Comparison of antibacterial and antibiofilm activity of bioactive glass compounds S53P4 and 45S5 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-02

AUTHORS

Peng Zhou, Brittny L. Garcia, Georgios A. Kotsakis

ABSTRACT

BackgroundBone loss and deformation due to damage caused by injury or recurrent invasive infections presents a major clinical obstacle. While bone substitute biomaterials promote osseous tissue regeneration, their application in sites complicated by microbial infections such as osteomyelitis, is limited. Bioactive glass biomaterials (Bioglass) have been shown to have efficient mechanisms of repairing the integrity of bone, while inhibiting growth of a range of bacterial strains. There are several commercially available bioactive glass compounds, each with a unique chemical composition. One compound in particular, S53P4, has demonstrated antimicrobial effects in previous studies but the antimicrobial activity of the parent compound 45S5 has not been investigated.ResultsTo assess whether antimicrobial activity is common among bioglass compounds, 45S5-the parent compound, was evaluated in comparison to S53P4 for antibacterial and antibiofilm effects against multiple strains of aerobic and anaerobic bacteria associated with various types of osteomyelitis. Experiments of antimicrobial effects in liquid cultures demonstrated that both compounds were antimicrobial against various microbial genera including S. gordonii, V. parvula, P. aeruginosa and MRSA; particles of the smallest size (32–125 µm) invariably showed the most robust antimicrobial capabilities. When employed against biofilms ecological biofilms grown on hydroxyapatite, 45S5 particles produced a stronger reduction in biofilm mass compared to S53P4 particles when considering small particle ranges.ConclusionWe found that 45S5 seems to be as effective as S53P4 and possibly even more capable of limiting bacterial infections. The efficacy of bioactive glass was not limited to inhibition of planktonic growth, as it also extended to bacterial biofilms. The increased antibacterial activity of 45S5 compared to S53P4 is true for a variety of size ranges. More... »

PAGES

212

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12866-022-02617-8

DOI

http://dx.doi.org/10.1186/s12866-022-02617-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150700631

