In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Calum J. Walsh, Caitriona M. Guinane, Colin Hill, R. Paul Ross, Paul W. O’Toole, Paul D. Cotter

ABSTRACT

BACKGROUND: The human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project's reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated. RESULTS: We identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10 kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides. CONCLUSIONS: Multiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production. More... »

PAGES

183

References to SciGraph publications

  • 2012-09-26. A metagenome-wide association study of gut microbiota in type 2 diabetes in NATURE
  • 2012-12. Contribution of the Actinobacteria to the growing diversity of lantibiotics in BIOTECHNOLOGY LETTERS
  • 2009-07. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents in INTERNATIONAL JOURNAL OF OBESITY
  • 2011-01-27. Bifidobacteria can protect from enteropathogenic infection through production of acetate in NATURE
  • 2012-08. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon in THE ISME JOURNAL
  • 2014. Human Fecal Source Identification with Real-Time Quantitative PCR in ENVIRONMENTAL MICROBIOLOGY
  • 2005-10. Bacteriocins: developing innate immunity for food in NATURE REVIEWS MICROBIOLOGY
  • 2012-10. The role of the gut microbiota in nutrition and health in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2010-12. In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria in BMC GENOMICS
  • 2008-05-29. A microbial symbiosis factor prevents intestinal inflammatory disease in NATURE
  • 2014-11. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection in NATURE
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • 2013-02. Bacteriocins — a viable alternative to antibiotics? in NATURE REVIEWS MICROBIOLOGY
  • 2010-06. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial in EUROPEAN JOURNAL OF CLINICAL NUTRITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4

    DOI

    http://dx.doi.org/10.1186/s12866-015-0515-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006218857

