Human genes escaping X-inactivation revealed by single cell expression data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kerem Wainer Katsir, Michal Linial

ABSTRACT

BACKGROUND: In mammals, sex chromosomes pose an inherent imbalance of gene expression between sexes. In each female somatic cell, random inactivation of one of the X-chromosomes restores this balance. While most genes from the inactivated X-chromosome are silenced, 15-25% are known to escape X-inactivation (termed escapees). The expression levels of these genes are attributed to sex-dependent phenotypic variability. RESULTS: We used single-cell RNA-Seq to detect escapees in somatic cells. As only one X-chromosome is inactivated in each cell, the origin of expression from the active or inactive chromosome can be determined from the variation of sequenced RNAs. We analyzed primary, healthy fibroblasts (n = 104), and clonal lymphoblasts with sequenced parental genomes (n = 25) by measuring the degree of allelic-specific expression (ASE) from heterozygous sites. We identified 24 and 49 candidate escapees, at varying degree of confidence, from the fibroblast and lymphoblast transcriptomes, respectively. We critically test the validity of escapee annotations by comparing our findings with a large collection of independent studies. We find that most genes (66%) from the unified set were previously reported as escapees. Furthermore, out of the overlooked escapees, 11 are long noncoding RNA (lncRNAs). CONCLUSIONS: X-chromosome inactivation and escaping from it are robust, permanent phenomena that are best studies at a single-cell resolution. The cumulative information from individual cells increases the potential of identifying escapees. Moreover, despite the use of a limited number of cells, clonal cells (i.e., same X- chromosomes are coordinately inhibited) with genomic phasing are valuable for detecting escapees at high confidence. Generalizing the method to uncharacterized genomic loci resulted in lncRNAs escapees which account for 20% of the listed candidates. By confirming genes as escapees and propose others as candidates from two different cell types, we contribute to the cumulative knowledge and reliability of human escapees. More... »

PAGES

201

References to SciGraph publications

Journal

TITLE

BMC Genomics

ISSUE

1

VOLUME

20

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-019-5507-6

DOI

http://dx.doi.org/10.1186/s12864-019-5507-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112766941

