In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-16

AUTHORS

Calum J. Walsh, Caitriona M. Guinane, Colin Hill, R. Paul Ross, Paul W. O’Toole, Paul D. Cotter

ABSTRACT

BackgroundThe human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project’s reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated.ResultsWe identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10 kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides.ConclusionsMultiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production. More... »

PAGES

183

References to SciGraph publications

  • 2012-09-26. A metagenome-wide association study of gut microbiota in type 2 diabetes in NATURE
  • 2012-08-25. Contribution of the Actinobacteria to the growing diversity of lantibiotics in BIOTECHNOLOGY LETTERS
  • 2012-02-16. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-01-15. Human Fecal Source Identification with Real-Time Quantitative PCR in ENVIRONMENTAL MICROBIOLOGY
  • 2012-09-04. The role of the gut microbiota in nutrition and health in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2005-10. Bacteriocins: developing innate immunity for food in NATURE REVIEWS MICROBIOLOGY
  • 2008-12-09. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents in INTERNATIONAL JOURNAL OF OBESITY
  • 2010-11-30. In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria in BMC GENOMICS
  • 2008-05. A microbial symbiosis factor prevents intestinal inflammatory disease in NATURE
  • 2014-09-17. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection in NATURE
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • 2011-01-26. Bifidobacteria can protect from enteropathogenic infection through production of acetate in NATURE
  • 2012-12-24. Bacteriocins — a viable alternative to antibiotics? in NATURE REVIEWS MICROBIOLOGY
  • 2010-03-10. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial in EUROPEAN JOURNAL OF CLINICAL NUTRITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4

    DOI

    http://dx.doi.org/10.1186/s12866-015-0515-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006218857

