Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05-25

AUTHORS

Toshitaka Odamaki, Kumiko Kato, Hirosuke Sugahara, Nanami Hashikura, Sachiko Takahashi, Jin-zhong Xiao, Fumiaki Abe, Ro Osawa

ABSTRACT

BackgroundIt has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects.ResultsFecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward’s linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0–35), 33 (24–45), 42 (32–62), 77 (36–84) and 94 (86–98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster.ConclusionOur results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age. More... »

PAGES

90

References to SciGraph publications

  • 2013-08-25. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences in NATURE BIOTECHNOLOGY
  • 2012-05-09. Human gut microbiome viewed across age and geography in NATURE
  • 2013-11-13. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells in NATURE
  • 2014-12-14. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians in BMC MICROBIOLOGY
  • 2014-06-05. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis in MICROBIOME
  • 2013-08-05. The interaction between gut microbiota and age-related changes in immune function and inflammation in IMMUNITY & AGEING
  • 2011-12-01. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-02-23. Diversity in gut bacterial community of school-age children in Asia in SCIENTIFIC REPORTS
  • 2013-08-28. Richness of human gut microbiome correlates with metabolic markers in NATURE
  • 2012-07-13. Gut microbiota composition correlates with diet and health in the elderly in NATURE
  • 2014-04-15. Gut microbiome of the Hadza hunter-gatherers in NATURE COMMUNICATIONS
  • 2011-06-24. Metagenomic biomarker discovery and explanation in GENOME BIOLOGY
  • 2015-04-06. Effects of Bifidobacterium supplementation on intestinal microbiota composition and the immune response in healthy infants in WORLD JOURNAL OF PEDIATRICS
  • 2009-06-09. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age in BMC MICROBIOLOGY
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2015-10-02. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-06-14. Host genetic and environmental effects on mouse intestinal microbiota in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-08-28. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community in SCIENTIFIC REPORTS
  • 2015-02-23. Metabolic cross-feeding via intercellular nanotubes among bacteria in NATURE COMMUNICATIONS
  • Journal

    TITLE

    BMC Microbiology

    ISSUE

    1

    VOLUME

    16

    Related Patents

  • Pirin Polypeptide And Immune Modulation
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Composition Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Bacterium For Use As A Probiotic For Nutritional And Medical Applications
  • Compositions Comprising Bacterial Strains
  • Polypeptide And Immune Modulation
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Pirin Polypeptide And Immune Modulation
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Polypeptide And Immune Modulation
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising Bacterial Strains
  • Compositions Comprising A Bacterial Strain Of The Genus Megasphera And Uses Thereof
  • Lactic Acid Bacterial Strains
  • Compositions Comprising Bacterial Strain
  • Compositions Comprising Bacterial Strains
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12866-016-0708-5

    DOI

    http://dx.doi.org/10.1186/s12866-016-0708-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004553266