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26377179


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteriocins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biosynthetic Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Tract", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multigene Family", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University College Cork", 
              "id": "https://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walsh", 
            "givenName": "Calum J.", 
            "id": "sg:person.01300663610.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300663610.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Teagasc - The Irish Agriculture and Food Development Authority", 
              "id": "https://www.grid.ac/institutes/grid.6435.4", 
              "name": [
                "Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guinane", 
            "givenName": "Caitriona M.", 
            "id": "sg:person.01346423437.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346423437.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College Cork", 
              "id": "https://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "APC Microbiome Institute, University College Cork, Cork, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hill", 
            "givenName": "Colin", 
            "id": "sg:person.01202224511.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202224511.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College Cork", 
              "id": "https://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "APC Microbiome Institute, University College Cork, Cork, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ross", 
            "givenName": "R. Paul", 
            "id": "sg:person.014605670062.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605670062.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College Cork", 
              "id": "https://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "APC Microbiome Institute, University College Cork, Cork, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Toole", 
            "givenName": "Paul W.", 
            "id": "sg:person.01305242542.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305242542.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College Cork", 
              "id": "https://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland", 
                "APC Microbiome Institute, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cotter", 
            "givenName": "Paul D.", 
            "id": "sg:person.0622117443.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622117443.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0300-9084(88)90206-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000123035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0300-9084(88)90206-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000123035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2np20085f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001041092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2012.156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002173942", 
              "https://doi.org/10.1038/nrgastro.2012.156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/602832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002504184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cbpa.2010.10.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002522993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2672.1999.00603.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003879225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00040-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004517298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004546178", 
              "https://doi.org/10.1038/nature11450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1001224107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005972846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0606088103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006567970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006761326", 
              "https://doi.org/10.1038/nature07008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007203226", 
              "https://doi.org/10.1038/ismej.2012.4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.67.9.4111-4118.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007363615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007526676", 
              "https://doi.org/10.1038/nature13738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aac.11.4.718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008707300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.11.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009471885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0108129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010159141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2008.260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010884796", 
              "https://doi.org/10.1038/ijo.2008.260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijfoodmicro.2013.12.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011577674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijfoodmicro.2013.12.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011577674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1995.tb02295.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011960260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1574-6941.12228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013087322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.12662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014266489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.12662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014266489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/16.10.944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014452632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0913554107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015090807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1208344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015324311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0041079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015969329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016346318", 
              "https://doi.org/10.1038/nrmicro1273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016346318", 
              "https://doi.org/10.1038/nrmicro1273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00784-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016497415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016898814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b917682a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017572573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b917682a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017572573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gutjnl-2013-304833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018584442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-712-9_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019316292", 
              "https://doi.org/10.1007/978-1-62703-712-9_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gutjnl-2011-300705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020615908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/cmr.00008-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021409328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1000339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022227398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10529-012-1024-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022925407", 
              "https://doi.org/10.1007/s10529-012-1024-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01962-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023205526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.anaerobe.2013.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023546015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biotechadv.2013.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023711643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0809584105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025724761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2012.01.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025792191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0700440104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026052421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.08.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026428909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/db13-0844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026983815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.idairyj.2005.10.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028752868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0020852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029246100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genet.32.1.255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029357036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1237439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031346048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1237439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031346048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejcn.2010.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032788652", 
