A microfluidic-based analysis of 3D macrophage migration after stimulation by Mycobacterium, Salmonella and Escherichia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-08-31

AUTHORS

Sandra Pérez-Rodríguez, Carlos Borau, José Manuel García-Aznar, Jesús Gonzalo-Asensio

ABSTRACT

Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells. More... »

PAGES

211

References to SciGraph publications

  • 2021-05-14. The principles of directed cell migration in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2009-01-24. Nuclear translocation kinetics of NF-κB in macrophages challenged with pathogens in a microfluidic platform in BIOMEDICAL MICRODEVICES
  • 2012-06-07. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels in NATURE PROTOCOLS
  • 2021-10-14. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix in SCIENTIFIC REPORTS
  • 2015-05-27. Fibroblast Migration in 3D is Controlled by Haptotaxis in a Non-muscle Myosin II-Dependent Manner in ANNALS OF BIOMEDICAL ENGINEERING
  • 2011-09-01. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2018-08-24. From individual to collective 3D cancer dissemination: roles of collagen concentration and TGF-β in SCIENTIFIC REPORTS
  • 1998-06. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence in NATURE
  • 2021-05-26. Type VII secretion systems: structure, functions and transport models in NATURE REVIEWS MICROBIOLOGY
  • 2009-12-07. Molecular mechanisms of Escherichia coli pathogenicity in NATURE REVIEWS MICROBIOLOGY
  • 2016-10-27. Tuberculosis in NATURE REVIEWS DISEASE PRIMERS
  • 2014-03-12. The present and future role of microfluidics in biomedical research in NATURE
  • 1981-05. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines in NATURE
  • 2004-02. Pathogenic Escherichia coli in NATURE REVIEWS MICROBIOLOGY
  • 2017-04-10. Assembly, structure, function and regulation of type III secretion systems in NATURE REVIEWS MICROBIOLOGY
  • 2020-02-01. Challenges of unculturable bacteria: environmental perspectives in REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY
  • 2005-01. Signaling mechanisms for regulation of chemotaxis in CELL RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12866-022-02623-w

    DOI

    http://dx.doi.org/10.1186/s12866-022-02623-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150626958