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27220822


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Age Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child, Preschool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cross-Sectional Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feces", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant, Newborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419972.0", 
              "name": [
                "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Odamaki", 
            "givenName": "Toshitaka", 
            "id": "sg:person.01331322535.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331322535.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419972.0", 
              "name": [
                "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kato", 
            "givenName": "Kumiko", 
            "id": "sg:person.01306417773.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306417773.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419972.0", 
              "name": [
                "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sugahara", 
            "givenName": "Hirosuke", 
            "id": "sg:person.01345137415.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345137415.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419972.0", 
              "name": [
                "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hashikura", 
            "givenName": "Nanami", 
            "id": "sg:person.0641503625.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641503625.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419972.0", 
              "name": [
                "Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takahashi", 
            "givenName": "Sachiko", 
            "id": "sg:person.0723151153.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723151153.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419972.0", 
              "name": [
                "Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Jin-zhong", 
            "id": "sg:person.0765610722.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765610722.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419972.0", 
              "name": [
                "Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abe", 
            "givenName": "Fumiaki", 
            "id": "sg:person.01300772050.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300772050.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.31432.37", 
              "name": [
                "Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Osawa", 
            "givenName": "Ro", 
            "id": "sg:person.01136102115.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136102115.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt.2676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034019934", 
              "https://doi.org/10.1038/nbt.2676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863807", 
              "https://doi.org/10.1038/ismej.2011.139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep13548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010482194", 
              "https://doi.org/10.1038/srep13548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026297002", 
              "https://doi.org/10.1186/2049-2618-2-19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032682406", 
              "https://doi.org/10.1038/nature11319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000325507", 
              "https://doi.org/10.1038/ncomms4654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003823032", 
              "https://doi.org/10.1038/nature12506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052025669", 
              "https://doi.org/10.1038/ncomms7238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-9-123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049309371", 
              "https://doi.org/10.1186/1471-2180-9-123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12519-015-0025-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004724905", 
              "https://doi.org/10.1007/s12519-015-0025-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026945768", 
              "https://doi.org/10.1038/ismej.2015.177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038641995", 
              "https://doi.org/10.1038/ismej.2012.54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021135023", 
              "https://doi.org/10.1038/nature12721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-4933-10-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039753171", 
              "https://doi.org/10.1186/1742-4933-10-31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-6-r60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000243423", 
              "https://doi.org/10.1186/gb-2011-12-6-r60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006452375", 
