RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kirti Shekhawat, Hugh Patterton, Florian F. Bauer, Mathabatha E. Setati

ABSTRACT

BACKGROUND: In wine fermentation starter cultures, the blending of non-Saccharomyces yeast with Saccharomyces cerevisiae to improve the complexity of wine has become common practice, but data regarding the impact of co-cultivation on yeast physiology and on genetic and metabolic regulation remain limited. Here we describe a transcriptomic analysis of mixed fermentations of Saccharomyces cerevisiae and Lachancea thermotolerans. The fermentations were carried out in carefully controlled environmental conditions in a bioreactor to reduce transcriptomic responses that would be due to factors other than the presence of the second species. RESULTS: The transcriptomic data revealed that both yeast species showed a clear response to the presence of the other. Affected genes primarily belonged to two groups: genes whose expression can be linked to the competition for certain trace elements such as copper and iron, as well as genes required for cell wall structure and integrity. Furthermore, the data revealed divergent transcriptional responses with regard to carbon metabolism in response to anoxic conditions. CONCLUSIONS: The results suggest that the mixed fermentation created a more competitive and stressful environment for the two species than single strain fermentations independently from total biomass, i.e. competition between cells of the same species is less stressful, or may present a different set of challenges, than interspecies competition. The changes in cell wall and adhesion properties encoding genes suggest that the adjustment of physical contact between cells may play a direct role in the response to the presence of competing species. More... »

PAGES

145

Journal

TITLE

BMC Genomics

ISSUE

1

VOLUME

20

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-019-5511-x

DOI

http://dx.doi.org/10.1186/s12864-019-5511-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112215364