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30871455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebrew University of Jerusalem", 
          "id": "https://www.grid.ac/institutes/grid.9619.7", 
          "name": [
            "Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190400, Jerusalem, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wainer Katsir", 
        "givenName": "Kerem", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebrew University of Jerusalem", 
          "id": "https://www.grid.ac/institutes/grid.9619.7", 
          "name": [
            "Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190400, Jerusalem, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linial", 
        "givenName": "Michal", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.112680.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000921025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.autrev.2011.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003604970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a018382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004584661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddu564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005305273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006797924", 
          "https://doi.org/10.1038/nrm3231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007477207", 
          "https://doi.org/10.1038/nature03479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007477207", 
          "https://doi.org/10.1038/nature03479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009524511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-11-r122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010408425", 
          "https://doi.org/10.1186/gb-2013-14-11-r122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceb.2004.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013126353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1213530109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015322861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016221483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016221483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0914812107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016456425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018055535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.161034.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018538260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1520113113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018544496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1520113113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018544496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020605725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2014.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023007080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023418640", 
          "https://doi.org/10.1038/nrg1602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023418640", 
          "https://doi.org/10.1038/nrg1602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.201400032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023989022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-011-1007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026556004", 
          "https://doi.org/10.1007/s00439-011-1007-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-011-1007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026556004", 
          "https://doi.org/10.1007/s00439-011-1007-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026661886", 
          "https://doi.org/10.1038/nature03440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026661886", 
          "https://doi.org/10.1038/nature03440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029201144", 
          "https://doi.org/10.1038/nrg3888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(90)90416-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033645961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034405546", 
          "https://doi.org/10.1038/ng.3274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1245316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035294760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036533421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2016.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036591453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.192278.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037020783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13293-015-0053-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288653", 
          "https://doi.org/10.1186/s13293-015-0053-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0467-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038703261", 
          "https://doi.org/10.1186/s13059-014-0467-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0467-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038703261", 
          "https://doi.org/10.1186/s13059-014-0467-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-6-213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296325", 
          "https://doi.org/10.1186/gb-2010-11-6-213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mst148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042151765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1237973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042718734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-1-r7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043158487", 
          "https://doi.org/10.1186/gb-2013-14-1-r7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043978712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2016.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044003726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2016.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047176233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000443157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050574207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050932941", 
          "https://doi.org/10.1038/ng.3726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2006.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051546763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2015.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052036506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053189422", 
          "https://doi.org/10.1038/ncomms11101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddx014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084184883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092152727", 
          "https://doi.org/10.1038/nature24265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092152727", 