              "https://doi.org/10.1038/srep08397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052378845", 
              "https://doi.org/10.1038/nature11053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12866-014-0311-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001548821", 
              "https://doi.org/10.1186/s12866-014-0311-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-05-25", 
        "datePublishedReg": "2016-05-25", 
        "description": "BackgroundIt has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects.ResultsFecal samples from 367 healthy Japanese subjects between the ages of 0 and 104\u00a0years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward\u2019s linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0\u201335), 33 (24\u201345), 42 (32\u201362), 77 (36\u201384) and 94 (86\u201398) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster.ConclusionOur results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12866-016-0708-5", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024253", 
            "issn": [
              "1471-2180"
            ], 
            "name": "BMC Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "co-abundance groups", 
          "gut microbiota composition", 
          "microbiota composition", 
          "gut microbiota", 
          "Japanese subjects", 
          "infant/", 
          "cross-sectional study", 
          "sequential changes", 
          "healthy Japanese subjects", 
          "age-related groups", 
          "age-related changes", 
          "median age", 
          "human gut microbiota", 
          "elderly subjects", 
          "elderly individuals", 
          "ConclusionOur results", 
          "drug transporters", 
          "infants", 
          "abundance of genera", 
          "age", 
          "V3-V4 region", 
          "microbiota", 
          "subjects", 
          "positive correlation", 
          "group", 
          "Kyoto Encyclopedia", 
          "molecular techniques", 
          "BackgroundIt", 
          "years", 
          "transporters", 
          "study", 
          "important role", 
          "adults", 
          "gut", 
          "centenarians", 
          "changes", 
          "genes", 
          "Kendall correlation", 
          "correlation", 
          "proportion", 
          "individuals", 
          "high-throughput sequencing", 
          "sequencing", 
          "role", 
          "unobserved states", 
          "phylogenetic investigation", 
          "results", 
          "Encyclopedia", 
          "reconstruction", 
          "amplicons", 
          "patterns", 
          "samples", 
          "relative abundance", 
          "addition", 
          "rRNA gene", 
          "types", 
          "investigation", 
          "analysis", 
          "proportion of transporters", 
          "clusters", 
          "nutrients", 
          "region", 
          "community", 
          "technique", 
          "point", 
          "composition", 
          "compositional changes", 
          "abundance", 
          "state", 
          "genus", 
          "clustering", 
          "transition type", 
          "age clusters", 
          "transition point", 
          "orthology groups", 
          "prediction results"
        ], 
        "name": "Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study", 
        "pagination": "90", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004553266"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12866-016-0708-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27220822"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12866-016-0708-5", 
          "https://app.dimensions.ai/details/publication/pub.1004553266"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_714.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12866-016-0708-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12866-016-0708-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12866-016-0708-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12866-016-0708-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12866-016-0708-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    354 TRIPLES      21 PREDICATES      142 URIs      115 LITERALS      29 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12866-016-0708-5 schema:about N0ab8d9c2f4f948c58e017723fd6fd0a9
    2 N126c0242cbc94683be52152e604dd36a
    3 N2a85c9096b204be7b8533095f84e9be3
    4 N389078a7432a43dd95cb11877446ddfb
    5 N3ed335b1185340a0a556e4af6c9c20fb
    6 N3f1ef4bcc5974d03867c138d72ada3ec
    7 N40d2b9fe5e904fd0bba7f1c99634ff9f
    8 N6394552bee0c417c88f7c51891ad73e9
    9 N6e30d33bf3a04411a5d983e36a9a3226
    10 N7b9e805ed1664108ba52dd5850b8f0ef
    11 N8e24df70f65e45998e0734158e081092
    12 N8e40ea9386c44e9b8df5082505f897d0
    13 N8fef78bbfcbd442b848915293b57e5be
    14 Na4aef03ec949471680e74b116134712a
    15 Naab222c5dfd940e893efdc97e64d5c97
    16 Nc6260d59fb7745eb9cff07d55f7aca56
    17 Nd126295e529c4c7f93d92d8e43fdc12d