              "https://doi.org/10.1038/ejcn.2010.19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejcn.2010.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032788652", 
              "https://doi.org/10.1038/ejcn.2010.19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/db10-0253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033123665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnutbio.2010.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034859739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1271/bbb.110348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035168813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodcont.2008.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035463111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/oby.2009.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035579553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cbic.201000564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035989750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036017430", 
              "https://doi.org/10.1038/nrmicro2937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aac.16.6.724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039930351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00730-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040168440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1116815109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044527624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6968.2006.00539.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045281066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0509371102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046661628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0091352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046688695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0031113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046927237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.70.5.3167-3170.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047460195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049384573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6968.2008.01427.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049559226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050719635", 
              "https://doi.org/10.1038/nature09646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0007114510000176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051121910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jcp.2010.076950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051148280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051652260", 
              "https://doi.org/10.1186/1471-2164-11-679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jam.12085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051905546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/00207713-21-4-273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060346706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/ijs.0.64257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060387172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/157016309787581075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069198393"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: The human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project's reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated.\nRESULTS: We identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10\u00a0kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides.\nCONCLUSIONS: Multiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12866-015-0515-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3983188", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024253", 
            "issn": [
              "1471-2180"
            ], 
            "name": "BMC Microbiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project\u2019s reference genome database", 
        "pagination": "183", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1d9fb2e7a618f301a294371c38fa3eaa84b9c97b29c1807059d75e6d633e774d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26377179"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100966981"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12866-015-0515-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006218857"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12866-015-0515-4", 
          "https://app.dimensions.ai/details/publication/pub.1006218857"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000580.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs12866-015-0515-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    385 TRIPLES      21 PREDICATES      113 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12866-015-0515-4 schema:about N30ffb260d8924de28065e01edb6c2cd5
    2 N40f89036097a4aae886b606266c95e72
    3 N68cdee26618a49cda57bb6beeccb5bb6
    4 N6ddee396c8ba47c190fdb7a9a752c157
    5 N87e5d238fce24dd88659bb02d03a6591
    6 N8c768e77715d4d319951a8705defefe6
    7 Nbd87a74ccb384ac2aee8383febb017a1
    8 Nc502ce93cc06457d9067a74900d214e3
    9 Nf2fd1ed83de24c67bb2c4ea9c445f632
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author Ndb705dfa4351425587eb301a8142259d
    13 schema:citation sg:pub.10.1007/978-1-62703-712-9_7
    14 sg:pub.10.1007/s10529-012-1024-2
    15 sg:pub.10.1038/ejcn.2010.19
    16 sg:pub.10.1038/ijo.2008.260
    17 sg:pub.10.1038/ismej.2012.4
    18 sg:pub.10.1038/nature07008
    19 sg:pub.10.1038/nature08821
    20 sg:pub.10.1038/nature09646
    21 sg:pub.10.1038/nature11450
    22 sg:pub.10.1038/nature13738
    23 sg:pub.10.1038/nrgastro.2012.156
    24 sg:pub.10.1038/nrmicro1273
    25 sg:pub.10.1038/nrmicro2937
    26 sg:pub.10.1186/1471-2164-11-679
    27 https://doi.org/10.1002/cbic.201000564
    28 https://doi.org/10.1016/0300-9084(88)90206-4
    29 https://doi.org/10.1016/j.anaerobe.2013.07.006
    30 https://doi.org/10.1016/j.biotechadv.2013.01.010
    31 https://doi.org/10.1016/j.cbpa.2010.10.027
    32 https://doi.org/10.1016/j.cell.2012.01.035
    33 https://doi.org/10.1016/j.cell.2013.11.024
    34 https://doi.org/10.1016/j.cell.2014.08.032
    35 https://doi.org/10.1016/j.foodcont.2008.08.003
    36 https://doi.org/10.1016/j.idairyj.2005.10.026
    37 https://doi.org/10.1016/j.ijfoodmicro.2013.12.019
    38 https://doi.org/10.1016/j.jnutbio.2010.10.008
    39 https://doi.org/10.1017/s0007114510000176
    40 https://doi.org/10.1038/oby.2009.112
    41 https://doi.org/10.1039/b917682a
    42 https://doi.org/10.1039/c2np20085f
    43 https://doi.org/10.1046/j.1365-2672.1999.00603.x
    44 https://doi.org/10.1073/pnas.0509371102
    45 https://doi.org/10.1073/pnas.0606088103
    46 https://doi.org/10.1073/pnas.0700440104
    47 https://doi.org/10.1073/pnas.0809584105
    48 https://doi.org/10.1073/pnas.0913554107
    49 https://doi.org/10.1073/pnas.1001224107
    50 https://doi.org/10.1073/pnas.1116815109
    51 https://doi.org/10.1093/bioinformatics/16.10.944
    52 https://doi.org/10.1093/bioinformatics/bti553
    53 https://doi.org/10.1093/nar/gkt391
    54 https://doi.org/10.1099/00207713-21-4-273
    55 https://doi.org/10.1099/ijs.0.64257-0
    56 https://doi.org/10.1111/1462-2920.12662
    57 https://doi.org/10.1111/1574-6941.12228
    58 https://doi.org/10.1111/j.1365-2958.1995.tb02295.x
    59 https://doi.org/10.1111/j.1574-6968.2006.00539.x
    60 https://doi.org/10.1111/j.1574-6968.2008.01427.x
    61 https://doi.org/10.1111/jam.12085
    62 https://doi.org/10.1126/science.1208344
    63 https://doi.org/10.1126/science.1237439
    64 https://doi.org/10.1128/aac.11.4.718
    65 https://doi.org/10.1128/aac.16.6.724
    66 https://doi.org/10.1128/aem.00730-09
    67 https://doi.org/10.1128/aem.01962-10
    68 https://doi.org/10.1128/aem.67.9.4111-4118.2001
    69 https://doi.org/10.1128/aem.70.5.3167-3170.2004
    70 https://doi.org/10.1128/cmr.00008-07
    71 https://doi.org/10.1128/jb.00040-11
    72 https://doi.org/10.1128/jb.00784-10
    73 https://doi.org/10.1136/gutjnl-2011-300705
    74 https://doi.org/10.1136/gutjnl-2013-304833
    75 https://doi.org/10.1136/jcp.2010.076950
    76 https://doi.org/10.1146/annurev.genet.32.1.255
    77 https://doi.org/10.1155/2014/602832
    78 https://doi.org/10.1271/bbb.110348
