Integrative analysis of circRNA, miRNA, and mRNA profiles to reveal ceRNA regulation in chicken muscle development from the embryonic to ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-03

AUTHORS

Qiuxia Lei, Xin Hu, Haixia Han, Jie Wang, Wei Liu, Yan Zhou, Dingguo Cao, Fuwei Li, Jie Liu

ABSTRACT

BackgroundThe growth and development of skeletal muscle are regulated by protein-coding genes and non-coding RNA. Circular RNA (circRNA) is a type of non-coding RNA involved in a variety of biological processes, especially in post-transcriptional regulation. To better understand the regulatory mechanism of circRNAs during the development of muscle in chicken, we performed RNA-seq with linear RNA depletion for chicken breast muscle in 12 (E 12) and17 (E 17) day embryos, and 1 (D 1), 14 (D 14), 56 (D 56), and 98 (D 98) days post-hatch.ResultsWe identified 5755 differentially expressed (DE)-circRNAs during muscle development. We profiled the expression of DE-circRNAs and mRNAs (identified in our previous study) at up to six time points during chicken muscle development and uncovered a significant profile (profile 16) for circRNA upregulation during aging in muscle tissues. To investigate competing endogenous RNA (ceRNA) regulation in muscle and identify muscle-related circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network using the circRNAs and mRNAs from profile 16 and miRNAs identified in our previous study, which included 361 miRNAs, 68 circRNAs, 599 mRNAs, and 31,063 interacting pairs. Functional annotation showed that upregulated circRNAs might contribute to glycolysis/gluconeogenesis, biosynthesis of amino acids, pyruvate metabolism, carbon metabolism, glycogen and sucrose metabolism through the ceRNA network, and thus affected postnatal muscle development by regulating muscle protein deposition. Of them, circRNA225 and circRNA226 from the same host gene might be key circRNAs that could regulate muscle development by interacting with seven common miRNAs and 207 mRNAs. Our experiments also demonstrated that there were interactions among circRNA225, gga-miR-1306-5p, and heat shock protein alpha 8 (HSPA8).ConclusionsOur results suggest that adequate supply of nutrients such as energy and protein after hatching may be a key factor in ensuring chicken yield, and provide several candidate circRNAs for future studies concerning ceRNA regulation during chicken muscle development. More... »

PAGES

342

References to SciGraph publications

  • 2011-05-23. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2007-03-01. Target genes of myostatin loss-of-function in muscles of late bovine fetuses in BMC GENOMICS
  • 2012-03-27. Identification and characterization of genes related to the development of breast muscles in Pekin duck in MOLECULAR BIOLOGY REPORTS
  • 2021-01-19. Deciphering the miRNA transcriptome of breast muscle from the embryonic to post-hatching periods in chickens in BMC GENOMICS
  • 2013-04-25. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2007-03-13. Birth size, adult body composition and muscle strength in later life in INTERNATIONAL JOURNAL OF OBESITY
  • 2017-10-23. Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens in BMC GENOMICS
  • 2017-10-09. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2009-02-10. MicroRNA transcriptome profiles during swine skeletal muscle development in BMC GENOMICS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2015-08-09. The role of leucine and its metabolites in protein and energy metabolism in AMINO ACIDS
  • 2006-04-05. STEM: a tool for the analysis of short time series gene expression data in BMC BIOINFORMATICS
  • 2011-08-11. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-022-08525-5

    DOI

    http://dx.doi.org/10.1186/s12864-022-08525-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147539595