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/36050654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biocompatible Materials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biofilms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteomyelitis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pseudomonas aeruginosa", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Translational Periodontal Research Laboratory, UT Health San Antonio, San Antonio, TX, USA", 
            "Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Peng", 
        "id": "sg:person.012014761201.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014761201.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Brittny L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Translational Periodontal Research Laboratory, UT Health San Antonio, San Antonio, TX, USA", 
            "Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotsakis", 
        "givenName": "Georgios A.", 
        "id": "sg:person.0627362462.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627362462.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrmicro2200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013913863", 
          "https://doi.org/10.1038/nrmicro2200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12941-017-0243-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092063867", 
          "https://doi.org/10.1186/s12941-017-0243-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-1947-8-365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017335919", 
          "https://doi.org/10.1186/1752-1947-8-365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-007-3018-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024734430", 
          "https://doi.org/10.1007/s10856-007-3018-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-008-3564-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031472798", 
          "https://doi.org/10.1007/s10856-008-3564-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-018-3069-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103128426", 
          "https://doi.org/10.1186/s12879-018-3069-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-13-584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037233301", 
          "https://doi.org/10.1186/1471-2334-13-584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-007-3143-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018508273", 
          "https://doi.org/10.1007/s10856-007-3143-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-02", 
    "datePublishedReg": "2022-09-02", 
    "description": "BackgroundBone loss and deformation due to damage caused by injury or recurrent invasive infections presents a major clinical obstacle. While bone substitute biomaterials promote osseous tissue regeneration, their application in sites complicated by microbial infections such as osteomyelitis, is limited. Bioactive glass biomaterials (Bioglass) have been shown to have efficient mechanisms of repairing the integrity of bone, while inhibiting growth of a range of bacterial strains. There are several commercially available bioactive glass compounds, each with a unique chemical composition. One compound in particular, S53P4, has demonstrated antimicrobial effects in previous studies but the antimicrobial activity of the parent compound 45S5 has not been investigated.ResultsTo assess whether antimicrobial activity is common among bioglass compounds, 45S5-the parent compound, was evaluated in comparison to S53P4 for antibacterial and antibiofilm effects against multiple strains of aerobic and anaerobic bacteria associated with various types of osteomyelitis. Experiments of antimicrobial effects in liquid cultures demonstrated that both compounds were antimicrobial against various microbial genera including S. gordonii, V. parvula, P. aeruginosa and MRSA; particles of the smallest size (32\u2013125\u00a0\u00b5m) invariably showed the most robust antimicrobial capabilities. When employed against biofilms ecological biofilms grown on hydroxyapatite, 45S5 particles produced a stronger reduction in biofilm mass compared to S53P4 particles when considering small particle ranges.ConclusionWe found that 45S5 seems to be as effective as S53P4 and possibly even more capable of limiting bacterial infections. The efficacy of bioactive glass was not limited to inhibition of planktonic growth, as it also extended to bacterial biofilms. The increased antibacterial activity of 45S5 compared to S53P4 is true for a variety of size ranges.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12866-022-02617-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024253", 
        "issn": [
          "1471-2180"
        ], 
        "name": "BMC Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "bioactive glass", 
      "osseous tissue regeneration", 
      "small particle range", 
      "bone substitute biomaterials", 
      "substitute biomaterials", 
      "recurrent invasive infections", 
      "major clinical obstacle", 
      "type of osteomyelitis", 
      "S53P4", 
      "glass compounds", 
      "biomaterials", 
      "particle range", 
      "particles", 
      "tissue regeneration", 
      "size range", 
      "unique chemical composition", 
      "BackgroundBone loss", 
      "glass", 
      "antimicrobial capability", 
      "clinical obstacle", 
      "invasive infections", 
      "integrity of bone", 
      "bacterial infections", 
      "antimicrobial effect", 
      "chemical composition", 
      "microbial genera", 
      "small size", 
      "infection", 
      "microbial infections", 
      "increased antibacterial activity", 
      "deformation", 
      "V. parvula", 
      "osteomyelitis", 
      "planktonic growth", 
      "P. aeruginosa", 
