ALFA: annotation landscape for aligned reads View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mathieu Bahin, Benoit F. Noël, Valentine Murigneux, Charles Bernard, Leila Bastianelli, Hervé Le Hir, Alice Lebreton, Auguste Genovesio

ABSTRACT

BACKGROUND: The last 10 years have seen the rise of countless functional genomics studies based on Next-Generation Sequencing (NGS). In the vast majority of cases, whatever the species, whatever the experiment, the two first steps of data analysis consist of a quality control of the raw reads followed by a mapping of those reads to a reference genome/transcriptome. Subsequent steps then depend on the type of study that is being made. While some tools have been proposed for investigating data quality after the mapping step, there is no commonly adopted framework that would be easy to use and broadly applicable to any NGS data type. RESULTS: We present ALFA, a simple but universal tool that can be used after the mapping step on any kind of NGS experiment data for any organism with available genomic annotations. In a single command line, ALFA can compute and display distribution of reads by categories (exon, intron, UTR, etc.) and biotypes (protein coding, miRNA, etc.) for a given aligned dataset with nucleotide precision. We present applications of ALFA to Ribo-Seq and RNA-Seq on Homo sapiens, CLIP-Seq on Mus musculus, RNA-Seq on Saccharomyces cerevisiae, Bisulfite sequencing on Arabidopsis thaliana and ChIP-Seq on Caenorhabditis elegans. CONCLUSIONS: We show that ALFA provides a powerful and broadly applicable approach for post mapping quality control and to produce a global overview using common or dedicated annotations. It is made available to the community as an easy to install command line tool and from the Galaxy Tool Shed. More... »

PAGES

250

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-019-5624-2

DOI

http://dx.doi.org/10.1186/s12864-019-5624-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113063179