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35505302


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chickens", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscle Development", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Circular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Poultry Breeding Engineering Technology Center of Shandong Province, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
                "Poultry Breeding Engineering Technology Center of Shandong Province, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lei", 
            "givenName": "Qiuxia", 
            "id": "sg:person.013304734357.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304734357.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Li\u00e8ge, 5030, Gembloux, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.410510.1", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
                "Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China", 
                "Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Li\u00e8ge, 5030, Gembloux, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Xin", 
            "id": "sg:person.013601164623.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013601164623.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/grid.469552.9", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Haixia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/grid.469552.9", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/grid.469552.9", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Wei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/grid.469552.9", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/grid.469552.9", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Dingguo", 
            "id": "sg:person.07746265657.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746265657.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/grid.469552.9", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Fuwei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Poultry Breeding Engineering Technology Center of Shandong Province, 250023, Ji\u2019nan, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji\u2019nan, China", 
                "Poultry Breeding Engineering Technology Center of Shandong Province, 250023, Ji\u2019nan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Jie", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-8-r72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006381787", 
              "https://doi.org/10.1186/gb-2011-12-8-r72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-8-63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053657340", 
              "https://doi.org/10.1186/1471-2164-8-63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-021-07374-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134708972", 
              "https://doi.org/10.1186/s12864-021-07374-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-015-2067-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041340932", 
              "https://doi.org/10.1007/s00726-015-2067-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023286996", 
              "https://doi.org/10.1186/1471-2105-7-191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032683516", 
              "https://doi.org/10.1038/nrm3118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-012-1599-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030205582", 
              "https://doi.org/10.1007/s11033-012-1599-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-017-0573-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092133134", 
              "https://doi.org/10.1007/s10142-017-0573-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042080527", 
              "https://doi.org/10.1186/1471-2164-10-77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.ijo.0803612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039854557", 
              "https://doi.org/10.1038/sj.ijo.0803612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-4150-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092310832", 
              "https://doi.org/10.1186/s12864-017-4150-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-03", 
        "datePublishedReg": "2022-05-03", 