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26377179


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteriocins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biosynthetic Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Tract", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multigene Family", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Microbiology, University College Cork, Cork, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walsh", 
            "givenName": "Calum J.", 
            "id": "sg:person.01300663610.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300663610.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.6435.4", 
              "name": [
                "Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guinane", 
            "givenName": "Caitriona M.", 
            "id": "sg:person.01346423437.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346423437.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Microbiology, University College Cork, Cork, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "APC Microbiome Institute, University College Cork, Cork, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hill", 
            "givenName": "Colin", 
            "id": "sg:person.01202224511.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202224511.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Microbiology, University College Cork, Cork, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "APC Microbiome Institute, University College Cork, Cork, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ross", 
            "givenName": "R. Paul", 
            "id": "sg:person.014605670062.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605670062.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Microbiology, University College Cork, Cork, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "APC Microbiome Institute, University College Cork, Cork, Ireland", 
                "School of Microbiology, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Toole", 
            "givenName": "Paul W.", 
            "id": "sg:person.01305242542.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305242542.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "APC Microbiome Institute, University College Cork, Cork, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.7872.a", 
              "name": [
                "Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland", 
                "APC Microbiome Institute, University College Cork, Cork, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cotter", 
            "givenName": "Paul D.", 
            "id": "sg:person.0622117443.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622117443.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro1273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016346318", 
              "https://doi.org/10.1038/nrmicro1273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004546178", 
              "https://doi.org/10.1038/nature11450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-712-9_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019316292", 
              "https://doi.org/10.1007/978-1-62703-712-9_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050719635", 
              "https://doi.org/10.1038/nature09646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006761326", 
              "https://doi.org/10.1038/nature07008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10529-012-1024-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022925407", 
              "https://doi.org/10.1007/s10529-012-1024-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036017430", 
              "https://doi.org/10.1038/nrmicro2937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007526676", 
              "https://doi.org/10.1038/nature13738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051652260", 
              "https://doi.org/10.1186/1471-2164-11-679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007203226", 
              "https://doi.org/10.1038/ismej.2012.4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2012.156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002173942", 
              "https://doi.org/10.1038/nrgastro.2012.156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2008.260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010884796", 
              "https://doi.org/10.1038/ijo.2008.260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejcn.2010.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032788652", 
              "https://doi.org/10.1038/ejcn.2010.19"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-09-16", 
        "datePublishedReg": "2015-09-16", 
        "description": "BackgroundThe human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project\u2019s reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated.ResultsWe identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10\u00a0kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides.ConclusionsMultiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12866-015-0515-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3983188", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024253", 
            "issn": [
              "1471-2180"
            ], 
            "name": "BMC Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "reference genome database", 
          "bacteriocin gene clusters", 
          "gene cluster", 
          "human gut microbiota", 
          "genome database", 
          "traditional culture-dependent approaches", 
          "novel gene cluster", 
          "culture-dependent approach", 
          "next-generation sequencing technologies", 
          "generation sequencing technology", 
          "gut microbiota", 
          "bacteriocin clusters", 
          "gastrointestinal tract", 
          "genome-sequenced isolates", 
          "mammalian gut", 
          "class of bacteriocins", 
          "sequencing technologies", 
          "microbial cells", 
          "silico identification", 
          "unique member", 
          "potential bacteriocin producers", 
          "nutrient absorption", 
          "inflammatory bowel disease", 
          "type 2 diabetes", 
          "bacteriocin production", 
          "microbiota", 
          "bowel disease", 
          "silico", 
          "immune function", 
          "bacteriocin producers", 
          "bacteriocin", 
          "therapeutic tool", 
          "dataset representative", 
          "genome", 
          "sactipeptides", 
          "BAGEL3", 
          "Actinobacteria", 
          "genus", 
          "Bacteroidetes", 
          "genes", 
          "Firmicutes", 
          "Synergistetes", 
          "lantibiotics", 
          "species", 
          "disease", 
          "tract", 
          "Fusobacteria", 