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30922228


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Computational Biology and Bioinformatics group,, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahin", 
        "givenName": "Mathieu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Computational Biology and Bioinformatics group,, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France", 
            "Bacterial Infection & RNA Destiny group, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "No\u00ebl", 
        "givenName": "Benoit F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Expression of eukaryotic messenger RNAs group, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murigneux", 
        "givenName": "Valentine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Computational Biology and Bioinformatics group,, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernard", 
        "givenName": "Charles", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Computational Biology and Bioinformatics group,, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France", 
            "Expression of eukaryotic messenger RNAs group, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastianelli", 
        "givenName": "Leila", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Expression of eukaryotic messenger RNAs group, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Hir", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Institute for Agricultural Research", 
          "id": "https://www.grid.ac/institutes/grid.414548.8", 
          "name": [
            "Bacterial Infection & RNA Destiny group, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France", 
            "INRA, IBENS, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebreton", 
        "givenName": "Alice", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Computational Biology and Bioinformatics group,, Institut de biologie de l\u2019ENS (IBENS), D\u00e9partement de biologie, \u00c9cole normale sup\u00e9rieure, CNRS, INSERM, PSL University, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Genovesio", 
        "givenName": "Auguste", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymeth.2015.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000067133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2015.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000067133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004223987", 
          "https://doi.org/10.1038/nature10118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2013.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005735259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2013.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005735259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010450110", 
          "https://doi.org/10.1038/nprot.2012.086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2010.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012935976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015262109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015477262", 
          "https://doi.org/10.1038/nature10555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016247401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017943537", 
          "https://doi.org/10.1186/1471-2164-15-423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2015.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024339804", 
          "https://doi.org/10.1038/sdata.2015.63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024662032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025907389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027920536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030298472", 
          "https://doi.org/10.1038/nature07728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036317962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036892131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1212959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037556256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039030761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.01023-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047748498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb.1545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048478152", 
          "https://doi.org/10.1038/nsmb.1545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053644483", 
          "https://doi.org/10.1038/nmeth.3688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-3996-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091292241", 
          "https://doi.org/10.1186/s12864-017-3996-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-3996-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091292241", 
          "https://doi.org/10.1186/s12864-017-3996-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The last 10 years have seen the rise of countless functional genomics studies based on Next-Generation Sequencing (NGS). In the vast majority of cases, whatever the species, whatever the experiment, the two first steps of data analysis consist of a quality control of the raw reads followed by a mapping of those reads to a reference genome/transcriptome. Subsequent steps then depend on the type of study that is being made. While some tools have been proposed for investigating data quality after the mapping step, there is no commonly adopted framework that would be easy to use and broadly applicable to any NGS data type.\nRESULTS: We present ALFA, a simple but universal tool that can be used after the mapping step on any kind of NGS experiment data for any organism with available genomic annotations. In a single command line, ALFA can compute and display distribution of reads by categories (exon, intron, UTR, etc.) and biotypes (protein coding, miRNA, etc.) for a given aligned dataset with nucleotide precision. We present applications of ALFA to Ribo-Seq and RNA-Seq on Homo sapiens, CLIP-Seq on Mus musculus, RNA-Seq on Saccharomyces cerevisiae, Bisulfite sequencing on Arabidopsis thaliana and ChIP-Seq on Caenorhabditis elegans.\nCONCLUSIONS: We show that ALFA provides a powerful and broadly applicable approach for post mapping quality control and to produce a global overview using common or dedicated annotations. It is made available to the community as an easy to install command line tool and from the Galaxy Tool\u00a0Shed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-019-5624-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "ALFA: annotation landscape for aligned reads", 
