Predicting male fertility in dairy cattle using markers with large effect and functional annotation data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Juan Pablo Nani, Fernanda M. Rezende, Francisco Peñagaricano

ABSTRACT

BACKGROUND: Fertility is among the most important economic traits in dairy cattle. Genomic prediction for cow fertility has received much attention in the last decade, while bull fertility has been largely overlooked. The goal of this study was to assess genomic prediction of dairy bull fertility using markers with large effect and functional annotation data. Sire conception rate (SCR) was used as a measure of service sire fertility. Dataset consisted of 11.5 k U.S. Holstein bulls with SCR records and about 300 k single nucleotide polymorphism (SNP) markers. The analyses included the use of both single-kernel and multi-kernel predictive models fitting either all SNPs, markers with large effect, or markers with presumed functional roles, such as non-synonymous, synonymous, or non-coding regulatory variants. RESULTS: The entire set of SNPs yielded predictive correlations of 0.340. Five markers located on chromosomes BTA8, BTA9, BTA13, BTA17, and BTA27 showed marked dominance effects. Interestingly, the inclusion of these five major markers as fixed effects in the predictive models increased predictive correlations to 0.403, representing an increase in accuracy of about 19% compared with the standard model. Single-kernel models fitting functional SNP classes outperformed their counterparts using random sets of SNPs, suggesting that the predictive power of these functional variants is driven in part by their biological roles. Multi-kernel models fitting all the functional SNP classes together with the five major markers exhibited predictive correlations around 0.405. CONCLUSIONS: The inclusion of markers with large effect markedly improved the prediction of dairy sire fertility. Functional variants exhibited higher predictive ability than random variants, but did not outperform the standard whole-genome approach. This research is the foundation for the development of novel strategies that could help the dairy industry make accurate genome-guided selection decisions on service sire fertility. More... »

PAGES

258

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-019-5644-y

DOI

http://dx.doi.org/10.1186/s12864-019-5644-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113179416