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/36045335


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Culture Techniques, Three Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Collagen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macrophages", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microfluidics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mycobacterium tuberculosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Salmonella", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tuberculosis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Grupo de Gen\u00e9tica de Micobacterias. Departamento de Microbiolog\u00eda. Facultad de Medicina, Universidad de Zaragoza, IIS Arag\u00f3n, 50009, Zaragoza, Spain", 
              "id": "http://www.grid.ac/institutes/grid.11205.37", 
              "name": [
                "Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering, University of Zaragoza, 50018, Zaragoza, Spain", 
                "Aragon Institute of Engineering Research, University of Zaragoza, 50018, Zaragoza, Spain", 
                "Grupo de Gen\u00e9tica de Micobacterias. Departamento de Microbiolog\u00eda. Facultad de Medicina, Universidad de Zaragoza, IIS Arag\u00f3n, 50009, Zaragoza, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e9rez-Rodr\u00edguez", 
            "givenName": "Sandra", 
            "id": "sg:person.012031746740.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031746740.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aragon Institute of Engineering Research, University of Zaragoza, 50018, Zaragoza, Spain", 
              "id": "http://www.grid.ac/institutes/grid.11205.37", 
              "name": [
                "Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering, University of Zaragoza, 50018, Zaragoza, Spain", 
                "Aragon Institute of Engineering Research, University of Zaragoza, 50018, Zaragoza, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borau", 
            "givenName": "Carlos", 
            "id": "sg:person.01105160462.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105160462.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aragon Institute of Engineering Research, University of Zaragoza, 50018, Zaragoza, Spain", 
              "id": "http://www.grid.ac/institutes/grid.11205.37", 
              "name": [
                "Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering, University of Zaragoza, 50018, Zaragoza, Spain", 
                "Aragon Institute of Engineering Research, University of Zaragoza, 50018, Zaragoza, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Aznar", 
            "givenName": "Jos\u00e9 Manuel", 
            "id": "sg:person.01121616724.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121616724.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Biocomputaci\u00f3n y F\u00edsica de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain", 
              "id": "http://www.grid.ac/institutes/grid.11205.37", 
              "name": [
                "Grupo de Gen\u00e9tica de Micobacterias. Departamento de Microbiolog\u00eda. Facultad de Medicina, Universidad de Zaragoza, IIS Arag\u00f3n, 50009, Zaragoza, Spain", 
                "CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029, Madrid, Spain", 
                "Instituto de Biocomputaci\u00f3n y F\u00edsica de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalo-Asensio", 
            "givenName": "Jes\u00fas", 
            "id": "sg:person.01256202065.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256202065.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11157-020-09522-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124484321", 
              "https://doi.org/10.1007/s11157-020-09522-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-021-00560-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138356949", 
              "https://doi.org/10.1038/s41579-021-00560-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011876605", 
              "https://doi.org/10.1038/nrmicro818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.cr.7290265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035295737", 
              "https://doi.org/10.1038/sj.cr.7290265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2012.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003108140", 
              "https://doi.org/10.1038/nprot.2012.051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004092181", 
              "https://doi.org/10.1038/nature13118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-011-3551-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018575616", 
              "https://doi.org/10.1007/s00253-011-3551-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/291238a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044840752", 
              "https://doi.org/10.1038/291238a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-30683-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106257143", 
              "https://doi.org/10.1038/s41598-018-30683-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10544-008-9281-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032914753", 
              "https://doi.org/10.1007/s10544-008-9281-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-015-1343-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047505698", 
              "https://doi.org/10.1007/s10439-015-1343-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrdp.2016.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033704609", 