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30777005


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stellenbosch University", 
          "id": "https://www.grid.ac/institutes/grid.11956.3a", 
          "name": [
            "Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, Western Cape, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shekhawat", 
        "givenName": "Kirti", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stellenbosch University", 
          "id": "https://www.grid.ac/institutes/grid.11956.3a", 
          "name": [
            "Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, Western Cape, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patterton", 
        "givenName": "Hugh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stellenbosch University", 
          "id": "https://www.grid.ac/institutes/grid.11956.3a", 
          "name": [
            "Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, Western Cape, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "Florian F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stellenbosch University", 
          "id": "https://www.grid.ac/institutes/grid.11956.3a", 
          "name": [
            "Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, Western Cape, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Setati", 
        "givenName": "Mathabatha E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.fm.2011.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000008271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fm.2012.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001332731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2013.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001790449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/634674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003386407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fm.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004697248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005911430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2016.00555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006335203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2005.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006551251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00055.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007986863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00055.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007986863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-009-2409-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009774723", 
          "https://doi.org/10.1007/s00253-009-2409-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-009-2409-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009774723", 
          "https://doi.org/10.1007/s00253-009-2409-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m110.002741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012327778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1567-1364.2009.00579.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012880978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fm.2010.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021711269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-014-1257-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021818670", 
          "https://doi.org/10.1007/s11947-014-1257-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m005946200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021956946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-016-8001-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022089547", 
          "https://doi.org/10.1007/s00253-016-8001-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-016-8001-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022089547", 
          "https://doi.org/10.1007/s00253-016-8001-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0038720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027213073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2016.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028959652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamcr.2006.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029458727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1462-2920.12950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030827759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12934-015-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035392650", 
          "https://doi.org/10.1186/s12934-015-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036891129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/18.10.3091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039210333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039284641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.030726-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039761960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.030726-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039761960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2005.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040870172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2672.2001.01426.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042849636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0238.2000.tb00158.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045229272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evs084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045967755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046841844", 
          "https://doi.org/10.1186/1471-2164-12-218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.11.12.4241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053282140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2014.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053503847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr300794y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056293189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.2007/009969-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060396184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14806/ej.17.1.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067372670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21548/31-2-1418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093071142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/msphere.00383-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107799378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705259", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-1781-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705259", 
          "https://doi.org/10.1007/978-1-4615-1781-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-1781-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705259", 