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30940077


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Agricultural Technology Institute", 
          "id": "https://www.grid.ac/institutes/grid.419231.c", 
          "name": [
            "Department of Animal Sciences, University of Florida, 2250 Shealy Drive, 32611, Gainesville, FL, USA", 
            "Estaci\u00f3n Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnolog\u00eda Agropecuaria, 22-2300, Rafaela, SF, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nani", 
        "givenName": "Juan Pablo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Uberl\u00e2ndia", 
          "id": "https://www.grid.ac/institutes/grid.411284.a", 
          "name": [
            "Department of Animal Sciences, University of Florida, 2250 Shealy Drive, 32611, Gainesville, FL, USA", 
            "Faculdade de Medicina Veterin\u00e1ria, Universidade Federal de Uberl\u00e2ndia, 38410-337, Uberl\u00e2ndia, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rezende", 
        "givenName": "Fernanda M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Animal Sciences, University of Florida, 2250 Shealy Drive, 32611, Gainesville, FL, USA", 
            "University of Florida Genetics Institute, University of Florida, 32610, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pe\u00f1agaricano", 
        "givenName": "Francisco", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-15-109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000890836", 
          "https://doi.org/10.1186/1471-2164-15-109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2013-7543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004458187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-015-0149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005286567", 
          "https://doi.org/10.1186/s12711-015-0149-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.136127.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007044518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008398576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008398576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-016-0187-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009463625", 
          "https://doi.org/10.1186/s12711-016-0187-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672310000285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018728175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019277578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0903103106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020299353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1375/twin.13.5.514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021500311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2443-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022649278", 
          "https://doi.org/10.1186/s12864-016-2443-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2014-9005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024730221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0081431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025493104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.164442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029083888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.164442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029083888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031184798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.theriogenology.2010.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031555034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0093017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031862339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fgene.2014.00363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032697410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2013-7244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033516254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1519061113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041379946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.016261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043622863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.016261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043622863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046593927", 
          "https://doi.org/10.1038/nrg2899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046593927", 
          "https://doi.org/10.1038/nrg2899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046929948", 
          "https://doi.org/10.1186/1471-2164-15-436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2011-5019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048827920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anireprosci.2010.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051140164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-animal-021815-111422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051685829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2015-10456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052091734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2015-10456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052091734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2015-10456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052091734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2012-5702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053191208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2016.0754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070890825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077650040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077663816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077799697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082621398", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(04)70065-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086092167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2017-13288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092086802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2017-13288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092086802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41437-017-0043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100916744", 
          "https://doi.org/10.1038/s41437-017-0043-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41437-017-0043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100916744", 
          "https://doi.org/10.1038/s41437-017-0043-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-018-0600-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101248902", 
          "https://doi.org/10.1186/s12863-018-0600-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-018-0600-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101248902", 
          "https://doi.org/10.1186/s12863-018-0600-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-018-0600-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101248902", 
          "https://doi.org/10.1186/s12863-018-0600-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-018-0600-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101248902", 
          "https://doi.org/10.1186/s12863-018-0600-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biolre/ioy141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104998965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41437-018-0111-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105213666", 
          "https://doi.org/10.1038/s41437-018-0111-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41437-018-0111-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105213666", 