    18 Ndc5390a07f0842a9984265e14a44fc17
    19 Nead95468f719451997cc625e40a9729f
    20 Nf23ea943095d40dbbfc4aeddfeaf095a
    21 Nf2cef2422e4f46b88b671dbc29eac717
    22 Nf6d38e06a98e401690824c4125545db3
    23 anzsrc-for:06
    24 anzsrc-for:0604
    25 schema:author Na715a1ba75a84ab99bdf06d2ee69d875
    26 schema:citation sg:pub.10.1007/s12519-015-0025-3
    27 sg:pub.10.1038/ismej.2011.139
    28 sg:pub.10.1038/ismej.2012.54
    29 sg:pub.10.1038/ismej.2015.177
    30 sg:pub.10.1038/nature11053
    31 sg:pub.10.1038/nature11319
    32 sg:pub.10.1038/nature12506
    33 sg:pub.10.1038/nature12721
    34 sg:pub.10.1038/nbt.2676
    35 sg:pub.10.1038/ncomms4654
    36 sg:pub.10.1038/ncomms7238
    37 sg:pub.10.1038/nmeth.f.303
    38 sg:pub.10.1038/srep08397
    39 sg:pub.10.1038/srep13548
    40 sg:pub.10.1186/1471-2180-9-123
    41 sg:pub.10.1186/1742-4933-10-31
    42 sg:pub.10.1186/2049-2618-2-19
    43 sg:pub.10.1186/gb-2011-12-6-r60
    44 sg:pub.10.1186/s12866-014-0311-6
    45 schema:datePublished 2016-05-25
    46 schema:datePublishedReg 2016-05-25
    47 schema:description BackgroundIt has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects.ResultsFecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward’s linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0–35), 33 (24–45), 42 (32–62), 77 (36–84) and 94 (86–98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster.ConclusionOur results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age.
    48 schema:genre article
    49 schema:isAccessibleForFree true
    50 schema:isPartOf N16417b65cb494e77b7b29a1f5ecc3d66
    51 Nd173dc6319bf48338fd7943d0aa4b753
    52 sg:journal.1024253
    53 schema:keywords BackgroundIt
    54 ConclusionOur results
    55 Encyclopedia
    56 Japanese subjects
    57 Kendall correlation
    58 Kyoto Encyclopedia
    59 V3-V4 region
    60 abundance
    61 abundance of genera
    62 addition
    63 adults
    64 age
    65 age clusters
    66 age-related changes
    67 age-related groups
    68 amplicons
    69 analysis
    70 centenarians
    71 changes
    72 clustering
    73 clusters
    74 co-abundance groups
    75 community
    76 composition
    77 compositional changes
    78 correlation
    79 cross-sectional study
    80 drug transporters
    81 elderly individuals
    82 elderly subjects
    83 genes
    84 genus
    85 group
    86 gut
    87 gut microbiota
    88 gut microbiota composition
    89 healthy Japanese subjects
    90 high-throughput sequencing
    91 human gut microbiota
    92 important role
    93 individuals
    94 infant/
    95 infants
    96 investigation
    97 median age
    98 microbiota
    99 microbiota composition
    100 molecular techniques
    101 nutrients
    102 orthology groups
    103 patterns
    104 phylogenetic investigation
    105 point
    106 positive correlation
    107 prediction results
    108 proportion
    109 proportion of transporters
    110 rRNA gene
    111 reconstruction
    112 region
    113 relative abundance
    114 results
    115 role
    116 samples
    117 sequencing
    118 sequential changes
    119 state
    120 study
    121 subjects
    122 technique
    123 transition point
    124 transition type
    125 transporters
    126 types
    127 unobserved states
    128 years
    129 schema:name Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study
    130 schema:pagination 90
    131 schema:productId N2629b2f41a58405dbaa7e8c4210bea79
    132 N2b5af1c0d979416385c8feb0083c777b
    133 N558e04e2c1654fa1a4c2cf2a21e76cb3
    134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004553266
    135 https://doi.org/10.1186/s12866-016-0708-5
    136 schema:sdDatePublished 2022-12-01T06:35
    137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    138 schema:sdPublisher Nd8add06f616b470091e58897e8bb179c
    139 schema:url https://doi.org/10.1186/s12866-016-0708-5
    140 sgo:license sg:explorer/license/
    141 sgo:sdDataset articles
    142 rdf:type schema:ScholarlyArticle
    143 N0ab8d9c2f4f948c58e017723fd6fd0a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Infant, Newborn
    145 rdf:type schema:DefinedTerm
    146 N126c0242cbc94683be52152e604dd36a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Female
    148 rdf:type schema:DefinedTerm
    149 N16417b65cb494e77b7b29a1f5ecc3d66 schema:volumeNumber 16
    150 rdf:type schema:PublicationVolume
    151 N2629b2f41a58405dbaa7e8c4210bea79 schema:name doi
    152 schema:value 10.1186/s12866-016-0708-5
    153 rdf:type schema:PropertyValue
    154 N2a85c9096b204be7b8533095f84e9be3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Cross-Sectional Studies
    156 rdf:type schema:DefinedTerm
    157 N2b5af1c0d979416385c8feb0083c777b schema:name dimensions_id
    158 schema:value pub.1004553266
    159 rdf:type schema:PropertyValue
    160 N389078a7432a43dd95cb11877446ddfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Bacteria
    162 rdf:type schema:DefinedTerm
    163 N389830295f174c7881e479a61022d0c2 rdf:first sg:person.01300772050.26