          "clusters", 
          "bacteriolysins", 
          "metabolism", 
          "cells", 
          "gut", 
          "isolates", 
          "obesity", 
          "diabetes", 
          "vast amount", 
          "members", 
          "prevention", 
          "identification", 
          "ResultsWe", 
          "treatment", 
          "database", 
          "population", 
          "production", 
          "study", 
          "antimicrobials", 
          "manipulation", 
          "function", 
          "producers", 
          "representatives", 
          "subset", 
          "class", 
          "conditions", 
          "disturbances", 
          "approach", 
          "amount", 
          "tool", 
          "data", 
          "aspects", 
          "note", 
          "absorption", 
          "mind", 
          "advantages", 
          "technology", 
          "shaping"
        ], 
        "name": "In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project\u2019s reference genome database", 
        "pagination": "183", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006218857"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12866-015-0515-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26377179"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12866-015-0515-4", 
          "https://app.dimensions.ai/details/publication/pub.1006218857"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_668.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12866-015-0515-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12866-015-0515-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      22 PREDICATES      135 URIs      112 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12866-015-0515-4 schema:about N2c6f5d3211e642d4880d76b7472aaad4
    2 N30d38e46200a41f1a69e21226efc3cb8
    3 N43da0c2049ef43a8a5239dd9e17477b3
    4 N5b7896f9ad3345099cf222eb2a5c0449
    5 N72a077dcb96349d6b4202208a81d8bd2
    6 Nc743463edd194e5f89d8774789d20ca3
    7 Nc9ac9c90cc394896a834f7ccd41ed1f9
    8 Nfa008d654432433181445c4521e1d42c
    9 Nfe606c9f104f463abb58fd4d5020a557
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 anzsrc-for:0605
    13 schema:author N4acf19be2e524045b637040d42933f9f
    14 schema:citation sg:pub.10.1007/978-1-62703-712-9_7
    15 sg:pub.10.1007/s10529-012-1024-2
    16 sg:pub.10.1038/ejcn.2010.19
    17 sg:pub.10.1038/ijo.2008.260
    18 sg:pub.10.1038/ismej.2012.4
    19 sg:pub.10.1038/nature07008
    20 sg:pub.10.1038/nature08821
    21 sg:pub.10.1038/nature09646
    22 sg:pub.10.1038/nature11450
    23 sg:pub.10.1038/nature13738
    24 sg:pub.10.1038/nrgastro.2012.156
    25 sg:pub.10.1038/nrmicro1273
    26 sg:pub.10.1038/nrmicro2937
    27 sg:pub.10.1186/1471-2164-11-679
    28 schema:datePublished 2015-09-16
    29 schema:datePublishedReg 2015-09-16
    30 schema:description BackgroundThe human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project’s reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated.ResultsWe identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10 kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides.ConclusionsMultiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N631fb65816de474e9643a32a43effb4b
    35 N902784f5d0794037b7ca93a3ea33e6aa
    36 sg:journal.1024253
    37 schema:keywords Actinobacteria
    38 BAGEL3
    39 Bacteroidetes
    40 Firmicutes
    41 Fusobacteria
    42 ResultsWe
    43 Synergistetes
    44 absorption
    45 advantages
    46 amount
    47 antimicrobials
    48 approach
    49 aspects
    50 bacteriocin
    51 bacteriocin clusters
    52 bacteriocin gene clusters
    53 bacteriocin producers
    54 bacteriocin production
    55 bacteriolysins
    56 bowel disease
    57 cells
    58 class
    59 class of bacteriocins
    60 clusters
    61 conditions
    62 culture-dependent approach
    63 data
    64 database
    65 dataset representative
    66 diabetes
    67 disease
    68 disturbances
    69 function
    70 gastrointestinal tract
    71 gene cluster
    72 generation sequencing technology
    73 genes
    74 genome
    75 genome database
    76 genome-sequenced isolates
    77 genus
    78 gut
    79 gut microbiota
    80 human gut microbiota
    81 identification
    82 immune function
    83 inflammatory bowel disease
    84 isolates
    85 lantibiotics
    86 mammalian gut
    87 manipulation
    88 members
    89 metabolism
    90 microbial cells
    91 microbiota
    92 mind
    93 next-generation sequencing technologies
    94 note
    95 novel gene cluster
    96 nutrient absorption
    97 obesity
    98 population
    99 potential bacteriocin producers
    100 prevention
    101 producers
    102 production
    103 reference genome database
    104 representatives
    105 sactipeptides
    106 sequencing technologies
    107 shaping
    108 silico
    109 silico identification
    110 species
    111 study
    112 subset
    113 technology
    114 therapeutic tool
    115 tool
    116 tract
    117 traditional culture-dependent approaches
    118 treatment
    119 type 2 diabetes
    120 unique member
    121 vast amount
    122 schema:name In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database
    123 schema:pagination 183
    124 schema:productId N074a0a6c99544c0daaf494cd1e920e0d
    125 N216a4246cb9144d9bb46002c64fec3df
    126 Ne45ec1190ffd49bf80cf2df84f2574c2
    127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006218857
    128 https://doi.org/10.1186/s12866-015-0515-4
    129 schema:sdDatePublished 2022-05-20T07:31
    130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    131 schema:sdPublisher Nc0b2947a8a18496db2f6a8c1560deb58
    132 schema:url https://doi.org/10.1186/s12866-015-0515-4
    133 sgo:license sg:explorer/license/
    134 sgo:sdDataset articles
    135 rdf:type schema:ScholarlyArticle
    136 N074a0a6c99544c0daaf494cd1e920e0d schema:name doi
    137 schema:value 10.1186/s12866-015-0515-4
    138 rdf:type schema:PropertyValue
    139 N0ebc3b24a41148ab91995c76f887246d rdf:first sg:person.0622117443.36
    140 rdf:rest rdf:nil
    141 N216a4246cb9144d9bb46002c64fec3df schema:name dimensions_id
    142 schema:value pub.1006218857
    143 rdf:type schema:PropertyValue
    144 N2c6f5d3211e642d4880d76b7472aaad4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Gastrointestinal Tract
    146 rdf:type schema:DefinedTerm
    147 N30d38e46200a41f1a69e21226efc3cb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Bacteriocins
    149 rdf:type schema:DefinedTerm
    150 N3689a13d2b4a4a3882ca406771bfb0a6 rdf:first sg:person.01346423437.41
    151 rdf:rest Na0419941e5db431783c5217f9b5f4a2d
    152 N43da0c2049ef43a8a5239dd9e17477b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Multigene Family
    154 rdf:type schema:DefinedTerm
    155 N4acf19be2e524045b637040d42933f9f rdf:first sg:person.01300663610.83
    156 rdf:rest N3689a13d2b4a4a3882ca406771bfb0a6
