Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01-21

AUTHORS

Madhura Castelino, Stephen Eyre, John Moat, Graeme Fox, Paul Martin, Pauline Ho, Mathew Upton, Anne Barton

ABSTRACT

BackgroundThe composition of the skin microbiome is predicted to play a role in the development of conditions such as atopic eczema and psoriasis. 16S rRNA gene sequencing allows the investigation of bacterial microbiota. A significant challenge in this field is development of cost effective high throughput methodologies for the robust interrogation of the skin microbiota, where biomass is low. Here we describe validation of methodologies for 16S rRNA (ribosomal ribonucleic acid) gene sequencing from the skin microbiome, using the Illumina MiSeq platform, the selection of primer to amplify regions for sequencing and we compare results with the current standard protocols..MethodsDNA was obtained from two low density mock communities of 11 diverse bacterial strains (with and without human DNA supplementation) and from swabs taken from the skin of healthy volunteers. This was amplified using primer pairs covering hypervariable regions of the 16S rRNA gene: primers 63F and 519R (V1-V3); and 347F and 803R (V3-V4). The resultant libraries were indexed for the MiSeq and Roche454 and sequenced. Both data sets were denoised, cleaned of chimeras and analysed using QIIME.ResultsThere was no significant difference in the diversity indices at the phylum and the genus level observed between the platforms. The capture of diversity using the low density mock community samples demonstrated that the primer pair spanning the V3-V4 hypervariable region had better capture when compared to the primer pair for the V1-V3 region and was robust to spiking with human DNA. The pilot data generated using the V3-V4 region from the skin of healthy volunteers was consistent with these results, even at the genus level (Staphylococcus, Propionibacterium, Corynebacterium, Paracoccus, Micrococcus, Enhydrobacter and Deinococcus identified at similar abundances on both platforms).ConclusionsThe results suggest that the bacterial community diversity captured using the V3-V4 16S rRNA hypervariable region from sequencing using the MiSeq platform is comparable to the Roche454 GS Junior platform. These findings provide evidence that the optimised method can be used in human clinical samples of low bacterial biomass such as the investigation of the skin microbiota. More... »

PAGES

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12866-017-0927-4

DOI

http://dx.doi.org/10.1186/s12866-017-0927-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054049199