          "https://doi.org/10.1007/978-1-4615-1781-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: In wine fermentation starter cultures, the blending of non-Saccharomyces yeast with Saccharomyces cerevisiae to improve the complexity of wine has become common practice, but data regarding the impact of co-cultivation on yeast physiology and on genetic and metabolic regulation remain limited. Here we describe a transcriptomic analysis of mixed fermentations of Saccharomyces cerevisiae and Lachancea thermotolerans. The fermentations were carried out in carefully controlled environmental conditions in a bioreactor to reduce transcriptomic responses that would be due to factors other than the presence of the second species.\nRESULTS: The transcriptomic data revealed that both yeast species showed a clear response to the presence of the other. Affected genes primarily belonged to two groups: genes whose expression can be linked to the competition for certain trace elements such as copper and iron, as well as genes required for cell wall structure and integrity. Furthermore, the data revealed divergent transcriptional responses with regard to carbon metabolism in response to anoxic conditions.\nCONCLUSIONS: The results suggest that the mixed fermentation created a more competitive and stressful environment for the two species than single strain fermentations independently from total biomass, i.e. competition between cells of the same species is less stressful, or may present a different set of challenges, than interspecies competition. The changes in cell wall and adhesion properties encoding genes suggest that the adjustment of physical contact between cells may play a direct role in the response to the presence of competing species.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-019-5511-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions", 
    "pagination": "145", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58413420be48c45db6b3852ea032cbac7c2387a589d3f1b18ee7f4f37d578c22"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30777005"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-019-5511-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112215364"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-019-5511-x", 
      "https://app.dimensions.ai/details/publication/pub.1112215364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-019-5511-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5511-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5511-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5511-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5511-x'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      72 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-019-5511-x schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N381ad440f0974d7686dd451ac3ca07b6
4 schema:citation sg:pub.10.1007/978-1-4615-1781-8
5 sg:pub.10.1007/s00253-009-2409-6
6 sg:pub.10.1007/s00253-016-8001-y
7 sg:pub.10.1007/s11947-014-1257-2
8 sg:pub.10.1186/1471-2164-12-218
9 sg:pub.10.1186/s12934-015-0318-1
10 https://app.dimensions.ai/details/publication/pub.1109705259
11 https://doi.org/10.1002/yea.965
12 https://doi.org/10.1016/j.bbamcr.2006.05.008
13 https://doi.org/10.1016/j.fm.2010.12.001
14 https://doi.org/10.1016/j.fm.2011.09.006
15 https://doi.org/10.1016/j.fm.2012.06.006
16 https://doi.org/10.1016/j.fm.2012.10.004
17 https://doi.org/10.1016/j.ijfoodmicro.2005.11.012
18 https://doi.org/10.1016/j.ijfoodmicro.2005.12.012
19 https://doi.org/10.1016/j.ijfoodmicro.2013.11.010
20 https://doi.org/10.1016/j.ijfoodmicro.2014.04.024
21 https://doi.org/10.1016/j.ijfoodmicro.2016.10.017
22 https://doi.org/10.1021/pr300794y
23 https://doi.org/10.1046/j.1365-2672.2001.01426.x
24 https://doi.org/10.1074/jbc.m005946200
25 https://doi.org/10.1074/mcp.m110.002741
26 https://doi.org/10.1091/mbc.11.12.4241
27 https://doi.org/10.1093/bioinformatics/btm453
28 https://doi.org/10.1093/bioinformatics/btp120
29 https://doi.org/10.1093/bioinformatics/btp450
30 https://doi.org/10.1093/bioinformatics/btp616
31 https://doi.org/10.1093/bioinformatics/btu638
32 https://doi.org/10.1093/gbe/evs084
33 https://doi.org/10.1093/nar/18.10.3091
34 https://doi.org/10.1099/mic.0.030726-0
35 https://doi.org/10.1099/mic.0.2007/009969-0
36 https://doi.org/10.1111/1462-2920.12950
37 https://doi.org/10.1111/j.1567-1364.2009.00579.x
38 https://doi.org/10.1111/j.1755-0238.2000.tb00158.x
39 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
40 https://doi.org/10.1128/msphere.00383-18
41 https://doi.org/10.1152/physiolgenomics.00055.2005
42 https://doi.org/10.1155/2012/634674
43 https://doi.org/10.1371/journal.pone.0038720
44 https://doi.org/10.14806/ej.17.1.200
45 https://doi.org/10.21548/31-2-1418
46 https://doi.org/10.3389/fmicb.2016.00555
47 schema:datePublished 2019-12
48 schema:datePublishedReg 2019-12-01
49 schema:description BACKGROUND: In wine fermentation starter cultures, the blending of non-Saccharomyces yeast with Saccharomyces cerevisiae to improve the complexity of wine has become common practice, but data regarding the impact of co-cultivation on yeast physiology and on genetic and metabolic regulation remain limited. Here we describe a transcriptomic analysis of mixed fermentations of Saccharomyces cerevisiae and Lachancea thermotolerans. The fermentations were carried out in carefully controlled environmental conditions in a bioreactor to reduce transcriptomic responses that would be due to factors other than the presence of the second species. RESULTS: The transcriptomic data revealed that both yeast species showed a clear response to the presence of the other. Affected genes primarily belonged to two groups: genes whose expression can be linked to the competition for certain trace elements such as copper and iron, as well as genes required for cell wall structure and integrity. Furthermore, the data revealed divergent transcriptional responses with regard to carbon metabolism in response to anoxic conditions. CONCLUSIONS: The results suggest that the mixed fermentation created a more competitive and stressful environment for the two species than single strain fermentations independently from total biomass, i.e. competition between cells of the same species is less stressful, or may present a different set of challenges, than interspecies competition. The changes in cell wall and adhesion properties encoding genes suggest that the adjustment of physical contact between cells may play a direct role in the response to the presence of competing species.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N7e71838f49ab4f9ba30563d10ca1142a
54 Neac950815dae4d488218986bad924ad5
55 sg:journal.1023790
56 schema:name RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions
57 schema:pagination 145
58 schema:productId N4af574468d8845298a6f90fb67f8cf7c
59 N657ea7038eaf42129b44348ce0dd5a8b
60 N8ef30eef4346473d89a206c34d12145c
61 N9626df736cfd480ca9cf05adad97b9ee
62 Nfe274c3841224d93b73d81555db5d199
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112215364
64 https://doi.org/10.1186/s12864-019-5511-x
65 schema:sdDatePublished 2019-04-11T10:39
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N92c3d5f4cee14f6d9f0d336ace4f8091
68 schema:url https://link.springer.com/10.1186%2Fs12864-019-5511-x
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N1d9eea33c2a34ac3beae9e61534508e2 rdf:first Nb492e4ead2ae4cdaa12e69e0f40f070c
73 rdf:rest Nc2c0e0f6e67c447983b8c55c218dfa5a
74 N22ceda09d99648178b5bd9194e39b77c rdf:first N49748408bdd645778900500818b6c896
75 rdf:rest rdf:nil
76 N381ad440f0974d7686dd451ac3ca07b6 rdf:first N4dcef88613e8417383f068db0fa5ef5e
77 rdf:rest N1d9eea33c2a34ac3beae9e61534508e2
78 N43d41b8066524351962a0bbe0e93ae37 schema:affiliation https://www.grid.ac/institutes/grid.11956.3a
79 schema:familyName Bauer
80 schema:givenName Florian F.
81 rdf:type schema:Person
82 N49748408bdd645778900500818b6c896 schema:affiliation https://www.grid.ac/institutes/grid.11956.3a