    "pagination": "250", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-019-5624-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113063179"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a99bd998d7b57d37e3a2a4733a490d466d2ee1f10a2d90bb076e66163c961be"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30922228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-019-5624-2", 
      "https://app.dimensions.ai/details/publication/pub.1113063179"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106837_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-019-5624-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5624-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5624-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5624-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5624-2'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-019-5624-2 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N4d27bbc029744fb6b97f1fddb090d3f2
4 schema:citation sg:pub.10.1038/nature07728
5 sg:pub.10.1038/nature10118
6 sg:pub.10.1038/nature10555
7 sg:pub.10.1038/nmeth.3688
8 sg:pub.10.1038/nprot.2012.086
9 sg:pub.10.1038/nsmb.1545
10 sg:pub.10.1038/sdata.2015.63
11 sg:pub.10.1186/1471-2164-15-423
12 sg:pub.10.1186/s12864-017-3996-8
13 https://doi.org/10.1016/j.cell.2007.05.009
14 https://doi.org/10.1016/j.cell.2013.10.024
15 https://doi.org/10.1016/j.molcel.2010.05.004
16 https://doi.org/10.1016/j.molcel.2013.08.001
17 https://doi.org/10.1016/j.tig.2007.09.001
18 https://doi.org/10.1016/j.ymeth.2015.07.003
19 https://doi.org/10.1093/bioinformatics/btp479
20 https://doi.org/10.1093/bioinformatics/btq033
21 https://doi.org/10.1093/bioinformatics/bts277
22 https://doi.org/10.1093/bioinformatics/bts356
23 https://doi.org/10.1093/bioinformatics/bts451
24 https://doi.org/10.1093/bioinformatics/bts635
25 https://doi.org/10.1093/bioinformatics/btt656
26 https://doi.org/10.1126/science.1212959
27 https://doi.org/10.1128/mcb.01023-06
28 schema:datePublished 2019-12
29 schema:datePublishedReg 2019-12-01
30 schema:description BACKGROUND: The last 10 years have seen the rise of countless functional genomics studies based on Next-Generation Sequencing (NGS). In the vast majority of cases, whatever the species, whatever the experiment, the two first steps of data analysis consist of a quality control of the raw reads followed by a mapping of those reads to a reference genome/transcriptome. Subsequent steps then depend on the type of study that is being made. While some tools have been proposed for investigating data quality after the mapping step, there is no commonly adopted framework that would be easy to use and broadly applicable to any NGS data type. RESULTS: We present ALFA, a simple but universal tool that can be used after the mapping step on any kind of NGS experiment data for any organism with available genomic annotations. In a single command line, ALFA can compute and display distribution of reads by categories (exon, intron, UTR, etc.) and biotypes (protein coding, miRNA, etc.) for a given aligned dataset with nucleotide precision. We present applications of ALFA to Ribo-Seq and RNA-Seq on Homo sapiens, CLIP-Seq on Mus musculus, RNA-Seq on Saccharomyces cerevisiae, Bisulfite sequencing on Arabidopsis thaliana and ChIP-Seq on Caenorhabditis elegans. CONCLUSIONS: We show that ALFA provides a powerful and broadly applicable approach for post mapping quality control and to produce a global overview using common or dedicated annotations. It is made available to the community as an easy to install command line tool and from the Galaxy Tool Shed.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N3ad00cac63e4424e960eb2be2f342819
35 Nff0cf87fe4e24419a3283f2acd5b2950
36 sg:journal.1023790
37 schema:name ALFA: annotation landscape for aligned reads
38 schema:pagination 250
39 schema:productId N3ecfe341476247feae5b434ff6a59df8
40 N4177dfd47f664bab94b95e74eaea2f79
41 N688c257e20484aec91d9c1d9acdae9cb
42 N7053eff0f97245eaa87f0dfa801749ef
43 Nb4ab23fcd11e4b41ab542c98ca740e27
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113063179
45 https://doi.org/10.1186/s12864-019-5624-2
46 schema:sdDatePublished 2019-04-16T06:25
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nb853facf59f14877aecb6112e3aa42c3
49 schema:url https://link.springer.com/10.1186%2Fs12864-019-5624-2
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0f942d11c80f46dbb8c7848365055d2c schema:affiliation https://www.grid.ac/institutes/grid.4444.0
54 schema:familyName Bastianelli
55 schema:givenName Leila
56 rdf:type schema:Person
57 N1728777b46414d8ab8d98e557a51df20 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
58 schema:familyName Noël
59 schema:givenName Benoit F.
60 rdf:type schema:Person
61 N1c7dc533b3654a40bd287ae1e9463dfe schema:affiliation https://www.grid.ac/institutes/grid.4444.0
62 schema:familyName Bernard
63 schema:givenName Charles
64 rdf:type schema:Person
65 N28bbb0a9a8f14f9c94ec0ed8b6dad9d2 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
66 schema:familyName Genovesio
67 schema:givenName Auguste
68 rdf:type schema:Person
69 N3ad00cac63e4424e960eb2be2f342819 schema:volumeNumber 20
70 rdf:type schema:PublicationVolume
71 N3ecfe341476247feae5b434ff6a59df8 schema:name dimensions_id
72 schema:value pub.1113063179
73 rdf:type schema:PropertyValue
74 N4177dfd47f664bab94b95e74eaea2f79 schema:name readcube_id
75 schema:value 2a99bd998d7b57d37e3a2a4733a490d466d2ee1f10a2d90bb076e66163c961be
76 rdf:type schema:PropertyValue
77 N4d27bbc029744fb6b97f1fddb090d3f2 rdf:first N812024b3253d4c73b2e86da7c83c0b91
78 rdf:rest N52b13a6c9c534e8da52dbce2be002fe3