      "S. gordonii", 
      "range", 
      "anaerobic bacteria", 
      "antibiofilm effect", 
      "multiple strains", 
      "hydroxyapatite", 
      "bacterial biofilms", 
      "bacterial strains", 
      "antimicrobial activity", 
      "liquid culture", 
      "antibiofilm activity", 
      "strong reduction", 
      "capability", 
      "biofilm mass", 
      "parent compound", 
      "previous studies", 
      "biofilms", 
      "antibacterial activity", 
      "injury", 
      "applications", 
      "activity", 
      "MRSA", 
      "ConclusionWe", 
      "effect", 
      "comparison", 
      "efficacy", 
      "strains", 
      "genus", 
      "bone", 
      "inhibition", 
      "experiments", 
      "growth", 
      "size", 
      "parvula", 
      "efficient mechanism", 
      "bacteria", 
      "composition", 
      "aeruginosa", 
      "gordonii", 
      "reduction", 
      "damage", 
      "obstacles", 
      "regeneration", 
      "integrity", 
      "loss", 
      "compounds", 
      "study", 
      "ResultsTo", 
      "sites", 
      "mechanism", 
      "culture", 
      "mass", 
      "types", 
      "variety"
    ], 
    "name": "Comparison of antibacterial and antibiofilm activity of bioactive glass compounds S53P4 and 45S5", 
    "pagination": "212", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150700631"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12866-022-02617-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "36050654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12866-022-02617-8", 
      "https://app.dimensions.ai/details/publication/pub.1150700631"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_958.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12866-022-02617-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02617-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02617-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02617-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12866-022-02617-8'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      128 URIs      112 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12866-022-02617-8 schema:about N328fdbb319fe4c90b181564257fe5962
2 N375ed1c9dc3c43a78cde6cef9ce68194
3 N49a6e606f4064d49820d60f4e5773ed1
4 N5fd9f0860fa34748b4354a719dc792ec
5 Na02f3919a69d43909bf1eb464c585a10
6 Nb317df87cb274450a0d3be6865eb5cf1
7 anzsrc-for:06
8 anzsrc-for:0605
9 schema:author N325a600adaa84a67aa512a49916a8a12
10 schema:citation sg:pub.10.1007/s10856-007-3018-5
11 sg:pub.10.1007/s10856-007-3143-1
12 sg:pub.10.1007/s10856-008-3564-5
13 sg:pub.10.1038/nrmicro2200
14 sg:pub.10.1186/1471-2334-13-584
15 sg:pub.10.1186/1752-1947-8-365
16 sg:pub.10.1186/s12879-018-3069-x
17 sg:pub.10.1186/s12941-017-0243-8
18 schema:datePublished 2022-09-02
19 schema:datePublishedReg 2022-09-02
20 schema:description BackgroundBone loss and deformation due to damage caused by injury or recurrent invasive infections presents a major clinical obstacle. While bone substitute biomaterials promote osseous tissue regeneration, their application in sites complicated by microbial infections such as osteomyelitis, is limited. Bioactive glass biomaterials (Bioglass) have been shown to have efficient mechanisms of repairing the integrity of bone, while inhibiting growth of a range of bacterial strains. There are several commercially available bioactive glass compounds, each with a unique chemical composition. One compound in particular, S53P4, has demonstrated antimicrobial effects in previous studies but the antimicrobial activity of the parent compound 45S5 has not been investigated.ResultsTo assess whether antimicrobial activity is common among bioglass compounds, 45S5-the parent compound, was evaluated in comparison to S53P4 for antibacterial and antibiofilm effects against multiple strains of aerobic and anaerobic bacteria associated with various types of osteomyelitis. Experiments of antimicrobial effects in liquid cultures demonstrated that both compounds were antimicrobial against various microbial genera including S. gordonii, V. parvula, P. aeruginosa and MRSA; particles of the smallest size (32–125 µm) invariably showed the most robust antimicrobial capabilities. When employed against biofilms ecological biofilms grown on hydroxyapatite, 45S5 particles produced a stronger reduction in biofilm mass compared to S53P4 particles when considering small particle ranges.ConclusionWe found that 45S5 seems to be as effective as S53P4 and possibly even more capable of limiting bacterial infections. The efficacy of bioactive glass was not limited to inhibition of planktonic growth, as it also extended to bacterial biofilms. The increased antibacterial activity of 45S5 compared to S53P4 is true for a variety of size ranges.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N1f848e56d80446928267728e48b40fc8
24 Nf3e7e3cb83c8467188afb85f1011aac7
25 sg:journal.1024253
26 schema:keywords BackgroundBone loss
27 ConclusionWe
28 MRSA
29 P. aeruginosa
30 ResultsTo
31 S. gordonii
32 S53P4
33 V. parvula
34 activity
35 aeruginosa
36 anaerobic bacteria
37 antibacterial activity
38 antibiofilm activity
39 antibiofilm effect
40 antimicrobial activity
41 antimicrobial capability
42 antimicrobial effect
43 applications
44 bacteria
45 bacterial biofilms
46 bacterial infections
47 bacterial strains
48 bioactive glass
49 biofilm mass
50 biofilms
51 biomaterials
52 bone
53 bone substitute biomaterials
54 capability
55 chemical composition
56 clinical obstacle
57 comparison
58 composition
59 compounds
60 culture
61 damage
62 deformation
63 effect
64 efficacy
65 efficient mechanism
66 experiments
67 genus
68 glass
69 glass compounds
70 gordonii
71 growth
72 hydroxyapatite
73 increased antibacterial activity
74 infection
75 inhibition
76 injury
77 integrity