    79 https://doi.org/10.1371/journal.pbio.1000339
    80 https://doi.org/10.1371/journal.pone.0020852
    81 https://doi.org/10.1371/journal.pone.0031113
    82 https://doi.org/10.1371/journal.pone.0041079
    83 https://doi.org/10.1371/journal.pone.0091352
    84 https://doi.org/10.1371/journal.pone.0108129
    85 https://doi.org/10.2174/157016309787581075
    86 https://doi.org/10.2337/db10-0253
    87 https://doi.org/10.2337/db13-0844
    88 schema:datePublished 2015-12
    89 schema:datePublishedReg 2015-12-01
    90 schema:description BACKGROUND: The human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project's reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated. RESULTS: We identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10 kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides. CONCLUSIONS: Multiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production.
    91 schema:genre research_article
    92 schema:inLanguage en
    93 schema:isAccessibleForFree true
    94 schema:isPartOf N2ce04efd2cbd4a09afd539a2c4b658ad
    95 Nd6883185fb4243a28cf4aa3d095e4d63
    96 sg:journal.1024253
    97 schema:name In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database
    98 schema:pagination 183
    99 schema:productId N0218559f67014e589b6bbc2fdfa02431
    100 N26db8c532bf9493a89fce4e45dfe791d
    101 N53e5e05184764bf887f93a32a7b3dbc5
    102 N7055e2cd67f04d7ab042c32107e05b88
    103 N91b8877a7234422aabfdc6cfb509eb16
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006218857
    105 https://doi.org/10.1186/s12866-015-0515-4
    106 schema:sdDatePublished 2019-04-11T01:18
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N2d802371cec14b8eb4b4628a13ffb832
    109 schema:url http://link.springer.com/10.1186%2Fs12866-015-0515-4
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N0218559f67014e589b6bbc2fdfa02431 schema:name readcube_id
    114 schema:value 1d9fb2e7a618f301a294371c38fa3eaa84b9c97b29c1807059d75e6d633e774d
    115 rdf:type schema:PropertyValue
    116 N26db8c532bf9493a89fce4e45dfe791d schema:name nlm_unique_id
    117 schema:value 100966981
    118 rdf:type schema:PropertyValue
    119 N2ce04efd2cbd4a09afd539a2c4b658ad schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 N2d802371cec14b8eb4b4628a13ffb832 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N30ffb260d8924de28065e01edb6c2cd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Gastrointestinal Microbiome
    125 rdf:type schema:DefinedTerm
    126 N40f89036097a4aae886b606266c95e72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Humans
    128 rdf:type schema:DefinedTerm
    129 N416b3196392e4c56a9f8c7572c239590 rdf:first sg:person.01305242542.02
    130 rdf:rest N59eac9e083ae42cfacb1a59ccba1215d
    131 N421b70d09d7346538d47255fc8ecb083 rdf:first sg:person.014605670062.43
    132 rdf:rest N416b3196392e4c56a9f8c7572c239590
    133 N53e5e05184764bf887f93a32a7b3dbc5 schema:name dimensions_id
    134 schema:value pub.1006218857
    135 rdf:type schema:PropertyValue
    136 N59eac9e083ae42cfacb1a59ccba1215d rdf:first sg:person.0622117443.36
    137 rdf:rest rdf:nil
    138 N68cdee26618a49cda57bb6beeccb5bb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Bacteriocins
    140 rdf:type schema:DefinedTerm
    141 N6ddee396c8ba47c190fdb7a9a752c157 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Microbiota
    143 rdf:type schema:DefinedTerm
    144 N7055e2cd67f04d7ab042c32107e05b88 schema:name doi
    145 schema:value 10.1186/s12866-015-0515-4
    146 rdf:type schema:PropertyValue
    147 N87e5d238fce24dd88659bb02d03a6591 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Computational Biology
    149 rdf:type schema:DefinedTerm
    150 N8c768e77715d4d319951a8705defefe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Biosynthetic Pathways
    152 rdf:type schema:DefinedTerm
    153 N91b8877a7234422aabfdc6cfb509eb16 schema:name pubmed_id
    154 schema:value 26377179
    155 rdf:type schema:PropertyValue
    156 N98bd42435c76415e95b3586b2e0ccd5f rdf:first sg:person.01202224511.99
    157 rdf:rest N421b70d09d7346538d47255fc8ecb083
    158 Nbd87a74ccb384ac2aee8383febb017a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Multigene Family
    160 rdf:type schema:DefinedTerm
    161 Nc502ce93cc06457d9067a74900d214e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Computer Simulation
    163 rdf:type schema:DefinedTerm
    164 Nd6883185fb4243a28cf4aa3d095e4d63 schema:volumeNumber 15
    165 rdf:type schema:PublicationVolume
    166 Ndb705dfa4351425587eb301a8142259d rdf:first sg:person.01300663610.83
    167 rdf:rest Nef718f9eeb3c4764b1cf3c4d5df2de5c
    168 Nef718f9eeb3c4764b1cf3c4d5df2de5c rdf:first sg:person.01346423437.41
    169 rdf:rest N98bd42435c76415e95b3586b2e0ccd5f
    170 Nf2fd1ed83de24c67bb2c4ea9c445f632 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Gastrointestinal Tract
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Biological Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Genetics
    178 rdf:type schema:DefinedTerm
    179 sg:grant.3983188 http://pending.schema.org/fundedItem sg:pub.10.1186/s12866-015-0515-4
    180 rdf:type schema:MonetaryGrant
    181 sg:journal.1024253 schema:issn 1471-2180
    182 schema:name BMC Microbiology
    183 rdf:type schema:Periodical
    184 sg:person.01202224511.99 schema:affiliation https://www.grid.ac/institutes/grid.7872.a
    185 schema:familyName Hill
    186 schema:givenName Colin
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202224511.99
    188 rdf:type schema:Person
    189 sg:person.01300663610.83 schema:affiliation https://www.grid.ac/institutes/grid.7872.a
    190 schema:familyName Walsh
    191 schema:givenName Calum J.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300663610.83
    193 rdf:type schema:Person
    194 sg:person.01305242542.02 schema:affiliation https://www.grid.ac/institutes/grid.7872.a
    195 schema:familyName O’Toole
    196 schema:givenName Paul W.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305242542.02
    198 rdf:type schema:Person
    199 sg:person.01346423437.41 schema:affiliation https://www.grid.ac/institutes/grid.6435.4
    200 schema:familyName Guinane
    201 schema:givenName Caitriona M.
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346423437.41
    203 rdf:type schema:Person
    204 sg:person.014605670062.43 schema:affiliation https://www.grid.ac/institutes/grid.7872.a
    205 schema:familyName Ross
    206 schema:givenName R. Paul
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605670062.43
    208 rdf:type schema:Person
    209 sg:person.0622117443.36 schema:affiliation https://www.grid.ac/institutes/grid.7872.a
    210 schema:familyName Cotter
    211 schema:givenName Paul D.
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622117443.36
    213 rdf:type schema:Person
    214 sg:pub.10.1007/978-1-62703-712-9_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019316292
    215 https://doi.org/10.1007/978-1-62703-712-9_7
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s10529-012-1024-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022925407
    218 https://doi.org/10.1007/s10529-012-1024-2
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ejcn.2010.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032788652
    221 https://doi.org/10.1038/ejcn.2010.19
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ijo.2008.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010884796
    224 https://doi.org/10.1038/ijo.2008.260
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ismej.2012.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007203226
    227 https://doi.org/10.1038/ismej.2012.4
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature07008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006761326
    230 https://doi.org/10.1038/nature07008
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    233 https://doi.org/10.1038/nature08821
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature09646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050719635
    236 https://doi.org/10.1038/nature09646
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature11450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004546178
    239 https://doi.org/10.1038/nature11450
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature13738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007526676
    242 https://doi.org/10.1038/nature13738
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nrgastro.2012.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002173942
    245 https://doi.org/10.1038/nrgastro.2012.156
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nrmicro1273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016346318
    248 https://doi.org/10.1038/nrmicro1273
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nrmicro2937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036017430
    251 https://doi.org/10.1038/nrmicro2937
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/1471-2164-11-679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051652260