        "description": "BackgroundThe growth and development of skeletal muscle are regulated by protein-coding genes and non-coding RNA. Circular RNA (circRNA) is a type of non-coding RNA involved in a variety of biological processes, especially in post-transcriptional regulation. To better understand the regulatory mechanism of circRNAs during the development of muscle in chicken, we performed RNA-seq with linear RNA depletion for chicken breast muscle in 12 (E 12) and17 (E 17) day embryos, and 1 (D 1), 14 (D 14), 56 (D 56), and 98 (D 98) days post-hatch.ResultsWe identified 5755 differentially expressed (DE)-circRNAs during muscle development. We profiled the expression of DE-circRNAs and mRNAs (identified in our previous study) at up to six time points during chicken muscle development and uncovered a significant profile (profile 16) for circRNA upregulation during aging in muscle tissues. To investigate competing endogenous RNA (ceRNA) regulation in muscle and identify muscle-related circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network using the circRNAs and mRNAs from profile 16 and miRNAs identified in our previous study, which included 361 miRNAs, 68 circRNAs, 599 mRNAs, and 31,063 interacting pairs. Functional annotation showed that upregulated circRNAs might contribute to glycolysis/gluconeogenesis, biosynthesis of amino acids, pyruvate metabolism, carbon metabolism, glycogen and sucrose metabolism through the ceRNA network, and thus affected postnatal muscle development by regulating muscle protein deposition. Of them, circRNA225 and circRNA226 from the same host gene might be key circRNAs that could regulate muscle development by interacting with seven common miRNAs and 207 mRNAs. Our experiments also demonstrated that there were interactions among circRNA225, gga-miR-1306-5p, and heat shock protein alpha 8 (HSPA8).ConclusionsOur results suggest that adequate supply of nutrients such as energy and protein after hatching may be a key factor in ensuring chicken yield, and provide several candidate circRNAs for future studies concerning ceRNA regulation during chicken muscle development.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12864-022-08525-5", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "chicken muscle development", 
          "non-coding RNAs", 
          "muscle development", 
          "ceRNA regulation", 
          "protein-coding genes", 
          "post-transcriptional regulation", 
          "endogenous RNA regulation", 
          "same host gene", 
          "glycolysis/gluconeogenesis", 
          "mRNA regulatory network", 
          "DE circRNAs", 
          "RNA regulation", 
          "functional annotation", 
          "circRNA-miRNA", 
          "carbon metabolism", 
          "key circRNAs", 
          "regulatory networks", 
          "circular RNAs", 
          "RNA-seq", 
          "host genes", 
          "ceRNA network", 
          "upregulated circRNAs", 
          "muscle protein deposition", 
          "regulatory mechanisms", 
          "RNA depletion", 
          "circRNAs", 
          "development of muscle", 
          "postnatal muscle development", 
          "candidate circRNAs", 
          "biological processes", 
          "integrative analysis", 
          "alpha 8", 
          "pyruvate metabolism", 
          "common miRNAs", 
          "amino acids", 
          "miRNAs", 
          "RNA", 
          "post-hatch period", 
          "mRNA", 
          "regulation", 
          "genes", 
          "skeletal muscle", 
          "day embryos", 
          "chicken breast muscle", 
          "muscle tissue", 
          "metabolism", 
          "protein deposition", 
          "biosynthesis", 
          "miRNA", 
          "embryonic", 
          "embryos", 
          "protein", 
          "ConclusionsOur results", 
          "hatching", 
          "adequate supply", 
          "annotation", 
          "breast muscle", 
          "significant profiles", 
          "nutrients", 
          "expression", 
          "upregulation", 
          "gluconeogenesis", 
          "muscle", 
          "previous studies", 
          "future studies", 
          "development", 
          "glycogen", 
          "growth", 
          "chickens", 
          "depletion", 
          "tissue", 
          "acid", 
          "key factors", 
          "mechanism", 
          "interaction", 
          "time points", 
          "variety", 
          "pairs", 
          "yield", 
          "study", 
          "profile", 
          "factors", 
          "analysis", 
          "types", 
          "ResultsWe", 
          "supply", 
          "process", 
          "experiments", 
          "network", 
          "results", 
          "days", 
          "period", 
          "deposition", 
          "point", 
          "energy"
        ], 
        "name": "Integrative analysis of circRNA, miRNA, and mRNA profiles to reveal ceRNA regulation in chicken muscle development from the embryonic to post-hatching periods", 
        "pagination": "342", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147539595"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-022-08525-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35505302"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-022-08525-5", 