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28109256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Typing Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Contamination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England", 
          "id": "http://www.grid.ac/institutes/grid.498924.a", 
          "name": [
            "NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castelino", 
        "givenName": "Madhura", 
        "id": "sg:person.0606145610.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606145610.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eyre", 
        "givenName": "Stephen", 
        "id": "sg:person.016236450734.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236450734.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microbiology and Virology Unit, Institute of Inflammation and Repair, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Microbiology and Virology Unit, Institute of Inflammation and Repair, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moat", 
        "givenName": "John", 
        "id": "sg:person.01353131767.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353131767.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DNA Sequencing Facility, Faculty of Medical & Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "DNA Sequencing Facility, Faculty of Medical & Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fox", 
        "givenName": "Graeme", 
        "id": "sg:person.0627525667.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627525667.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "Paul", 
        "id": "sg:person.01146430561.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146430561.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England", 
          "id": "http://www.grid.ac/institutes/grid.498924.a", 
          "name": [
            "NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ho", 
        "givenName": "Pauline", 
        "id": "sg:person.016616166242.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616166242.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Biomedical and Healthcare Sciences, Plymouth University Peninsular Schools of Medicine and Dentistry, Plymouth, UK", 
          "id": "http://www.grid.ac/institutes/grid.11201.33", 
          "name": [
            "School of Biomedical and Healthcare Sciences, Plymouth University Peninsular Schools of Medicine and Dentistry, Plymouth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Upton", 
        "givenName": "Mathew", 
        "id": "sg:person.01073532507.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073532507.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England", 
            "Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barton", 
        "givenName": "Anne", 
        "id": "sg:person.01212477773.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212477773.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmicrobiol.2016.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010407548", 
          "https://doi.org/10.1038/nmicrobiol.2016.106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2049-2618-1-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017036499", 
          "https://doi.org/10.1186/2049-2618-1-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027248000", 
          "https://doi.org/10.1038/nature11209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0841-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052977184", 
          "https://doi.org/10.1186/s13059-015-0841-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12915-014-0087-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027737035", 
          "https://doi.org/10.1186/s12915-014-0087-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043867750", 
          "https://doi.org/10.1038/nbt.2198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4441022a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018798093", 
          "https://doi.org/10.1038/4441022a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00403-011-1189-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035564942", 
          "https://doi.org/10.1007/s00403-011-1189-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010614211", 
          "https://doi.org/10.1038/nrmicro2850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028517948", 
          "https://doi.org/10.1038/nrmicro1205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003392841", 
          "https://doi.org/10.1186/1471-2164-13-341"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-21", 
    "datePublishedReg": "2017-01-21", 
    "description": "BackgroundThe composition of the skin microbiome is predicted to play a role in the development of conditions such as atopic eczema and psoriasis. 16S rRNA gene sequencing allows the investigation of bacterial microbiota. A significant challenge in this field is development of cost effective high throughput methodologies for the robust interrogation of the skin microbiota, where biomass is low. Here we describe validation of methodologies for 16S rRNA (ribosomal ribonucleic acid) gene sequencing from the skin microbiome, using the Illumina MiSeq platform, the selection of primer to amplify regions for sequencing and we compare results with the current standard protocols..MethodsDNA was obtained from two low density mock communities of 11 diverse bacterial strains (with and without human DNA supplementation) and from swabs taken from the skin of healthy volunteers. This was amplified using primer pairs covering hypervariable regions of the 16S rRNA gene: primers 63F and 519R (V1-V3); and 347F and 803R (V3-V4). The resultant libraries were indexed for the MiSeq and Roche454 and sequenced. Both data sets were denoised, cleaned of chimeras and analysed using QIIME.ResultsThere was no significant difference in the diversity indices at the phylum and the genus level observed between the platforms. The capture of diversity using the low density mock community samples demonstrated that the primer pair spanning the V3-V4 hypervariable region had better capture when compared to the primer pair for the V1-V3 region and was robust to spiking with human DNA. The pilot data generated using the V3-V4 region from the skin of healthy volunteers was consistent with these results, even at the genus level (Staphylococcus, Propionibacterium, Corynebacterium, Paracoccus, Micrococcus, Enhydrobacter and Deinococcus identified at similar abundances on both platforms).ConclusionsThe results suggest that the bacterial community diversity captured using the V3-V4 16S rRNA hypervariable region from sequencing using the MiSeq platform is comparable to the Roche454 GS Junior platform. These findings provide evidence that the optimised method can be used in human clinical samples of low bacterial biomass such as the investigation of the skin microbiota.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12866-017-0927-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5134088", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024253", 
        "issn": [
          "1471-2180"
        ], 
        "name": "BMC Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "current standard protocols", 
      "high-throughput methodology", 
      "primer pairs", 
      "healthy volunteers", 
      "selection of primers", 
      "human clinical samples", 
      "platform", 
      "optimization of methods", 
      "MiSeq platform", 
      "skin microbiota", 
      "rRNA gene", 
      "skin microbiome", 
      "hypervariable region", 
      "clinical samples", 
      "diverse bacterial strains", 
      "genus level", 
      "significant challenge", 
      "atopic eczema", 
      "mock community samples", 
      "V3-V4 hypervariable region", 
      "bacterial community diversity", 
      "bacterial strains", 
      "rRNA hypervariable regions", 
      "Illumina MiSeq platform", 
      "rRNA gene sequencing", 
      "V3-V4 region", 
      "standard protocol", 
      "V1-V3 region", 
      "human DNA", 
      "pilot data", 
      "community diversity", 
      "mock communities", 
      "diversity index", 
      "GS Junior platform", 
      "significant differences", 
      "resultant library", 
      "microbiota", 
      "community sample", 
      "bacterial microbiota", 
      "ConclusionsThe results", 
      "protocol", 
      "low bacterial biomass", 
      "primer selection", 
      "volunteers", 
      "bacterial biomass", 
      "microbiome investigations", 
      "gene sequencing", 
      "skin", 
      "capture", 
      "validation of methodology", 
      "genes", 
      "microbiome", 
      "sequencing", 
      "primers", 
      "biomass", 
      "diversity", 
      "eczema", 
      "psoriasis", 
      "interrogation", 
      "development of conditions", 
      "ResultsThere", 
      "swabs", 
      "method", 
      "MethodsDNA", 
      "DNA", 
      "challenges", 
      "levels", 
      "phyla", 
      "samples", 
      "optimization", 
      "pairs", 
      "MiSeq", 
      "chimeras", 
      "QIIME", 
      "development", 
      "region", 
      "results", 
      "findings", 
      "field", 
      "selection", 
      "evidence", 
      "index", 
      "robust interrogation", 
      "differences", 
      "better capture", 
      "investigation", 
      "strains", 
      "composition", 
      "role", 
      "library", 
      "methodology", 
      "conditions", 
      "community", 
      "data", 
      "data sets", 
      "validation", 
      "comparison", 
      "set"
    ], 
    "name": "Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform", 
    "pagination": "23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054049199"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12866-017-0927-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28109256"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12866-017-0927-4", 
      "https://app.dimensions.ai/details/publication/pub.1054049199"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_746.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12866-017-0927-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12866-017-0927-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12866-017-0927-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12866-017-0927-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12866-017-0927-4'


