc43649a15af10e30c58d6 schema:issueNumber 1
180 rdf:type schema:PublicationIssue
181 N8326f72c19ee47b4b5685ad9350d04ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Drosophila melanogaster
183 rdf:type schema:DefinedTerm
184 N83d488fd85134f92b8c06e1d5617ec13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Adenosine Triphosphate
186 rdf:type schema:DefinedTerm
187 N86e9e5fff6e34847bb69ec9fb7c9a5c0 schema:name doi
188 schema:value 10.1186/s12870-015-0633-z
189 rdf:type schema:PropertyValue
190 Nad13b52dc06644b482e83b10b3d2609e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Plants, Genetically Modified
192 rdf:type schema:DefinedTerm
193 Nb173317ae2024765aa63ce452eb17a9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Plant Roots
195 rdf:type schema:DefinedTerm
196 Nb91bd076beed4cd7ac27a20997f0b9dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Light
198 rdf:type schema:DefinedTerm
199 Nbea281ce57c443a184dea10e7826010c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Neurosciences
201 rdf:type schema:DefinedTerm
202 Nd0b0e405b5204c40b9dd56470310cff1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Plant Cells
204 rdf:type schema:DefinedTerm
205 Nd78b1d72bb3547dd96052648354ba073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Research
207 rdf:type schema:DefinedTerm
208 Ne393c887b15b417ea44899e5a2931496 schema:volumeNumber 15
209 rdf:type schema:PublicationVolume
210 Nfccdae2973a54330907777b00a04ac85 rdf:first sg:person.01366677656.47
211 rdf:rest rdf:nil
212 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
213 schema:name Biological Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
216 schema:name Biochemistry and Cell Biology
217 rdf:type schema:DefinedTerm
218 sg:journal.1024638 schema:issn 1471-2229
219 schema:name BMC Plant Biology
220 schema:publisher Springer Nature
221 rdf:type schema:Periodical
222 sg:person.01366677656.47 schema:affiliation grid-institutes:grid.506932.b
223 schema:familyName Matzke
224 schema:givenName Marjori
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366677656.47
226 rdf:type schema:Person
227 sg:person.0604170460.05 schema:affiliation grid-institutes:grid.506932.b
228 schema:familyName Matzke
229 schema:givenName Antonius J.M.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604170460.05
231 rdf:type schema:Person
232 sg:pub.10.1007/bf00014672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007506198
233 https://doi.org/10.1007/bf00014672
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s00424-008-0457-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019709855
236 https://doi.org/10.1007/s00424-008-0457-x
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/28190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002091150
239 https://doi.org/10.1038/28190
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nature03650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018209098
242 https://doi.org/10.1038/nature03650
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ncomms5625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023108468
245 https://doi.org/10.1038/ncomms5625
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nmeth.1235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018026768
248 https://doi.org/10.1038/nmeth.1235
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nmeth.1825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017333523
251 https://doi.org/10.1038/nmeth.1825
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nplants.2015.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018621107
254 https://doi.org/10.1038/nplants.2015.108
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nrn3293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010145597
257 https://doi.org/10.1038/nrn3293
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/srep05435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032626539
260 https://doi.org/10.1038/srep05435
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/1472-6750-7-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050674522
263 https://doi.org/10.1186/1472-6750-7-37
264 rdf:type schema:CreativeWork
265 grid-institutes:grid.506932.b schema:alternateName Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
266 schema:name Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...