79 N52b13a6c9c534e8da52dbce2be002fe3 rdf:first N1728777b46414d8ab8d98e557a51df20
80 rdf:rest N5bee6a0a62e64d9692395fb8d8d47cfe
81 N5bee6a0a62e64d9692395fb8d8d47cfe rdf:first Nd41e18c49ce545cf9d8acb2fb3424f50
82 rdf:rest N6fe9201c34a9472296267e91fbc83d6a
83 N5f0426c9d717432fb1f7def503b5d1ff rdf:first N0f942d11c80f46dbb8c7848365055d2c
84 rdf:rest Nf854d34bb8fd45819a3dd2a216b2d35e
85 N688c257e20484aec91d9c1d9acdae9cb schema:name nlm_unique_id
86 schema:value 100965258
87 rdf:type schema:PropertyValue
88 N6e8e5cd8489441e68fd2a59e366bfaa3 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
89 schema:familyName Le Hir
90 schema:givenName Hervé
91 rdf:type schema:Person
92 N6fe9201c34a9472296267e91fbc83d6a rdf:first N1c7dc533b3654a40bd287ae1e9463dfe
93 rdf:rest N5f0426c9d717432fb1f7def503b5d1ff
94 N7053eff0f97245eaa87f0dfa801749ef schema:name pubmed_id
95 schema:value 30922228
96 rdf:type schema:PropertyValue
97 N7fd59da6b1c948a4bb2077ea4adc3413 rdf:first N28bbb0a9a8f14f9c94ec0ed8b6dad9d2
98 rdf:rest rdf:nil
99 N80230c6cb2e944a7a4843c39b83ff6ba schema:affiliation https://www.grid.ac/institutes/grid.414548.8
100 schema:familyName Lebreton
101 schema:givenName Alice
102 rdf:type schema:Person
103 N812024b3253d4c73b2e86da7c83c0b91 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
104 schema:familyName Bahin
105 schema:givenName Mathieu
106 rdf:type schema:Person
107 N8a996d80845c46d783a5a9d4def8647f rdf:first N80230c6cb2e944a7a4843c39b83ff6ba
108 rdf:rest N7fd59da6b1c948a4bb2077ea4adc3413
109 Nb4ab23fcd11e4b41ab542c98ca740e27 schema:name doi
110 schema:value 10.1186/s12864-019-5624-2
111 rdf:type schema:PropertyValue
112 Nb853facf59f14877aecb6112e3aa42c3 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nd41e18c49ce545cf9d8acb2fb3424f50 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
115 schema:familyName Murigneux
116 schema:givenName Valentine
117 rdf:type schema:Person
118 Nf854d34bb8fd45819a3dd2a216b2d35e rdf:first N6e8e5cd8489441e68fd2a59e366bfaa3
119 rdf:rest N8a996d80845c46d783a5a9d4def8647f
120 Nff0cf87fe4e24419a3283f2acd5b2950 schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
126 schema:name Genetics
127 rdf:type schema:DefinedTerm
128 sg:journal.1023790 schema:issn 1471-2164
129 schema:name BMC Genomics
130 rdf:type schema:Periodical
131 sg:pub.10.1038/nature07728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030298472
132 https://doi.org/10.1038/nature07728
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature10118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004223987
135 https://doi.org/10.1038/nature10118
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature10555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015477262
138 https://doi.org/10.1038/nature10555
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nmeth.3688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053644483
141 https://doi.org/10.1038/nmeth.3688
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nprot.2012.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010450110
144 https://doi.org/10.1038/nprot.2012.086
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nsmb.1545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048478152
147 https://doi.org/10.1038/nsmb.1545
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/sdata.2015.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024339804
150 https://doi.org/10.1038/sdata.2015.63
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/1471-2164-15-423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017943537
153 https://doi.org/10.1186/1471-2164-15-423
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/s12864-017-3996-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091292241
156 https://doi.org/10.1186/s12864-017-3996-8
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.cell.2013.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024662032
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.molcel.2010.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012935976
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.molcel.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005735259
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.tig.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015262109
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ymeth.2015.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000067133
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/btp479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039030761
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/bioinformatics/btq033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036892131
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/bioinformatics/bts277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027920536
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/bioinformatics/bts356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025907389
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/bioinformatics/bts451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036317962
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/btt656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016247401
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1212959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037556256
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1128/mcb.01023-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047748498
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.414548.8 schema:alternateName French National Institute for Agricultural Research
189 schema:name Bacterial Infection & RNA Destiny group, Institut de biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
190 INRA, IBENS, 75005, Paris, France
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
193 schema:name Bacterial Infection & RNA Destiny group, Institut de biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
194 Computational Biology and Bioinformatics group,, Institut de biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
195 Expression of eukaryotic messenger RNAs group, Institut de biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...