 

This table displays all metadata directly associated to this object as RDF triples.

348 TRIPLES      21 PREDICATES      155 URIs      135 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12866-017-0927-4 schema:about N0950e7f27a6a498da25ce1c7e486c260
2 N097f31d081384c64ac7d755ec59cf15d
3 N29924fc5ad6e4122ad97b9cace1e6c7b
4 N32af44066cbb480fa29a17fc3996867c
5 N356767142d7d4141be2658c553d9dc03
6 N391b89eb899e4df28ead1df41e9a92a1
7 N3aa204681e0548b4b72697c9b9db0821
8 N4205831ef49347ed9aad8884b7f3d535
9 N4486e4d4eedb4645b67911e506479341
10 N4e483401af234e89af441a692434726e
11 N54de0660c035400aa361e1f0ad5bee62
12 N58bca5e262124bdd9af39b28fe7ca351
13 N58bddb011ee04ff092a5c138565877e6
14 Na7f4bf3aae57476f8fccb926c64ae4a9
15 Nae3f22c4b3264fb18d616f2a378682d7
16 Nb937019fb31042188f332af10ff89594
17 Nbf46234076cb4a7798966f18a225e129
18 Nd218744b05ba4640bd464040dea3fdd8
19 Ne2cd5905c1984cdd8a2790d0e9999199
20 Ned0a644fdb3a4f77b0f41aed5ec35fca
21 anzsrc-for:06
22 anzsrc-for:0604
23 schema:author N41199cf3165a4b30a8b8da5e7f9bb357
24 schema:citation sg:pub.10.1007/s00403-011-1189-x
25 sg:pub.10.1038/4441022a
26 sg:pub.10.1038/nature11209
27 sg:pub.10.1038/nbt.2198
28 sg:pub.10.1038/nmeth.f.303
29 sg:pub.10.1038/nmicrobiol.2016.106
30 sg:pub.10.1038/nrmicro1205
31 sg:pub.10.1038/nrmicro2850
32 sg:pub.10.1186/1471-2164-13-341
33 sg:pub.10.1186/2049-2618-1-31
34 sg:pub.10.1186/s12915-014-0087-z
35 sg:pub.10.1186/s13059-015-0841-8
36 schema:datePublished 2017-01-21
37 schema:datePublishedReg 2017-01-21
38 schema:description BackgroundThe composition of the skin microbiome is predicted to play a role in the development of conditions such as atopic eczema and psoriasis. 16S rRNA gene sequencing allows the investigation of bacterial microbiota. A significant challenge in this field is development of cost effective high throughput methodologies for the robust interrogation of the skin microbiota, where biomass is low. Here we describe validation of methodologies for 16S rRNA (ribosomal ribonucleic acid) gene sequencing from the skin microbiome, using the Illumina MiSeq platform, the selection of primer to amplify regions for sequencing and we compare results with the current standard protocols..MethodsDNA was obtained from two low density mock communities of 11 diverse bacterial strains (with and without human DNA supplementation) and from swabs taken from the skin of healthy volunteers. This was amplified using primer pairs covering hypervariable regions of the 16S rRNA gene: primers 63F and 519R (V1-V3); and 347F and 803R (V3-V4). The resultant libraries were indexed for the MiSeq and Roche454 and sequenced. Both data sets were denoised, cleaned of chimeras and analysed using QIIME.ResultsThere was no significant difference in the diversity indices at the phylum and the genus level observed between the platforms. The capture of diversity using the low density mock community samples demonstrated that the primer pair spanning the V3-V4 hypervariable region had better capture when compared to the primer pair for the V1-V3 region and was robust to spiking with human DNA. The pilot data generated using the V3-V4 region from the skin of healthy volunteers was consistent with these results, even at the genus level (Staphylococcus, Propionibacterium, Corynebacterium, Paracoccus, Micrococcus, Enhydrobacter and Deinococcus identified at similar abundances on both platforms).ConclusionsThe results suggest that the bacterial community diversity captured using the V3-V4 16S rRNA hypervariable region from sequencing using the MiSeq platform is comparable to the Roche454 GS Junior platform. These findings provide evidence that the optimised method can be used in human clinical samples of low bacterial biomass such as the investigation of the skin microbiota.
39 schema:genre article
40 schema:isAccessibleForFree true
41 schema:isPartOf N5b4cd666ff41487b8b53554ddd30a1c8
42 Na370cf42d5e249538ef53130a6698a59
43 sg:journal.1024253
44 schema:keywords ConclusionsThe results
45 DNA
46 GS Junior platform
47 Illumina MiSeq platform
48 MethodsDNA
49 MiSeq
50 MiSeq platform
51 QIIME
52 ResultsThere