              "https://doi.org/10.1038/nrdp.2016.76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41580-021-00366-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138064248", 
              "https://doi.org/10.1038/s41580-021-00366-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-99902-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141881140", 
              "https://doi.org/10.1038/s41598-021-99902-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/31159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035640914", 
              "https://doi.org/10.1038/31159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2017.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084763497", 
              "https://doi.org/10.1038/nrmicro.2017.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039970366", 
              "https://doi.org/10.1038/nrmicro2265"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-31", 
        "datePublishedReg": "2022-08-31", 
        "description": "Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12866-022-02623-w", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9732031", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024253", 
            "issn": [
              "1471-2180"
            ], 
            "name": "BMC Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "immune cells", 
          "macrophage migration", 
          "M. tuberculosis antigens", 
          "innate immune cells", 
          "concentration-dependent manner", 
          "phagocytose pathogens", 
          "collagen concentration", 
          "tuberculosis antigens", 
          "macrophage recruitment", 
          "pathogen M. tuberculosis", 
          "ESAT-6", 
          "specific antigen", 
          "infectious sites", 
          "CFP-10", 
          "macrophages migrate", 
          "extra-cellular matrix", 
          "M. tuberculosis", 
          "microbial infections", 
          "infectious microenvironment", 
          "macrophages", 
          "non-pathogenic bacteria", 
          "macrophage movement", 
          "antigen", 
          "S. typhimurium", 
          "mycobacteria", 
          "Salmonella", 
          "cells", 
          "M. smegmatis", 
          "tuberculosis", 
          "infection", 
          "bacterial fraction", 
          "essential role", 
          "stimulation", 
          "useful tool", 
          "cellular matrix", 
          "genus Mycobacterium", 
          "microenvironment", 
          "Escherichia", 
          "conclusion", 
          "pathogens", 
          "Escherichia coli", 
          "typhimurium", 
          "microarchitecture", 
          "migration", 
          "concentration", 
          "bacteria", 
          "recruitment", 
          "fraction", 
          "collagen-based hydrogels", 
          "sites", 
          "role", 
          "presence", 
          "smegmatis", 
          "attractant molecules", 
          "manner", 
          "recognition", 
          "coli", 
          "new perspective", 
          "samples", 
          "containment", 
          "greater distances", 
          "migrate", 
          "analysis", 
          "movement", 
          "results", 
          "molecules", 
          "tool", 
          "article", 
          "devices", 
          "three-dimensional environment", 
          "lateral gradients", 
          "perspective", 
          "process of recognition", 
          "environment", 
          "process", 
          "gradient", 
          "velocity", 
          "high velocity", 
          "distance", 
          "hydrogels", 
          "microfluidic device", 
          "matrix"
        ], 
        "name": "A microfluidic-based analysis of 3D macrophage migration after stimulation by Mycobacterium, Salmonella and Escherichia", 
        "pagination": "211", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150626958"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12866-022-02623-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "36045335"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12866-022-02623-w", 
          "https://app.dimensions.ai/details/publication/pub.1150626958"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_922.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12866-022-02623-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02623-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02623-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02623-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02623-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    283 TRIPLES      21 PREDICATES      134 URIs      107 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12866-022-02623-w schema:about N0df9f746693946f292a6b5f16f92deb9
    2 N17659ecbe14449a49b1285237d7faf34
    3 N45629b8d823c41c7871ea171ce0ad895
    4 N4e013b3c90cd410e899905cbb57e56af
    5 N4ee4673a6e2a4bb49052e186907123aa
    6 N60763e8c07984c679b9c9271bae30b5b
    7 N9251d026722445fb939b906d196b4514
    8 Nc62bf48d7f2543e1bb8b8108ffa06688
    9 Nf09e7259894448b1a413dda26fb615d2
    10 anzsrc-for:06
    11 anzsrc-for:0605
    12 anzsrc-for:11
    13 anzsrc-for:1107
    14 schema:author N49e9510638a148bdb325b55d48b785a3
    15 schema:citation sg:pub.10.1007/s00253-011-3551-5
    16 sg:pub.10.1007/s10439-015-1343-2
    17 sg:pub.10.1007/s10544-008-9281-5
    18 sg:pub.10.1007/s11157-020-09522-4
    19 sg:pub.10.1038/291238a0
    20 sg:pub.10.1038/31159
    21 sg:pub.10.1038/nature13118
    22 sg:pub.10.1038/nprot.2012.051
    23 sg:pub.10.1038/nrdp.2016.76
    24 sg:pub.10.1038/nrmicro.2017.20