          "https://app.dimensions.ai/details/publication/pub.1147539595"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_920.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12864-022-08525-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-022-08525-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-022-08525-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-022-08525-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-022-08525-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    294 TRIPLES      21 PREDICATES      140 URIs      118 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-022-08525-5 schema:about N03c29c333bab4683ac0b28ab1179c0be
    2 N11fa8399e293412c97a18e3dc0905072
    3 N26ea7aaf10584fe1a2c757e80a28b132
    4 N6927f1518ce348e8be6507d6199f0d63
    5 Nbc1e9583d1ad49b9b1f591ff006471d8
    6 Nf6ac9b8fdca94801adaf0d17cb8157e2
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 anzsrc-for:0604
    10 schema:author N74ad99c827a24e00aad7621e7eb11ccf
    11 schema:citation sg:pub.10.1007/s00726-015-2067-1
    12 sg:pub.10.1007/s10142-017-0573-9
    13 sg:pub.10.1007/s11033-012-1599-7
    14 sg:pub.10.1038/nmeth.1923
    15 sg:pub.10.1038/nrm3118
    16 sg:pub.10.1038/sj.ijo.0803612
    17 sg:pub.10.1186/1471-2105-7-191
    18 sg:pub.10.1186/1471-2164-10-77
    19 sg:pub.10.1186/1471-2164-8-63
    20 sg:pub.10.1186/gb-2011-12-8-r72
    21 sg:pub.10.1186/gb-2013-14-4-r36
    22 sg:pub.10.1186/s12864-017-4150-3
    23 sg:pub.10.1186/s12864-021-07374-y
    24 schema:datePublished 2022-05-03
    25 schema:datePublishedReg 2022-05-03
    26 schema:description BackgroundThe growth and development of skeletal muscle are regulated by protein-coding genes and non-coding RNA. Circular RNA (circRNA) is a type of non-coding RNA involved in a variety of biological processes, especially in post-transcriptional regulation. To better understand the regulatory mechanism of circRNAs during the development of muscle in chicken, we performed RNA-seq with linear RNA depletion for chicken breast muscle in 12 (E 12) and17 (E 17) day embryos, and 1 (D 1), 14 (D 14), 56 (D 56), and 98 (D 98) days post-hatch.ResultsWe identified 5755 differentially expressed (DE)-circRNAs during muscle development. We profiled the expression of DE-circRNAs and mRNAs (identified in our previous study) at up to six time points during chicken muscle development and uncovered a significant profile (profile 16) for circRNA upregulation during aging in muscle tissues. To investigate competing endogenous RNA (ceRNA) regulation in muscle and identify muscle-related circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network using the circRNAs and mRNAs from profile 16 and miRNAs identified in our previous study, which included 361 miRNAs, 68 circRNAs, 599 mRNAs, and 31,063 interacting pairs. Functional annotation showed that upregulated circRNAs might contribute to glycolysis/gluconeogenesis, biosynthesis of amino acids, pyruvate metabolism, carbon metabolism, glycogen and sucrose metabolism through the ceRNA network, and thus affected postnatal muscle development by regulating muscle protein deposition. Of them, circRNA225 and circRNA226 from the same host gene might be key circRNAs that could regulate muscle development by interacting with seven common miRNAs and 207 mRNAs. Our experiments also demonstrated that there were interactions among circRNA225, gga-miR-1306-5p, and heat shock protein alpha 8 (HSPA8).ConclusionsOur results suggest that adequate supply of nutrients such as energy and protein after hatching may be a key factor in ensuring chicken yield, and provide several candidate circRNAs for future studies concerning ceRNA regulation during chicken muscle development.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf Nce19831a75f6499c926c4655202fcee9
    30 Ne4e191528d18400e8f9a30ee55cc041b
    31 sg:journal.1023790
    32 schema:keywords ConclusionsOur results
    33 DE circRNAs
    34 RNA
    35 RNA depletion
    36 RNA regulation
    37 RNA-seq
    38 ResultsWe
    39 acid
    40 adequate supply
    41 alpha 8
    42 amino acids
    43 analysis
    44 annotation
    45 biological processes
    46 biosynthesis
    47 breast muscle
    48 candidate circRNAs
    49 carbon metabolism
    50 ceRNA network
    51 ceRNA regulation
    52 chicken breast muscle
    53 chicken muscle development
    54 chickens
    55 circRNA-miRNA
    56 circRNAs
    57 circular RNAs
    58 common miRNAs
    59 day embryos
    60 days
    61 depletion
    62 deposition
    63 development
    64 development of muscle
    65 embryonic
    66 embryos
    67 endogenous RNA regulation
    68 energy
    69 experiments
    70 expression
    71 factors
    72 functional annotation
    73 future studies
    74 genes
    75 gluconeogenesis
    76 glycogen
    77 glycolysis/gluconeogenesis
    78 growth
    79 hatching
    80 host genes
    81 integrative analysis
    82 interaction
    83 key circRNAs
    84 key factors
    85 mRNA
    86 mRNA regulatory network
    87 mechanism
    88 metabolism
    89 miRNA
    90 miRNAs
    91 muscle
    92 muscle development