          "https://doi.org/10.1038/s41437-018-0111-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Fertility is among the most important economic traits in dairy cattle. Genomic prediction for cow fertility has received much attention in the last decade, while bull fertility has been largely overlooked. The goal of this study was to assess genomic prediction of dairy bull fertility using markers with large effect and functional annotation data. Sire conception rate (SCR) was used as a measure of service sire fertility. Dataset consisted of 11.5\u2009k\u2009U.S. Holstein bulls with SCR records and about 300\u2009k single nucleotide polymorphism (SNP) markers. The analyses included the use of both single-kernel and multi-kernel predictive models fitting either all SNPs, markers with large effect, or markers with presumed functional roles, such as non-synonymous, synonymous, or non-coding regulatory variants.\nRESULTS: The entire set of SNPs yielded predictive correlations of 0.340. Five markers located on chromosomes BTA8, BTA9, BTA13, BTA17, and BTA27 showed marked dominance effects. Interestingly, the inclusion of these five major markers as fixed effects in the predictive models increased predictive correlations to 0.403, representing an increase in accuracy of about 19% compared with the standard model. Single-kernel models fitting functional SNP classes outperformed their counterparts using random sets of SNPs, suggesting that the predictive power of these functional variants is driven in part by their biological roles. Multi-kernel models fitting all the functional SNP classes together with the five major markers exhibited predictive correlations around 0.405.\nCONCLUSIONS: The inclusion of markers with large effect markedly improved the prediction of dairy sire fertility. Functional variants exhibited higher predictive ability than random variants, but did not outperform the standard whole-genome approach. This research is the foundation for the development of novel strategies that could help the dairy industry make accurate genome-guided selection decisions on service sire fertility.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-019-5644-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Predicting male fertility in dairy cattle using markers with large effect and functional annotation data", 
    "pagination": "258", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-019-5644-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113179416"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb3a385583ea7b32923339c296d7f7fc3972eb0ae727a5416e80245e76ca8c48"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30940077"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-019-5644-y", 
      "https://app.dimensions.ai/details/publication/pub.1113179416"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106813_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-019-5644-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5644-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5644-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5644-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5644-y'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-019-5644-y schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nb03cfccf1eb8477699c8aa3fe1b1b275
4 schema:citation sg:pub.10.1038/nature08494
5 sg:pub.10.1038/nrg2899
6 sg:pub.10.1038/s41437-017-0043-0
7 sg:pub.10.1038/s41437-018-0111-0
8 sg:pub.10.1186/1471-2164-15-109
9 sg:pub.10.1186/1471-2164-15-436
10 sg:pub.10.1186/s12711-015-0149-x
11 sg:pub.10.1186/s12711-016-0187-z
12 sg:pub.10.1186/s12863-018-0600-4
13 sg:pub.10.1186/s12864-016-2443-6
14 https://app.dimensions.ai/details/publication/pub.1074795580
15 https://app.dimensions.ai/details/publication/pub.1082621398
16 https://doi.org/10.1016/j.anireprosci.2010.12.001
17 https://doi.org/10.1016/j.theriogenology.2010.04.008
18 https://doi.org/10.1017/s0016672310000285
19 https://doi.org/10.1073/pnas.0903103106
20 https://doi.org/10.1073/pnas.1519061113
21 https://doi.org/10.1093/bioinformatics/btm108
22 https://doi.org/10.1093/biolre/ioy141
23 https://doi.org/10.1101/gr.136127.111
24 https://doi.org/10.1146/annurev-animal-021815-111422
25 https://doi.org/10.1371/journal.pgen.1003449
26 https://doi.org/10.1371/journal.pgen.1003608
27 https://doi.org/10.1371/journal.pone.0081431
28 https://doi.org/10.1371/journal.pone.0093017
29 https://doi.org/10.1375/twin.13.5.514
30 https://doi.org/10.1534/g3.114.016261
31 https://doi.org/10.1534/genetics.107.084285
32 https://doi.org/10.1534/genetics.114.164442
33 https://doi.org/10.2527/jas.2016.0754
34 https://doi.org/10.3168/jds.2007-0743
35 https://doi.org/10.3168/jds.2007-0946
36 https://doi.org/10.3168/jds.2007-0980
37 https://doi.org/10.3168/jds.2011-5019
38 https://doi.org/10.3168/jds.2012-5702
39 https://doi.org/10.3168/jds.2013-7244
40 https://doi.org/10.3168/jds.2013-7543
41 https://doi.org/10.3168/jds.2014-9005
42 https://doi.org/10.3168/jds.2015-10456
43 https://doi.org/10.3168/jds.2017-13288
44 https://doi.org/10.3168/jds.s0022-0302(04)70065-x
45 https://doi.org/10.3389/fgene.2014.00363
46 schema:datePublished 2019-12
47 schema:datePublishedReg 2019-12-01
48 schema:description BACKGROUND: Fertility is among the most important economic traits in dairy cattle. Genomic prediction for cow fertility has received much attention in the last decade, while bull fertility has been largely overlooked. The goal of this study was to assess genomic prediction of dairy bull fertility using markers with large effect and functional annotation data. Sire conception rate (SCR) was used as a measure of service sire fertility. Dataset consisted of 11.5 k U.S. Holstein bulls with SCR records and about 300 k single nucleotide polymorphism (SNP) markers. The analyses included the use of both single-kernel and multi-kernel predictive models fitting either all SNPs, markers with large effect, or markers with presumed functional roles, such as non-synonymous, synonymous, or non-coding regulatory variants. RESULTS: The entire set of SNPs yielded predictive correlations of 0.340. Five markers located on chromosomes BTA8, BTA9, BTA13, BTA17, and BTA27 showed marked dominance effects. Interestingly, the inclusion of these five major markers as fixed effects in the predictive models increased predictive correlations to 0.403, representing an increase in accuracy of about 19% compared with the standard model. Single-kernel models fitting functional SNP classes outperformed their counterparts using random sets of SNPs, suggesting that the predictive power of these functional variants is driven in part by their biological roles. Multi-kernel models fitting all the functional SNP classes together with the five major markers exhibited predictive correlations around 0.405. CONCLUSIONS: The inclusion of markers with large effect markedly improved the prediction of dairy sire fertility. Functional variants exhibited higher predictive ability than random variants, but did not outperform the standard whole-genome approach. This research is the foundation for the development of novel strategies that could help the dairy industry make accurate genome-guided selection decisions on service sire fertility.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N85031d83e4244b61b1c4f90cf914ee2f
53 Nbb6f7f1aa68844588cbac8036bb7de6e
54 sg:journal.1023790
55 schema:name Predicting male fertility in dairy cattle using markers with large effect and functional annotation data
56 schema:pagination 258
57 schema:productId N0fc1a5e01bc046d883690dcb467f971a
58 Nd8577f02f6f348109d95380c6abf2fdb
59 Ne3ab2f14eaf145fcb2824a57020f6394
60 Neeee5e7eda894a4d953dbf77072cde5c
61 Nef452acb8d2c4227bd96b7b9f49423af
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113179416
63 https://doi.org/10.1186/s12864-019-5644-y
64 schema:sdDatePublished 2019-04-16T06:22
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Na268003c273d46328b87d4874c581839
67 schema:url https://link.springer.com/10.1186%2Fs12864-019-5644-y
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0fc1a5e01bc046d883690dcb467f971a schema:name pubmed_id
72 schema:value 30940077
73 rdf:type schema:PropertyValue
74 N3f3b866b4d74415e8b814fd65fb1656b rdf:first Nd60a31f8d6864dc9918477200b910257
75 rdf:rest Nf6bc1ea1364743a99b508b3bc48f1402
76 N85031d83e4244b61b1c4f90cf914ee2f schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 Na268003c273d46328b87d4874c581839 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nb03cfccf1eb8477699c8aa3fe1b1b275 rdf:first Nfe2f92e0239b4424b50ce9a906f97bac
81 rdf:rest N3f3b866b4d74415e8b814fd65fb1656b