    157 N5b7896f9ad3345099cf222eb2a5c0449 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Biosynthetic Pathways
    159 rdf:type schema:DefinedTerm
    160 N631fb65816de474e9643a32a43effb4b schema:issueNumber 1
    161 rdf:type schema:PublicationIssue
    162 N72a077dcb96349d6b4202208a81d8bd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Humans
    164 rdf:type schema:DefinedTerm
    165 N7975bc4b9e974559b53178df904a931b rdf:first sg:person.01305242542.02
    166 rdf:rest N0ebc3b24a41148ab91995c76f887246d
    167 N8dcbaafd960a4ad59b33d52857886026 rdf:first sg:person.014605670062.43
    168 rdf:rest N7975bc4b9e974559b53178df904a931b
    169 N902784f5d0794037b7ca93a3ea33e6aa schema:volumeNumber 15
    170 rdf:type schema:PublicationVolume
    171 Na0419941e5db431783c5217f9b5f4a2d rdf:first sg:person.01202224511.99
    172 rdf:rest N8dcbaafd960a4ad59b33d52857886026
    173 Nc0b2947a8a18496db2f6a8c1560deb58 schema:name Springer Nature - SN SciGraph project
    174 rdf:type schema:Organization
    175 Nc743463edd194e5f89d8774789d20ca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Computer Simulation
    177 rdf:type schema:DefinedTerm
    178 Nc9ac9c90cc394896a834f7ccd41ed1f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Microbiota
    180 rdf:type schema:DefinedTerm
    181 Ne45ec1190ffd49bf80cf2df84f2574c2 schema:name pubmed_id
    182 schema:value 26377179
    183 rdf:type schema:PropertyValue
    184 Nfa008d654432433181445c4521e1d42c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Gastrointestinal Microbiome
    186 rdf:type schema:DefinedTerm
    187 Nfe606c9f104f463abb58fd4d5020a557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Computational Biology
    189 rdf:type schema:DefinedTerm
    190 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    191 schema:name Biological Sciences
    192 rdf:type schema:DefinedTerm
    193 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    194 schema:name Genetics
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Microbiology
    198 rdf:type schema:DefinedTerm
    199 sg:grant.3983188 http://pending.schema.org/fundedItem sg:pub.10.1186/s12866-015-0515-4
    200 rdf:type schema:MonetaryGrant
    201 sg:journal.1024253 schema:issn 1471-2180
    202 schema:name BMC Microbiology
    203 schema:publisher Springer Nature
    204 rdf:type schema:Periodical
    205 sg:person.01202224511.99 schema:affiliation grid-institutes:grid.7872.a
    206 schema:familyName Hill
    207 schema:givenName Colin
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202224511.99
    209 rdf:type schema:Person
    210 sg:person.01300663610.83 schema:affiliation grid-institutes:grid.7872.a
    211 schema:familyName Walsh
    212 schema:givenName Calum J.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300663610.83
    214 rdf:type schema:Person
    215 sg:person.01305242542.02 schema:affiliation grid-institutes:grid.7872.a
    216 schema:familyName O’Toole
    217 schema:givenName Paul W.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305242542.02
    219 rdf:type schema:Person
    220 sg:person.01346423437.41 schema:affiliation grid-institutes:grid.6435.4
    221 schema:familyName Guinane
    222 schema:givenName Caitriona M.
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346423437.41
    224 rdf:type schema:Person
    225 sg:person.014605670062.43 schema:affiliation grid-institutes:grid.7872.a
    226 schema:familyName Ross
    227 schema:givenName R. Paul
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605670062.43
    229 rdf:type schema:Person
    230 sg:person.0622117443.36 schema:affiliation grid-institutes:grid.7872.a
    231 schema:familyName Cotter
    232 schema:givenName Paul D.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622117443.36
    234 rdf:type schema:Person
    235 sg:pub.10.1007/978-1-62703-712-9_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019316292
    236 https://doi.org/10.1007/978-1-62703-712-9_7
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s10529-012-1024-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022925407
    239 https://doi.org/10.1007/s10529-012-1024-2
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/ejcn.2010.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032788652
    242 https://doi.org/10.1038/ejcn.2010.19
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/ijo.2008.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010884796
    245 https://doi.org/10.1038/ijo.2008.260
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/ismej.2012.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007203226
    248 https://doi.org/10.1038/ismej.2012.4
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nature07008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006761326
    251 https://doi.org/10.1038/nature07008
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    254 https://doi.org/10.1038/nature08821
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature09646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050719635
    257 https://doi.org/10.1038/nature09646
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature11450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004546178
    260 https://doi.org/10.1038/nature11450
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature13738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007526676
    263 https://doi.org/10.1038/nature13738
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nrgastro.2012.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002173942
    266 https://doi.org/10.1038/nrgastro.2012.156
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nrmicro1273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016346318
    269 https://doi.org/10.1038/nrmicro1273
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrmicro2937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036017430
    272 https://doi.org/10.1038/nrmicro2937
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/1471-2164-11-679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051652260
    275 https://doi.org/10.1186/1471-2164-11-679
    276 rdf:type schema:CreativeWork
    277 grid-institutes:grid.6435.4 schema:alternateName Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland
    278 schema:name Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland
    279 rdf:type schema:Organization
    280 grid-institutes:grid.7872.a schema:alternateName APC Microbiome Institute, University College Cork, Cork, Ireland
    281 School of Microbiology, University College Cork, Cork, Ireland
    282 schema:name APC Microbiome Institute, University College Cork, Cork, Ireland
    283 School of Microbiology, University College Cork, Cork, Ireland
    284 Teagasc Food Research Centre, Moorepark, Cork, Fermoy, Ireland
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...