    93 muscle protein deposition
    94 muscle tissue
    95 network
    96 non-coding RNAs
    97 nutrients
    98 pairs
    99 period
    100 point
    101 post-hatch period
    102 post-transcriptional regulation
    103 postnatal muscle development
    104 previous studies
    105 process
    106 profile
    107 protein
    108 protein deposition
    109 protein-coding genes
    110 pyruvate metabolism
    111 regulation
    112 regulatory mechanisms
    113 regulatory networks
    114 results
    115 same host gene
    116 significant profiles
    117 skeletal muscle
    118 study
    119 supply
    120 time points
    121 tissue
    122 types
    123 upregulated circRNAs
    124 upregulation
    125 variety
    126 yield
    127 schema:name Integrative analysis of circRNA, miRNA, and mRNA profiles to reveal ceRNA regulation in chicken muscle development from the embryonic to post-hatching periods
    128 schema:pagination 342
    129 schema:productId N93d9e9dd39694880bc0032fffee028c3
    130 Nae1326b1cbea4ad3a8dd27ef9a49c9d5
    131 Nb86ffe6d842c41fc90bbcb41f7112d5c
    132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147539595
    133 https://doi.org/10.1186/s12864-022-08525-5
    134 schema:sdDatePublished 2022-08-04T17:12
    135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    136 schema:sdPublisher Nbfc693f93d7340668931520bffe9d1fb
    137 schema:url https://doi.org/10.1186/s12864-022-08525-5
    138 sgo:license sg:explorer/license/
    139 sgo:sdDataset articles
    140 rdf:type schema:ScholarlyArticle
    141 N03c29c333bab4683ac0b28ab1179c0be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Animals
    143 rdf:type schema:DefinedTerm
    144 N0a721ebb0dbf42e9ba84b0fadf7df771 rdf:first N763403b00fbf4a70a33d09439bbfe31c
    145 rdf:rest N0bd0d3e410384eec9c9c26f17f9084ee
    146 N0b3a3f6cb03849269d1a2fe453080457 schema:affiliation grid-institutes:grid.469552.9
    147 schema:familyName Li
    148 schema:givenName Fuwei
    149 rdf:type schema:Person
    150 N0bd0d3e410384eec9c9c26f17f9084ee rdf:first Nc039eeeba2244c0d83e88f476a93d874
    151 rdf:rest Nd33be2f2e9a64434be6aacfe09ce3888
    152 N11fa8399e293412c97a18e3dc0905072 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Muscle Development
    154 rdf:type schema:DefinedTerm
    155 N26ea7aaf10584fe1a2c757e80a28b132 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name RNA, Messenger
    157 rdf:type schema:DefinedTerm
    158 N4ae3fbabcb9447f48fcd9fc5d6435e10 rdf:first Nc1b202fc0f684cdbb46f15109b127abb
    159 rdf:rest N5dd884f5d22e4a1c9c28bc747e55e684
    160 N50994f9830424cb3acf3ed671e0c656e rdf:first Nd5dd133e4bfd426ca4090d0cd7e5ffc9
    161 rdf:rest rdf:nil
    162 N5632a42a9251441ebd1a4d4e5040ef5b schema:affiliation grid-institutes:grid.469552.9
    163 schema:familyName Wang
    164 schema:givenName Jie
    165 rdf:type schema:Person
    166 N5dd884f5d22e4a1c9c28bc747e55e684 rdf:first N5632a42a9251441ebd1a4d4e5040ef5b
    167 rdf:rest N0a721ebb0dbf42e9ba84b0fadf7df771
    168 N6927f1518ce348e8be6507d6199f0d63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name MicroRNAs
    170 rdf:type schema:DefinedTerm
    171 N6bd697a7356f45309d61100f187c94db rdf:first N0b3a3f6cb03849269d1a2fe453080457
    172 rdf:rest N50994f9830424cb3acf3ed671e0c656e
    173 N74ad99c827a24e00aad7621e7eb11ccf rdf:first sg:person.013304734357.25
    174 rdf:rest Nd32f7c361afc4e4284ba9d174dccd04e
    175 N763403b00fbf4a70a33d09439bbfe31c schema:affiliation grid-institutes:grid.469552.9
    176 schema:familyName Liu
    177 schema:givenName Wei
    178 rdf:type schema:Person
    179 N93d9e9dd39694880bc0032fffee028c3 schema:name pubmed_id
    180 schema:value 35505302
    181 rdf:type schema:PropertyValue
    182 Nae1326b1cbea4ad3a8dd27ef9a49c9d5 schema:name doi
    183 schema:value 10.1186/s12864-022-08525-5
    184 rdf:type schema:PropertyValue
    185 Nb86ffe6d842c41fc90bbcb41f7112d5c schema:name dimensions_id
    186 schema:value pub.1147539595
    187 rdf:type schema:PropertyValue
    188 Nbc1e9583d1ad49b9b1f591ff006471d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name RNA, Circular
    190 rdf:type schema:DefinedTerm
    191 Nbfc693f93d7340668931520bffe9d1fb schema:name Springer Nature - SN SciGraph project
    192 rdf:type schema:Organization
    193 Nc039eeeba2244c0d83e88f476a93d874 schema:affiliation grid-institutes:grid.469552.9
    194 schema:familyName Zhou
    195 schema:givenName Yan
    196 rdf:type schema:Person
    197 Nc1b202fc0f684cdbb46f15109b127abb schema:affiliation grid-institutes:grid.469552.9
    198 schema:familyName Han
    199 schema:givenName Haixia
    200 rdf:type schema:Person
    201 Nce19831a75f6499c926c4655202fcee9 schema:issueNumber 1
    202 rdf:type schema:PublicationIssue
    203 Nd32f7c361afc4e4284ba9d174dccd04e rdf:first sg:person.013601164623.16
    204 rdf:rest N4ae3fbabcb9447f48fcd9fc5d6435e10