    254 https://doi.org/10.1186/1471-2164-11-679
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1002/cbic.201000564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989750
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1016/0300-9084(88)90206-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000123035
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1016/j.anaerobe.2013.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023546015
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1016/j.biotechadv.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023711643
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1016/j.cbpa.2010.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002522993
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1016/j.cell.2012.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025792191
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/j.cell.2013.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009471885
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1016/j.cell.2014.08.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026428909
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1016/j.foodcont.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035463111
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1016/j.idairyj.2005.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028752868
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1016/j.ijfoodmicro.2013.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011577674
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1016/j.jnutbio.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034859739
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1017/s0007114510000176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051121910
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1038/oby.2009.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035579553
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1039/b917682a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017572573
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1039/c2np20085f schema:sameAs https://app.dimensions.ai/details/publication/pub.1001041092
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1046/j.1365-2672.1999.00603.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003879225
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1073/pnas.0509371102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046661628
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1073/pnas.0606088103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006567970
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1073/pnas.0700440104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026052421
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1073/pnas.0809584105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025724761
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1073/pnas.0913554107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015090807
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1073/pnas.1001224107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005972846
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1073/pnas.1116815109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044527624
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1093/bioinformatics/16.10.944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014452632
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1093/bioinformatics/bti553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016898814
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1093/nar/gkt391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049384573
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1099/00207713-21-4-273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060346706
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1099/ijs.0.64257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060387172
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1111/1462-2920.12662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014266489
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1111/1574-6941.12228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013087322
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1111/j.1365-2958.1995.tb02295.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011960260
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1111/j.1574-6968.2006.00539.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045281066
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1111/j.1574-6968.2008.01427.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049559226
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1111/jam.12085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051905546
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1126/science.1208344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015324311
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1126/science.1237439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031346048
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1128/aac.11.4.718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008707300
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1128/aac.16.6.724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039930351
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1128/aem.00730-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040168440
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1128/aem.01962-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023205526
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1128/aem.67.9.4111-4118.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007363615
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1128/aem.70.5.3167-3170.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047460195
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1128/cmr.00008-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021409328
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1128/jb.00040-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004517298
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1128/jb.00784-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016497415
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1136/gutjnl-2011-300705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020615908
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1136/gutjnl-2013-304833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018584442
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1136/jcp.2010.076950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051148280
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1146/annurev.genet.32.1.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029357036
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1155/2014/602832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002504184
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1271/bbb.110348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035168813
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1371/journal.pbio.1000339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022227398
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1371/journal.pone.0020852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029246100
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1371/journal.pone.0031113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046927237
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1371/journal.pone.0041079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015969329
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1371/journal.pone.0091352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046688695
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1371/journal.pone.0108129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010159141
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.2174/157016309787581075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069198393
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.2337/db10-0253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033123665
    375 rdf:type schema:CreativeWork
    376 https://doi.org/10.2337/db13-0844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026983815
    377 rdf:type schema:CreativeWork
    378 https://www.grid.ac/institutes/grid.6435.4 schema:alternateName Teagasc - The Irish Agriculture and Food Development Authority
    379 schema:name Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland
    380 rdf:type schema:Organization
    381 https://www.grid.ac/institutes/grid.7872.a schema:alternateName University College Cork
    382 schema:name APC Microbiome Institute, University College Cork, Cork, Ireland
    383 School of Microbiology, University College Cork, Cork, Ireland
    384 Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland
    385 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...