83 schema:familyName Setati
84 schema:givenName Mathabatha E.
85 rdf:type schema:Person
86 N4af574468d8845298a6f90fb67f8cf7c schema:name readcube_id
87 schema:value 58413420be48c45db6b3852ea032cbac7c2387a589d3f1b18ee7f4f37d578c22
88 rdf:type schema:PropertyValue
89 N4dcef88613e8417383f068db0fa5ef5e schema:affiliation https://www.grid.ac/institutes/grid.11956.3a
90 schema:familyName Shekhawat
91 schema:givenName Kirti
92 rdf:type schema:Person
93 N657ea7038eaf42129b44348ce0dd5a8b schema:name dimensions_id
94 schema:value pub.1112215364
95 rdf:type schema:PropertyValue
96 N7e71838f49ab4f9ba30563d10ca1142a schema:volumeNumber 20
97 rdf:type schema:PublicationVolume
98 N8ef30eef4346473d89a206c34d12145c schema:name doi
99 schema:value 10.1186/s12864-019-5511-x
100 rdf:type schema:PropertyValue
101 N92c3d5f4cee14f6d9f0d336ace4f8091 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N9626df736cfd480ca9cf05adad97b9ee schema:name pubmed_id
104 schema:value 30777005
105 rdf:type schema:PropertyValue
106 Nb492e4ead2ae4cdaa12e69e0f40f070c schema:affiliation https://www.grid.ac/institutes/grid.11956.3a
107 schema:familyName Patterton
108 schema:givenName Hugh
109 rdf:type schema:Person
110 Nc2c0e0f6e67c447983b8c55c218dfa5a rdf:first N43d41b8066524351962a0bbe0e93ae37
111 rdf:rest N22ceda09d99648178b5bd9194e39b77c
112 Neac950815dae4d488218986bad924ad5 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 Nfe274c3841224d93b73d81555db5d199 schema:name nlm_unique_id
115 schema:value 100965258
116 rdf:type schema:PropertyValue
117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biological Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biochemistry and Cell Biology
122 rdf:type schema:DefinedTerm
123 sg:journal.1023790 schema:issn 1471-2164
124 schema:name BMC Genomics
125 rdf:type schema:Periodical
126 sg:pub.10.1007/978-1-4615-1781-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705259
127 https://doi.org/10.1007/978-1-4615-1781-8
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00253-009-2409-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009774723
130 https://doi.org/10.1007/s00253-009-2409-6
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00253-016-8001-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022089547
133 https://doi.org/10.1007/s00253-016-8001-y
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11947-014-1257-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021818670
136 https://doi.org/10.1007/s11947-014-1257-2
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/1471-2164-12-218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046841844
139 https://doi.org/10.1186/1471-2164-12-218
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/s12934-015-0318-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035392650
142 https://doi.org/10.1186/s12934-015-0318-1
143 rdf:type schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1109705259 schema:CreativeWork
145 https://doi.org/10.1002/yea.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005911430
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.bbamcr.2006.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029458727
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.fm.2010.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021711269
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.fm.2011.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000008271
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.fm.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004697248
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.fm.2012.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001332731
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijfoodmicro.2005.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040870172
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijfoodmicro.2005.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006551251
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijfoodmicro.2013.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001790449
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijfoodmicro.2014.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053503847
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijfoodmicro.2016.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028959652
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/pr300794y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056293189
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1046/j.1365-2672.2001.01426.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042849636
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1074/jbc.m005946200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021956946
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1074/mcp.m110.002741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012327778
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1091/mbc.11.12.4241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274369
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/btm453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891129
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/btp450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284641
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/btu638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053282140
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/gbe/evs084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045967755
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/nar/18.10.3091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039210333
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1099/mic.0.030726-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039761960
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1099/mic.0.2007/009969-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060396184
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/1462-2920.12950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030827759
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/j.1567-1364.2009.00579.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012880978
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1755-0238.2000.tb00158.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045229272
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1128/msphere.00383-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107799378
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1152/physiolgenomics.00055.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007986863
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1155/2012/634674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003386407
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1371/journal.pone.0038720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027213073
210 rdf:type schema:CreativeWork
211 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
212 rdf:type schema:CreativeWork
213 https://doi.org/10.21548/31-2-1418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093071142
214 rdf:type schema:CreativeWork
215 https://doi.org/10.3389/fmicb.2016.00555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006335203
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.11956.3a schema:alternateName Stellenbosch University
218 schema:name Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
219 Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...