    164 rdf:rest Nac278fc696214f7493b29ee1541cd892
    165 N3ed335b1185340a0a556e4af6c9c20fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Aged
    167 rdf:type schema:DefinedTerm
    168 N3f1ef4bcc5974d03867c138d72ada3ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Cluster Analysis
    170 rdf:type schema:DefinedTerm
    171 N40d2b9fe5e904fd0bba7f1c99634ff9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Child, Preschool
    173 rdf:type schema:DefinedTerm
    174 N558e04e2c1654fa1a4c2cf2a21e76cb3 schema:name pubmed_id
    175 schema:value 27220822
    176 rdf:type schema:PropertyValue
    177 N6394552bee0c417c88f7c51891ad73e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Adolescent
    179 rdf:type schema:DefinedTerm
    180 N6e30d33bf3a04411a5d983e36a9a3226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Gastrointestinal Microbiome
    182 rdf:type schema:DefinedTerm
    183 N7b9e805ed1664108ba52dd5850b8f0ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name RNA, Ribosomal, 16S
    185 rdf:type schema:DefinedTerm
    186 N823b371c63ae419c894459a7a062520b rdf:first sg:person.0641503625.34
    187 rdf:rest Nb3938a44625148d6b0fc8569cb27f911
    188 N8e24df70f65e45998e0734158e081092 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Middle Aged
    190 rdf:type schema:DefinedTerm
    191 N8e40ea9386c44e9b8df5082505f897d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Young Adult
    193 rdf:type schema:DefinedTerm
    194 N8fef78bbfcbd442b848915293b57e5be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Male
    196 rdf:type schema:DefinedTerm
    197 N9bca2770f3904737a761caaadcebaaa4 rdf:first sg:person.0765610722.27
    198 rdf:rest N389830295f174c7881e479a61022d0c2
    199 Na4aef03ec949471680e74b116134712a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name High-Throughput Nucleotide Sequencing
    201 rdf:type schema:DefinedTerm
    202 Na715a1ba75a84ab99bdf06d2ee69d875 rdf:first sg:person.01331322535.15
    203 rdf:rest Neefbb107afef40fab0c4fffa31d1eabc
    204 Naab222c5dfd940e893efdc97e64d5c97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Aged, 80 and over
    206 rdf:type schema:DefinedTerm
    207 Nac278fc696214f7493b29ee1541cd892 rdf:first sg:person.01136102115.58
    208 rdf:rest rdf:nil
    209 Nb3938a44625148d6b0fc8569cb27f911 rdf:first sg:person.0723151153.71
    210 rdf:rest N9bca2770f3904737a761caaadcebaaa4
    211 Nc6260d59fb7745eb9cff07d55f7aca56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Humans
    213 rdf:type schema:DefinedTerm
    214 Nd126295e529c4c7f93d92d8e43fdc12d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Infant
    216 rdf:type schema:DefinedTerm
    217 Nd173dc6319bf48338fd7943d0aa4b753 schema:issueNumber 1
    218 rdf:type schema:PublicationIssue
    219 Nd8add06f616b470091e58897e8bb179c schema:name Springer Nature - SN SciGraph project
    220 rdf:type schema:Organization
    221 Ndc5390a07f0842a9984265e14a44fc17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Sequence Analysis, DNA
    223 rdf:type schema:DefinedTerm
    224 Nead95468f719451997cc625e40a9729f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Feces
    226 rdf:type schema:DefinedTerm
    227 Neefbb107afef40fab0c4fffa31d1eabc rdf:first sg:person.01306417773.37
    228 rdf:rest Nfc868c7dd7124b8684bab44b4f27590b
    229 Nf23ea943095d40dbbfc4aeddfeaf095a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    230 schema:name Age Factors
    231 rdf:type schema:DefinedTerm
    232 Nf2cef2422e4f46b88b671dbc29eac717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    233 schema:name Child
    234 rdf:type schema:DefinedTerm
    235 Nf6d38e06a98e401690824c4125545db3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    236 schema:name Adult
    237 rdf:type schema:DefinedTerm
    238 Nfc868c7dd7124b8684bab44b4f27590b rdf:first sg:person.01345137415.31
    239 rdf:rest N823b371c63ae419c894459a7a062520b
    240 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    241 schema:name Biological Sciences
    242 rdf:type schema:DefinedTerm
    243 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    244 schema:name Genetics
    245 rdf:type schema:DefinedTerm
    246 sg:journal.1024253 schema:issn 1471-2180
    247 schema:name BMC Microbiology
    248 schema:publisher Springer Nature
    249 rdf:type schema:Periodical
    250 sg:person.01136102115.58 schema:affiliation grid-institutes:grid.31432.37
    251 schema:familyName Osawa
    252 schema:givenName Ro
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136102115.58
    254 rdf:type schema:Person
    255 sg:person.01300772050.26 schema:affiliation grid-institutes:grid.419972.0
    256 schema:familyName Abe
    257 schema:givenName Fumiaki
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300772050.26
    259 rdf:type schema:Person
    260 sg:person.01306417773.37 schema:affiliation grid-institutes:grid.419972.0
    261 schema:familyName Kato
    262 schema:givenName Kumiko