    25 sg:pub.10.1038/nrmicro2265
    26 sg:pub.10.1038/nrmicro818
    27 sg:pub.10.1038/s41579-021-00560-5
    28 sg:pub.10.1038/s41580-021-00366-6
    29 sg:pub.10.1038/s41598-018-30683-4
    30 sg:pub.10.1038/s41598-021-99902-9
    31 sg:pub.10.1038/sj.cr.7290265
    32 schema:datePublished 2022-08-31
    33 schema:datePublishedReg 2022-08-31
    34 schema:description Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.
    35 schema:genre article
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N0263905264504715a207d6abfd272d25
    38 N1774f9b6c8d248e598ec2c882e18734c
    39 sg:journal.1024253
    40 schema:keywords CFP-10
    41 ESAT-6
    42 Escherichia
    43 Escherichia coli
    44 M. smegmatis
    45 M. tuberculosis
    46 M. tuberculosis antigens
    47 S. typhimurium
    48 Salmonella
    49 analysis
    50 antigen
    51 article
    52 attractant molecules
    53 bacteria
    54 bacterial fraction
    55 cells
    56 cellular matrix
    57 coli
    58 collagen concentration
    59 collagen-based hydrogels
    60 concentration
    61 concentration-dependent manner
    62 conclusion
    63 containment
    64 devices
    65 distance
    66 environment
    67 essential role
    68 extra-cellular matrix
    69 fraction
    70 genus Mycobacterium
    71 gradient
    72 greater distances
    73 high velocity
    74 hydrogels
    75 immune cells
    76 infection
    77 infectious microenvironment
    78 infectious sites
    79 innate immune cells
    80 lateral gradients
    81 macrophage migration
    82 macrophage movement
    83 macrophage recruitment
    84 macrophages
    85 macrophages migrate
    86 manner
    87 matrix
    88 microarchitecture
    89 microbial infections
    90 microenvironment
    91 microfluidic device
    92 migrate
    93 migration
    94 molecules
    95 movement
    96 mycobacteria
    97 new perspective
    98 non-pathogenic bacteria
    99 pathogen M. tuberculosis
    100 pathogens
    101 perspective
    102 phagocytose pathogens
    103 presence
    104 process
    105 process of recognition
    106 recognition
    107 recruitment
    108 results
    109 role
    110 samples
    111 sites
    112 smegmatis
    113 specific antigen
    114 stimulation
    115 three-dimensional environment
    116 tool
    117 tuberculosis
    118 tuberculosis antigens
    119 typhimurium
    120 useful tool
    121 velocity
    122 schema:name A microfluidic-based analysis of 3D macrophage migration after stimulation by Mycobacterium, Salmonella and Escherichia
    123 schema:pagination 211
    124 schema:productId N3e2e7aac1f3c4df1b5fba5cac1e200c6
    125 N64061f2ea2d74394a3ef9e4f5c560b44
    126 N91bdb30d302c4d1d90c3b4739642b19c
    127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150626958
    128 https://doi.org/10.1186/s12866-022-02623-w
    129 schema:sdDatePublished 2022-11-24T21:07
    130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    131 schema:sdPublisher Ne70e9dc0779a440391be99ddcaeb3d66
    132 schema:url https://doi.org/10.1186/s12866-022-02623-w
    133 sgo:license sg:explorer/license/
    134 sgo:sdDataset articles
    135 rdf:type schema:ScholarlyArticle
    136 N0263905264504715a207d6abfd272d25 schema:volumeNumber 22
    137 rdf:type schema:PublicationVolume
    138 N0df9f746693946f292a6b5f16f92deb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Collagen
    140 rdf:type schema:DefinedTerm
    141 N17659ecbe14449a49b1285237d7faf34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Humans
    143 rdf:type schema:DefinedTerm
    144 N1774f9b6c8d248e598ec2c882e18734c schema:issueNumber 1
    145 rdf:type schema:PublicationIssue
    146 N24e9107f1942430d8a4ea4bdcb830204 rdf:first sg:person.01105160462.14
    147 rdf:rest N6667679f58774f38ae05f2db923ceb5e
    148 N3e2e7aac1f3c4df1b5fba5cac1e200c6 schema:name pubmed_id
    149 schema:value 36045335
    150 rdf:type schema:PropertyValue
    151 N45629b8d823c41c7871ea171ce0ad895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Escherichia coli
    153 rdf:type schema:DefinedTerm
    154 N49e9510638a148bdb325b55d48b785a3 rdf:first sg:person.012031746740.30
    155 rdf:rest N24e9107f1942430d8a4ea4bdcb830204
    156 N4e013b3c90cd410e899905cbb57e56af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Tuberculosis
    158 rdf:type schema:DefinedTerm
    159 N4ee4673a6e2a4bb49052e186907123aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Salmonella
    161 rdf:type schema:DefinedTerm
    162 N60763e8c07984c679b9c9271bae30b5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Cell Culture Techniques, Three Dimensional
    164 rdf:type schema:DefinedTerm
    165 N64061f2ea2d74394a3ef9e4f5c560b44 schema:name doi
    166 schema:value 10.1186/s12866-022-02623-w
    167 rdf:type schema:PropertyValue
    168 N6667679f58774f38ae05f2db923ceb5e rdf:first sg:person.01121616724.99
    169 rdf:rest Nf746516ba435443894e0a3641f3cf9d0
    170 N91bdb30d302c4d1d90c3b4739642b19c schema:name dimensions_id
    171 schema:value pub.1150626958
    172 rdf:type schema:PropertyValue
    173 N9251d026722445fb939b906d196b4514 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Macrophages
    175 rdf:type schema:DefinedTerm
    176 Nc62bf48d7f2543e1bb8b8108ffa06688 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Microfluidics
    178 rdf:type schema:DefinedTerm
    179 Ne70e9dc0779a440391be99ddcaeb3d66 schema:name Springer Nature - SN SciGraph project
    180 rdf:type schema:Organization
    181 Nf09e7259894448b1a413dda26fb615d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Mycobacterium tuberculosis