82 Nbb6f7f1aa68844588cbac8036bb7de6e schema:volumeNumber 20
83 rdf:type schema:PublicationVolume
84 Nd60a31f8d6864dc9918477200b910257 schema:affiliation https://www.grid.ac/institutes/grid.411284.a
85 schema:familyName Rezende
86 schema:givenName Fernanda M.
87 rdf:type schema:Person
88 Nd8577f02f6f348109d95380c6abf2fdb schema:name readcube_id
89 schema:value fb3a385583ea7b32923339c296d7f7fc3972eb0ae727a5416e80245e76ca8c48
90 rdf:type schema:PropertyValue
91 Ne3ab2f14eaf145fcb2824a57020f6394 schema:name dimensions_id
92 schema:value pub.1113179416
93 rdf:type schema:PropertyValue
94 Neeee5e7eda894a4d953dbf77072cde5c schema:name nlm_unique_id
95 schema:value 100965258
96 rdf:type schema:PropertyValue
97 Nef452acb8d2c4227bd96b7b9f49423af schema:name doi
98 schema:value 10.1186/s12864-019-5644-y
99 rdf:type schema:PropertyValue
100 Nf0c5f61b44f34d8b80e3de071cd5e8c6 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
101 schema:familyName Peñagaricano
102 schema:givenName Francisco
103 rdf:type schema:Person
104 Nf6bc1ea1364743a99b508b3bc48f1402 rdf:first Nf0c5f61b44f34d8b80e3de071cd5e8c6
105 rdf:rest rdf:nil
106 Nfe2f92e0239b4424b50ce9a906f97bac schema:affiliation https://www.grid.ac/institutes/grid.419231.c
107 schema:familyName Nani
108 schema:givenName Juan Pablo
109 rdf:type schema:Person
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
114 schema:name Genetics
115 rdf:type schema:DefinedTerm
116 sg:journal.1023790 schema:issn 1471-2164
117 schema:name BMC Genomics
118 rdf:type schema:Periodical
119 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
120 https://doi.org/10.1038/nature08494
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nrg2899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046593927
123 https://doi.org/10.1038/nrg2899
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/s41437-017-0043-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100916744
126 https://doi.org/10.1038/s41437-017-0043-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/s41437-018-0111-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105213666
129 https://doi.org/10.1038/s41437-018-0111-0
130 rdf:type schema:CreativeWork
131 sg:pub.10.1186/1471-2164-15-109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000890836
132 https://doi.org/10.1186/1471-2164-15-109
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/1471-2164-15-436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046929948
135 https://doi.org/10.1186/1471-2164-15-436
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/s12711-015-0149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005286567
138 https://doi.org/10.1186/s12711-015-0149-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/s12711-016-0187-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009463625
141 https://doi.org/10.1186/s12711-016-0187-z
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/s12863-018-0600-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101248902
144 https://doi.org/10.1186/s12863-018-0600-4
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/s12864-016-2443-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022649278
147 https://doi.org/10.1186/s12864-016-2443-6
148 rdf:type schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
150 https://app.dimensions.ai/details/publication/pub.1082621398 schema:CreativeWork
151 https://doi.org/10.1016/j.anireprosci.2010.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051140164
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.theriogenology.2010.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031555034
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1017/s0016672310000285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728175
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.0903103106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020299353
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.1519061113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041379946
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/btm108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031184798
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/biolre/ioy141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104998965
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1101/gr.136127.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007044518
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1146/annurev-animal-021815-111422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051685829
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1371/journal.pgen.1003449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019277578
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1371/journal.pgen.1003608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008209705
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pone.0081431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025493104
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pone.0093017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031862339
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1375/twin.13.5.514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021500311
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1534/g3.114.016261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043622863
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1534/genetics.107.084285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008398576
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1534/genetics.114.164442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029083888
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2527/jas.2016.0754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070890825
186 rdf:type schema:CreativeWork
187 https://doi.org/10.3168/jds.2007-0743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077650040
188 rdf:type schema:CreativeWork
189 https://doi.org/10.3168/jds.2007-0946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077663816
190 rdf:type schema:CreativeWork
191 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3168/jds.2011-5019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048827920
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3168/jds.2012-5702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191208
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3168/jds.2013-7244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033516254
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3168/jds.2013-7543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004458187
200 rdf:type schema:CreativeWork
201 https://doi.org/10.3168/jds.2014-9005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024730221
202 rdf:type schema:CreativeWork
203 https://doi.org/10.3168/jds.2015-10456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052091734
204 rdf:type schema:CreativeWork
205 https://doi.org/10.3168/jds.2017-13288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092086802
206 rdf:type schema:CreativeWork
207 https://doi.org/10.3168/jds.s0022-0302(04)70065-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1086092167
208 rdf:type schema:CreativeWork
209 https://doi.org/10.3389/fgene.2014.00363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032697410
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
212 schema:name Department of Animal Sciences, University of Florida, 2250 Shealy Drive, 32611, Gainesville, FL, USA
213 University of Florida Genetics Institute, University of Florida, 32610, Gainesville, FL, USA
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.411284.a schema:alternateName Federal University of Uberlândia
216 schema:name Department of Animal Sciences, University of Florida, 2250 Shealy Drive, 32611, Gainesville, FL, USA
217 Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, 38410-337, Uberlândia, MG, Brazil
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.419231.c schema:alternateName National Agricultural Technology Institute
220 schema:name Department of Animal Sciences, University of Florida, 2250 Shealy Drive, 32611, Gainesville, FL, USA
221 Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, 22-2300, Rafaela, SF, Argentina
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...