    205 Nd33be2f2e9a64434be6aacfe09ce3888 rdf:first sg:person.07746265657.47
    206 rdf:rest N6bd697a7356f45309d61100f187c94db
    207 Nd5dd133e4bfd426ca4090d0cd7e5ffc9 schema:affiliation grid-institutes:None
    208 schema:familyName Liu
    209 schema:givenName Jie
    210 rdf:type schema:Person
    211 Ne4e191528d18400e8f9a30ee55cc041b schema:volumeNumber 23
    212 rdf:type schema:PublicationVolume
    213 Nf6ac9b8fdca94801adaf0d17cb8157e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Chickens
    215 rdf:type schema:DefinedTerm
    216 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Biological Sciences
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Biochemistry and Cell Biology
    221 rdf:type schema:DefinedTerm
    222 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    223 schema:name Genetics
    224 rdf:type schema:DefinedTerm
    225 sg:journal.1023790 schema:issn 1471-2164
    226 schema:name BMC Genomics
    227 schema:publisher Springer Nature
    228 rdf:type schema:Periodical
    229 sg:person.013304734357.25 schema:affiliation grid-institutes:None
    230 schema:familyName Lei
    231 schema:givenName Qiuxia
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304734357.25
    233 rdf:type schema:Person
    234 sg:person.013601164623.16 schema:affiliation grid-institutes:grid.410510.1
    235 schema:familyName Hu
    236 schema:givenName Xin
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013601164623.16
    238 rdf:type schema:Person
    239 sg:person.07746265657.47 schema:affiliation grid-institutes:grid.469552.9
    240 schema:familyName Cao
    241 schema:givenName Dingguo
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746265657.47
    243 rdf:type schema:Person
    244 sg:pub.10.1007/s00726-015-2067-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041340932
    245 https://doi.org/10.1007/s00726-015-2067-1
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s10142-017-0573-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092133134
    248 https://doi.org/10.1007/s10142-017-0573-9
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s11033-012-1599-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030205582
    251 https://doi.org/10.1007/s11033-012-1599-7
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    254 https://doi.org/10.1038/nmeth.1923
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nrm3118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032683516
    257 https://doi.org/10.1038/nrm3118
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/sj.ijo.0803612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039854557
    260 https://doi.org/10.1038/sj.ijo.0803612
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/1471-2105-7-191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023286996
    263 https://doi.org/10.1186/1471-2105-7-191
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/1471-2164-10-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042080527
    266 https://doi.org/10.1186/1471-2164-10-77
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/1471-2164-8-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053657340
    269 https://doi.org/10.1186/1471-2164-8-63
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/gb-2011-12-8-r72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006381787
    272 https://doi.org/10.1186/gb-2011-12-8-r72
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    275 https://doi.org/10.1186/gb-2013-14-4-r36
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/s12864-017-4150-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092310832
    278 https://doi.org/10.1186/s12864-017-4150-3
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/s12864-021-07374-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1134708972
    281 https://doi.org/10.1186/s12864-021-07374-y
    282 rdf:type schema:CreativeWork
    283 grid-institutes:None schema:alternateName Poultry Breeding Engineering Technology Center of Shandong Province, 250023, Ji’nan, China
    284 schema:name Poultry Breeding Engineering Technology Center of Shandong Province, 250023, Ji’nan, China
    285 Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji’nan, China
    286 rdf:type schema:Organization
    287 grid-institutes:grid.410510.1 schema:alternateName Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
    288 schema:name Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
    289 Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
    290 Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji’nan, China
    291 rdf:type schema:Organization
    292 grid-institutes:grid.469552.9 schema:alternateName Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji’nan, China
    293 schema:name Poultry Institute, Shandong Academy of Agricultural Sciences, 250023, Ji’nan, China
    294 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...