78 integrity of bone
79 invasive infections
80 liquid culture
81 loss
82 major clinical obstacle
83 mass
84 mechanism
85 microbial genera
86 microbial infections
87 multiple strains
88 obstacles
89 osseous tissue regeneration
90 osteomyelitis
91 parent compound
92 particle range
93 particles
94 parvula
95 planktonic growth
96 previous studies
97 range
98 recurrent invasive infections
99 reduction
100 regeneration
101 sites
102 size
103 size range
104 small particle range
105 small size
106 strains
107 strong reduction
108 study
109 substitute biomaterials
110 tissue regeneration
111 type of osteomyelitis
112 types
113 unique chemical composition
114 variety
115 schema:name Comparison of antibacterial and antibiofilm activity of bioactive glass compounds S53P4 and 45S5
116 schema:pagination 212
117 schema:productId N2cb70bb53f6e413b83bba4fb64ab6071
118 Nc6d2b519872e409fba27b5e172296e7e
119 Nf92d1635f1d14654b39877abce7a49cd
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150700631
121 https://doi.org/10.1186/s12866-022-02617-8
122 schema:sdDatePublished 2022-12-01T06:45
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher Nc922c8f0e0334e8d8e93b31b329acfe6
125 schema:url https://doi.org/10.1186/s12866-022-02617-8
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N1f848e56d80446928267728e48b40fc8 schema:volumeNumber 22
130 rdf:type schema:PublicationVolume
131 N2cb70bb53f6e413b83bba4fb64ab6071 schema:name pubmed_id
132 schema:value 36050654
133 rdf:type schema:PropertyValue
134 N325a600adaa84a67aa512a49916a8a12 rdf:first sg:person.012014761201.20
135 rdf:rest N7afcd8ae3cab4f7f9a52da0535779247
136 N328fdbb319fe4c90b181564257fe5962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Biofilms
138 rdf:type schema:DefinedTerm
139 N375ed1c9dc3c43a78cde6cef9ce68194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Osteomyelitis
141 rdf:type schema:DefinedTerm
142 N49a6e606f4064d49820d60f4e5773ed1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 N5fd9f0860fa34748b4354a719dc792ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Biocompatible Materials
147 rdf:type schema:DefinedTerm
148 N7afcd8ae3cab4f7f9a52da0535779247 rdf:first Ne5afe1fa7d6f463ba9268678893b30fb
149 rdf:rest Nb7733b4bd3ae4e549bffc5af5ba7ccab
150 Na02f3919a69d43909bf1eb464c585a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Pseudomonas aeruginosa
152 rdf:type schema:DefinedTerm
153 Nb317df87cb274450a0d3be6865eb5cf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Anti-Bacterial Agents
155 rdf:type schema:DefinedTerm
156 Nb7733b4bd3ae4e549bffc5af5ba7ccab rdf:first sg:person.0627362462.80
157 rdf:rest rdf:nil
158 Nc6d2b519872e409fba27b5e172296e7e schema:name doi
159 schema:value 10.1186/s12866-022-02617-8
160 rdf:type schema:PropertyValue
161 Nc922c8f0e0334e8d8e93b31b329acfe6 schema:name Springer Nature - SN SciGraph project
162 rdf:type schema:Organization
163 Ne5afe1fa7d6f463ba9268678893b30fb schema:affiliation grid-institutes:None
164 schema:familyName Garcia
165 schema:givenName Brittny L.
166 rdf:type schema:Person
167 Nf3e7e3cb83c8467188afb85f1011aac7 schema:issueNumber 1
168 rdf:type schema:PublicationIssue
169 Nf92d1635f1d14654b39877abce7a49cd schema:name dimensions_id
170 schema:value pub.1150700631
171 rdf:type schema:PropertyValue
172 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
173 schema:name Biological Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
176 schema:name Microbiology
177 rdf:type schema:DefinedTerm
178 sg:journal.1024253 schema:issn 1471-2180
179 schema:name BMC Microbiology
180 schema:publisher Springer Nature
181 rdf:type schema:Periodical
182 sg:person.012014761201.20 schema:affiliation grid-institutes:None
183 schema:familyName Zhou
184 schema:givenName Peng
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014761201.20
186 rdf:type schema:Person
187 sg:person.0627362462.80 schema:affiliation grid-institutes:None
188 schema:familyName Kotsakis
189 schema:givenName Georgios A.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627362462.80
191 rdf:type schema:Person
192 sg:pub.10.1007/s10856-007-3018-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024734430
193 https://doi.org/10.1007/s10856-007-3018-5
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s10856-007-3143-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018508273
196 https://doi.org/10.1007/s10856-007-3143-1
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s10856-008-3564-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031472798
199 https://doi.org/10.1007/s10856-008-3564-5
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nrmicro2200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013913863
202 https://doi.org/10.1038/nrmicro2200
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1471-2334-13-584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037233301
205 https://doi.org/10.1186/1471-2334-13-584
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/1752-1947-8-365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017335919
208 https://doi.org/10.1186/1752-1947-8-365
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/s12879-018-3069-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103128426
211 https://doi.org/10.1186/s12879-018-3069-x
212 rdf:type schema:CreativeWork
213 sg:pub.10.1186/s12941-017-0243-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092063867
214 https://doi.org/10.1186/s12941-017-0243-8
215 rdf:type schema:CreativeWork
216 grid-institutes:None schema:alternateName Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA
217 schema:name Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, 78229-3900, San Antonio, TX, USA
218 Translational Periodontal Research Laboratory, UT Health San Antonio, San Antonio, TX, USA
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...