53 V1-V3 region
54 V3-V4 hypervariable region
55 V3-V4 region
56 atopic eczema
57 bacterial biomass
58 bacterial community diversity
59 bacterial microbiota
60 bacterial strains
61 better capture
62 biomass
63 capture
64 challenges
65 chimeras
66 clinical samples
67 community
68 community diversity
69 community sample
70 comparison
71 composition
72 conditions
73 current standard protocols
74 data
75 data sets
76 development
77 development of conditions
78 differences
79 diverse bacterial strains
80 diversity
81 diversity index
82 eczema
83 evidence
84 field
85 findings
86 gene sequencing
87 genes
88 genus level
89 healthy volunteers
90 high-throughput methodology
91 human DNA
92 human clinical samples
93 hypervariable region
94 index
95 interrogation
96 investigation
97 levels
98 library
99 low bacterial biomass
100 method
101 methodology
102 microbiome
103 microbiome investigations
104 microbiota
105 mock communities
106 mock community samples
107 optimization
108 optimization of methods
109 pairs
110 phyla
111 pilot data
112 platform
113 primer pairs
114 primer selection
115 primers
116 protocol
117 psoriasis
118 rRNA gene
119 rRNA gene sequencing
120 rRNA hypervariable regions
121 region
122 resultant library
123 results
124 robust interrogation
125 role
126 samples
127 selection
128 selection of primers
129 sequencing
130 set
131 significant challenge
132 significant differences
133 skin
134 skin microbiome
135 skin microbiota
136 standard protocol
137 strains
138 swabs
139 validation
140 validation of methodology
141 volunteers
142 schema:name Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform
143 schema:pagination 23
144 schema:productId N171d9674c7014b70b092f73d3c211f84
145 N320703c2f8c94eae9e01c856a203081c
146 Nc756c44ddca240f09b0c2f6d4cf5f4a8
147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054049199
148 https://doi.org/10.1186/s12866-017-0927-4
149 schema:sdDatePublished 2022-08-04T17:05
150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
151 schema:sdPublisher N1bcc05f567334cf0b86ee97bad22c876
152 schema:url https://doi.org/10.1186/s12866-017-0927-4
153 sgo:license sg:explorer/license/
154 sgo:sdDataset articles
155 rdf:type schema:ScholarlyArticle
156 N0950e7f27a6a498da25ce1c7e486c260 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Bacteria
158 rdf:type schema:DefinedTerm
159 N097f31d081384c64ac7d755ec59cf15d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Bacterial Typing Techniques
161 rdf:type schema:DefinedTerm
162 N171d9674c7014b70b092f73d3c211f84 schema:name dimensions_id
163 schema:value pub.1054049199
164 rdf:type schema:PropertyValue
165 N1bcc05f567334cf0b86ee97bad22c876 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 N29924fc5ad6e4122ad97b9cace1e6c7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Genes, Bacterial
169 rdf:type schema:DefinedTerm
170 N2aade91a7d78498083a0de7cbf2e5f92 rdf:first sg:person.01212477773.98
171 rdf:rest rdf:nil
172 N320703c2f8c94eae9e01c856a203081c schema:name pubmed_id
173 schema:value 28109256
174 rdf:type schema:PropertyValue
175 N32af44066cbb480fa29a17fc3996867c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name RNA, Ribosomal, 16S
177 rdf:type schema:DefinedTerm
178 N356767142d7d4141be2658c553d9dc03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Base Sequence
180 rdf:type schema:DefinedTerm
181 N391b89eb899e4df28ead1df41e9a92a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Computational Biology
183 rdf:type schema:DefinedTerm
184 N3aa204681e0548b4b72697c9b9db0821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Microbiota
186 rdf:type schema:DefinedTerm
187 N3dc41b52824d497cba52f3d54a58d1aa rdf:first sg:person.0627525667.06
188 rdf:rest N6365e4d2cc6d4b3c84f3766037793289
189 N41199cf3165a4b30a8b8da5e7f9bb357 rdf:first sg:person.0606145610.06
190 rdf:rest Nc5aa78c46f1242ad87664ac11bf4264b
191 N4205831ef49347ed9aad8884b7f3d535 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Polymerase Chain Reaction
193 rdf:type schema:DefinedTerm
194 N4486e4d4eedb4645b67911e506479341 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Skin
196 rdf:type schema:DefinedTerm