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306417773.37
    264 rdf:type schema:Person
    265 sg:person.01331322535.15 schema:affiliation grid-institutes:grid.419972.0
    266 schema:familyName Odamaki
    267 schema:givenName Toshitaka
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331322535.15
    269 rdf:type schema:Person
    270 sg:person.01345137415.31 schema:affiliation grid-institutes:grid.419972.0
    271 schema:familyName Sugahara
    272 schema:givenName Hirosuke
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345137415.31
    274 rdf:type schema:Person
    275 sg:person.0641503625.34 schema:affiliation grid-institutes:grid.419972.0
    276 schema:familyName Hashikura
    277 schema:givenName Nanami
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641503625.34
    279 rdf:type schema:Person
    280 sg:person.0723151153.71 schema:affiliation grid-institutes:grid.419972.0
    281 schema:familyName Takahashi
    282 schema:givenName Sachiko
    283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723151153.71
    284 rdf:type schema:Person
    285 sg:person.0765610722.27 schema:affiliation grid-institutes:grid.419972.0
    286 schema:familyName Xiao
    287 schema:givenName Jin-zhong
    288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765610722.27
    289 rdf:type schema:Person
    290 sg:pub.10.1007/s12519-015-0025-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004724905
    291 https://doi.org/10.1007/s12519-015-0025-3
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
    294 https://doi.org/10.1038/ismej.2011.139
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/ismej.2012.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038641995
    297 https://doi.org/10.1038/ismej.2012.54
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/ismej.2015.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026945768
    300 https://doi.org/10.1038/ismej.2015.177
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nature11053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052378845
    303 https://doi.org/10.1038/nature11053
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nature11319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032682406
    306 https://doi.org/10.1038/nature11319
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/nature12506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003823032
    309 https://doi.org/10.1038/nature12506
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nature12721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021135023
    312 https://doi.org/10.1038/nature12721
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
    315 https://doi.org/10.1038/nbt.2676
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/ncomms4654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000325507
    318 https://doi.org/10.1038/ncomms4654
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/ncomms7238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052025669
    321 https://doi.org/10.1038/ncomms7238
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    324 https://doi.org/10.1038/nmeth.f.303
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/srep08397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006452375
    327 https://doi.org/10.1038/srep08397
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/srep13548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010482194
    330 https://doi.org/10.1038/srep13548
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1186/1471-2180-9-123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049309371
    333 https://doi.org/10.1186/1471-2180-9-123
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1186/1742-4933-10-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039753171
    336 https://doi.org/10.1186/1742-4933-10-31
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1186/2049-2618-2-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026297002
    339 https://doi.org/10.1186/2049-2618-2-19
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1186/gb-2011-12-6-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243423
    342 https://doi.org/10.1186/gb-2011-12-6-r60
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1186/s12866-014-0311-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001548821
    345 https://doi.org/10.1186/s12866-014-0311-6
    346 rdf:type schema:CreativeWork
    347 grid-institutes:grid.31432.37 schema:alternateName Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
    348 schema:name Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
    349 rdf:type schema:Organization
    350 grid-institutes:grid.419972.0 schema:alternateName Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
    351 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
    352 schema:name Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
    353 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
    354 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...