    183 rdf:type schema:DefinedTerm
    184 Nf746516ba435443894e0a3641f3cf9d0 rdf:first sg:person.01256202065.35
    185 rdf:rest rdf:nil
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Microbiology
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Medical and Health Sciences
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Immunology
    197 rdf:type schema:DefinedTerm
    198 sg:grant.9732031 http://pending.schema.org/fundedItem sg:pub.10.1186/s12866-022-02623-w
    199 rdf:type schema:MonetaryGrant
    200 sg:journal.1024253 schema:issn 1471-2180
    201 schema:name BMC Microbiology
    202 schema:publisher Springer Nature
    203 rdf:type schema:Periodical
    204 sg:person.01105160462.14 schema:affiliation grid-institutes:grid.11205.37
    205 schema:familyName Borau
    206 schema:givenName Carlos
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105160462.14
    208 rdf:type schema:Person
    209 sg:person.01121616724.99 schema:affiliation grid-institutes:grid.11205.37
    210 schema:familyName García-Aznar
    211 schema:givenName José Manuel
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121616724.99
    213 rdf:type schema:Person
    214 sg:person.012031746740.30 schema:affiliation grid-institutes:grid.11205.37
    215 schema:familyName Pérez-Rodríguez
    216 schema:givenName Sandra
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031746740.30
    218 rdf:type schema:Person
    219 sg:person.01256202065.35 schema:affiliation grid-institutes:grid.11205.37
    220 schema:familyName Gonzalo-Asensio
    221 schema:givenName Jesús
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256202065.35
    223 rdf:type schema:Person
    224 sg:pub.10.1007/s00253-011-3551-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018575616
    225 https://doi.org/10.1007/s00253-011-3551-5
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s10439-015-1343-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047505698
    228 https://doi.org/10.1007/s10439-015-1343-2
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s10544-008-9281-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032914753
    231 https://doi.org/10.1007/s10544-008-9281-5
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s11157-020-09522-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124484321
    234 https://doi.org/10.1007/s11157-020-09522-4
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/291238a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044840752
    237 https://doi.org/10.1038/291238a0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/31159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035640914
    240 https://doi.org/10.1038/31159
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nature13118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004092181
    243 https://doi.org/10.1038/nature13118
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nprot.2012.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003108140
    246 https://doi.org/10.1038/nprot.2012.051
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrdp.2016.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033704609
    249 https://doi.org/10.1038/nrdp.2016.76
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nrmicro.2017.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084763497
    252 https://doi.org/10.1038/nrmicro.2017.20
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nrmicro2265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970366
    255 https://doi.org/10.1038/nrmicro2265
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nrmicro818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011876605
    258 https://doi.org/10.1038/nrmicro818
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/s41579-021-00560-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138356949
    261 https://doi.org/10.1038/s41579-021-00560-5
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/s41580-021-00366-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138064248
    264 https://doi.org/10.1038/s41580-021-00366-6
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/s41598-018-30683-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106257143
    267 https://doi.org/10.1038/s41598-018-30683-4
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/s41598-021-99902-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141881140
    270 https://doi.org/10.1038/s41598-021-99902-9
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/sj.cr.7290265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035295737
    273 https://doi.org/10.1038/sj.cr.7290265
    274 rdf:type schema:CreativeWork
    275 grid-institutes:grid.11205.37 schema:alternateName Aragon Institute of Engineering Research, University of Zaragoza, 50018, Zaragoza, Spain
    276 Grupo de Genética de Micobacterias. Departamento de Microbiología. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, 50009, Zaragoza, Spain
    277 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
    278 schema:name Aragon Institute of Engineering Research, University of Zaragoza, 50018, Zaragoza, Spain
    279 CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029, Madrid, Spain
    280 Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering, University of Zaragoza, 50018, Zaragoza, Spain
    281 Grupo de Genética de Micobacterias. Departamento de Microbiología. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, 50009, Zaragoza, Spain
    282 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
    283 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...