197 N4e483401af234e89af441a692434726e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Middle Aged
199 rdf:type schema:DefinedTerm
200 N54de0660c035400aa361e1f0ad5bee62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Genetic Variation
202 rdf:type schema:DefinedTerm
203 N58bca5e262124bdd9af39b28fe7ca351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Sequence Analysis, DNA
205 rdf:type schema:DefinedTerm
206 N58bddb011ee04ff092a5c138565877e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name DNA, Bacterial
208 rdf:type schema:DefinedTerm
209 N5b4cd666ff41487b8b53554ddd30a1c8 schema:issueNumber 1
210 rdf:type schema:PublicationIssue
211 N6365e4d2cc6d4b3c84f3766037793289 rdf:first sg:person.01146430561.39
212 rdf:rest Na81672ad712e4f62ab4b83d24046a8eb
213 N691dc55fd8044220ac306733bf72d035 rdf:first sg:person.01353131767.15
214 rdf:rest N3dc41b52824d497cba52f3d54a58d1aa
215 N8f7164ba912b49e392ecffd64c13aea6 rdf:first sg:person.01073532507.09
216 rdf:rest N2aade91a7d78498083a0de7cbf2e5f92
217 Na370cf42d5e249538ef53130a6698a59 schema:volumeNumber 17
218 rdf:type schema:PublicationVolume
219 Na7f4bf3aae57476f8fccb926c64ae4a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Adult
221 rdf:type schema:DefinedTerm
222 Na81672ad712e4f62ab4b83d24046a8eb rdf:first sg:person.016616166242.35
223 rdf:rest N8f7164ba912b49e392ecffd64c13aea6
224 Nae3f22c4b3264fb18d616f2a378682d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
225 schema:name DNA Contamination
226 rdf:type schema:DefinedTerm
227 Nb937019fb31042188f332af10ff89594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
228 schema:name Biomass
229 rdf:type schema:DefinedTerm
230 Nbf46234076cb4a7798966f18a225e129 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
231 schema:name Humans
232 rdf:type schema:DefinedTerm
233 Nc5aa78c46f1242ad87664ac11bf4264b rdf:first sg:person.016236450734.37
234 rdf:rest N691dc55fd8044220ac306733bf72d035
235 Nc756c44ddca240f09b0c2f6d4cf5f4a8 schema:name doi
236 schema:value 10.1186/s12866-017-0927-4
237 rdf:type schema:PropertyValue
238 Nd218744b05ba4640bd464040dea3fdd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
239 schema:name DNA Primers
240 rdf:type schema:DefinedTerm
241 Ne2cd5905c1984cdd8a2790d0e9999199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
242 schema:name Phylogeny
243 rdf:type schema:DefinedTerm
244 Ned0a644fdb3a4f77b0f41aed5ec35fca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
245 schema:name High-Throughput Nucleotide Sequencing
246 rdf:type schema:DefinedTerm
247 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
248 schema:name Biological Sciences
249 rdf:type schema:DefinedTerm
250 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
251 schema:name Genetics
252 rdf:type schema:DefinedTerm
253 sg:grant.5134088 http://pending.schema.org/fundedItem sg:pub.10.1186/s12866-017-0927-4
254 rdf:type schema:MonetaryGrant
255 sg:journal.1024253 schema:issn 1471-2180
256 schema:name BMC Microbiology
257 schema:publisher Springer Nature
258 rdf:type schema:Periodical
259 sg:person.01073532507.09 schema:affiliation grid-institutes:grid.11201.33
260 schema:familyName Upton
261 schema:givenName Mathew
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073532507.09
263 rdf:type schema:Person
264 sg:person.01146430561.39 schema:affiliation grid-institutes:grid.5379.8
265 schema:familyName Martin
266 schema:givenName Paul
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146430561.39
268 rdf:type schema:Person
269 sg:person.01212477773.98 schema:affiliation grid-institutes:grid.5379.8
270 schema:familyName Barton
271 schema:givenName Anne
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212477773.98
273 rdf:type schema:Person
274 sg:person.01353131767.15 schema:affiliation grid-institutes:grid.5379.8
275 schema:familyName Moat
276 schema:givenName John
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353131767.15
278 rdf:type schema:Person
279 sg:person.016236450734.37 schema:affiliation grid-institutes:grid.5379.8
280 schema:familyName Eyre
281 schema:givenName Stephen
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236450734.37
283 rdf:type schema:Person
284 sg:person.016616166242.35 schema:affiliation grid-institutes:grid.498924.a
285 schema:familyName Ho
286 schema:givenName Pauline
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616166242.35
288 rdf:type schema:Person
289 sg:person.0606145610.06 schema:affiliation grid-institutes:grid.498924.a
290 schema:familyName Castelino
291 schema:givenName Madhura
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606145610.06
293 rdf:type schema:Person
294 sg:person.0627525667.06 schema:affiliation grid-institutes:grid.5379.8
295 schema:familyName Fox
296 schema:givenName Graeme
297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627525667.06
298 rdf:type schema:Person
299 sg:pub.10.1007/s00403-011-1189-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035564942
300 https://doi.org/10.1007/s00403-011-1189-x
301 rdf:type schema:CreativeWork
302 sg:pub.10.1038/4441022a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018798093
303 https://doi.org/10.1038/4441022a
304 rdf:type schema:CreativeWork
305 sg:pub.10.1038/nature11209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027248000
306 https://doi.org/10.1038/nature11209
307 rdf:type schema:CreativeWork
308 sg:pub.10.1038/nbt.2198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043867750
309 https://doi.org/10.1038/nbt.2198
310 rdf:type schema:CreativeWork
311 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
312 https://doi.org/10.1038/nmeth.f.303
313 rdf:type schema:CreativeWork
314 sg:pub.10.1038/nmicrobiol.2016.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010407548
315 https://doi.org/10.1038/nmicrobiol.2016.106
316 rdf:type schema:CreativeWork
317 sg:pub.10.1038/nrmicro1205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028517948
318 https://doi.org/10.1038/nrmicro1205
319 rdf:type schema:CreativeWork
320 sg:pub.10.1038/nrmicro2850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010614211
321 https://doi.org/10.1038/nrmicro2850
322 rdf:type schema:CreativeWork
323 sg:pub.10.1186/1471-2164-13-341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003392841
324 https://doi.org/10.1186/1471-2164-13-341
325 rdf:type schema:CreativeWork
326 sg:pub.10.1186/2049-2618-1-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017036499
327 https://doi.org/10.1186/2049-2618-1-31
328 rdf:type schema:CreativeWork
329 sg:pub.10.1186/s12915-014-0087-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737035
330 https://doi.org/10.1186/s12915-014-0087-z
331 rdf:type schema:CreativeWork
332 sg:pub.10.1186/s13059-015-0841-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052977184
333 https://doi.org/10.1186/s13059-015-0841-8
334 rdf:type schema:CreativeWork
335 grid-institutes:grid.11201.33 schema:alternateName School of Biomedical and Healthcare Sciences, Plymouth University Peninsular Schools of Medicine and Dentistry, Plymouth, UK
336 schema:name School of Biomedical and Healthcare Sciences, Plymouth University Peninsular Schools of Medicine and Dentistry, Plymouth, UK
337 rdf:type schema:Organization
338 grid-institutes:grid.498924.a schema:alternateName NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England
339 schema:name NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England
340 rdf:type schema:Organization
341 grid-institutes:grid.5379.8 schema:alternateName Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK
342 DNA Sequencing Facility, Faculty of Medical & Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK
343 Microbiology and Virology Unit, Institute of Inflammation and Repair, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK
344 schema:name Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, M13 9PT, Manchester, UK
345 DNA Sequencing Facility, Faculty of Medical & Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK
346 Microbiology and Virology Unit, Institute of Inflammation and Repair, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK
347 NIHR Manchester Musculoskeletal Biomedical research Unit, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, England
348 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...