          "https://doi.org/10.1038/nature24265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddy039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100728230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddy148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103692980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddy148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103692980"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: In mammals, sex chromosomes pose an inherent imbalance of gene expression between sexes. In each female somatic cell, random inactivation of one of the X-chromosomes restores this balance. While most genes from the inactivated X-chromosome are silenced, 15-25% are known to escape X-inactivation (termed escapees). The expression levels of these genes are attributed to sex-dependent phenotypic variability.\nRESULTS: We used single-cell RNA-Seq to detect escapees in somatic cells. As only one X-chromosome is inactivated in each cell, the origin of expression from the active or inactive chromosome can be determined from the variation of sequenced RNAs. We analyzed primary, healthy fibroblasts (n\u2009=\u2009104), and clonal lymphoblasts with sequenced parental genomes (n\u2009=\u200925) by measuring the degree of allelic-specific expression (ASE) from heterozygous sites. We identified 24 and 49 candidate escapees, at varying degree of confidence, from the fibroblast and lymphoblast transcriptomes, respectively. We critically test the validity of escapee annotations by comparing our findings with a large collection of independent studies. We find that most genes (66%) from the unified set were previously reported as escapees. Furthermore, out of the overlooked escapees, 11 are long noncoding RNA (lncRNAs).\nCONCLUSIONS: X-chromosome inactivation and escaping from it are robust, permanent phenomena that are best studies at a single-cell resolution. The cumulative information from individual cells increases the potential of identifying escapees. Moreover, despite the use of a limited number of cells, clonal cells (i.e., same X- chromosomes are coordinately inhibited) with genomic phasing are valuable for detecting escapees at high confidence. Generalizing the method to uncharacterized genomic loci resulted in lncRNAs escapees which account for 20% of the listed candidates. By confirming genes as escapees and propose others as candidates from two different cell types, we contribute to the cumulative knowledge and reliability of human escapees.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-019-5507-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Human genes escaping X-inactivation revealed by single cell expression data", 
    "pagination": "201", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb89d33480e3c71dde209061b527ed0228dccc4f0c0bfeb2f000fda76d65be49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30871455"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-019-5507-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112766941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-019-5507-6", 
      "https://app.dimensions.ai/details/publication/pub.1112766941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-019-5507-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5507-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5507-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5507-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5507-6'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-019-5507-6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ndaf9106b0efc42f7aee6b771d00eae5e
4 schema:citation sg:pub.10.1007/s00439-011-1007-8
5 sg:pub.10.1038/nature03440
6 sg:pub.10.1038/nature03479
7 sg:pub.10.1038/nature24265
8 sg:pub.10.1038/ncomms11101
9 sg:pub.10.1038/ng.3274
10 sg:pub.10.1038/ng.3726
11 sg:pub.10.1038/nrg1602
12 sg:pub.10.1038/nrg3888
13 sg:pub.10.1038/nrm3231
14 sg:pub.10.1186/gb-2010-11-6-213
15 sg:pub.10.1186/gb-2013-14-1-r7
16 sg:pub.10.1186/gb-2013-14-11-r122
17 sg:pub.10.1186/s13059-014-0467-2
18 sg:pub.10.1186/s13293-015-0053-7
19 https://doi.org/10.1002/bies.201400032
20 https://doi.org/10.1016/0092-8674(90)90416-c
21 https://doi.org/10.1016/j.ajhg.2014.12.001
22 https://doi.org/10.1016/j.autrev.2011.11.024
23 https://doi.org/10.1016/j.ceb.2004.03.005
24 https://doi.org/10.1016/j.cell.2013.02.016
25 https://doi.org/10.1016/j.cell.2016.03.023
26 https://doi.org/10.1016/j.gde.2015.04.002
27 https://doi.org/10.1016/j.semcdb.2016.01.029
28 https://doi.org/10.1016/j.tig.2016.03.007
29 https://doi.org/10.1016/j.tig.2016.12.003
30 https://doi.org/10.1016/j.ygeno.2006.07.016
31 https://doi.org/10.1038/msb.2011.54
32 https://doi.org/10.1073/pnas.0914812107
33 https://doi.org/10.1073/pnas.1213530109
34 https://doi.org/10.1073/pnas.1520113113
35 https://doi.org/10.1093/bioinformatics/btp579
36 https://doi.org/10.1093/hmg/ddu564
37 https://doi.org/10.1093/hmg/ddx014
38 https://doi.org/10.1093/hmg/ddy039
39 https://doi.org/10.1093/hmg/ddy148
40 https://doi.org/10.1093/molbev/mst148
41 https://doi.org/10.1093/nar/gks425
42 https://doi.org/10.1101/cshperspect.a018382
43 https://doi.org/10.1101/gr.112680.110
44 https://doi.org/10.1101/gr.161034.113
45 https://doi.org/10.1101/gr.192278.115
46 https://doi.org/10.1126/science.1237973
47 https://doi.org/10.1126/science.1245316
48 https://doi.org/10.1159/000443157
49 https://doi.org/10.1371/journal.pgen.1005079
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description BACKGROUND: In mammals, sex chromosomes pose an inherent imbalance of gene expression between sexes. In each female somatic cell, random inactivation of one of the X-chromosomes restores this balance. While most genes from the inactivated X-chromosome are silenced, 15-25% are known to escape X-inactivation (termed escapees). The expression levels of these genes are attributed to sex-dependent phenotypic variability. RESULTS: We used single-cell RNA-Seq to detect escapees in somatic cells. As only one X-chromosome is inactivated in each cell, the origin of expression from the active or inactive chromosome can be determined from the variation of sequenced RNAs. We analyzed primary, healthy fibroblasts (n = 104), and clonal lymphoblasts with sequenced parental genomes (n = 25) by measuring the degree of allelic-specific expression (ASE) from heterozygous sites. We identified 24 and 49 candidate escapees, at varying degree of confidence, from the fibroblast and lymphoblast transcriptomes, respectively. We critically test the validity of escapee annotations by comparing our findings with a large collection of independent studies. We find that most genes (66%) from the unified set were previously reported as escapees. Furthermore, out of the overlooked escapees, 11 are long noncoding RNA (lncRNAs). CONCLUSIONS: X-chromosome inactivation and escaping from it are robust, permanent phenomena that are best studies at a single-cell resolution. The cumulative information from individual cells increases the potential of identifying escapees. Moreover, despite the use of a limited number of cells, clonal cells (i.e., same X- chromosomes are coordinately inhibited) with genomic phasing are valuable for detecting escapees at high confidence. Generalizing the method to uncharacterized genomic loci resulted in lncRNAs escapees which account for 20% of the listed candidates. By confirming genes as escapees and propose others as candidates from two different cell types, we contribute to the cumulative knowledge and reliability of human escapees.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N0f4b791ccbda4fb4afa24c00cfa68b22
57 N7aed6a24b37b486cb0386e8b32d347d4
58 sg:journal.1023790
59 schema:name Human genes escaping X-inactivation revealed by single cell expression data
60 schema:pagination 201
61 schema:productId N02637bcb08f4412187874d899db2ca70
62 N1c7128b85f244462b9223d3f7c7fc542
63 N31fc4a30dc9c4e6f913e2413f667798e
64 N43f8408c027c4d428ac6659517cd08fb
65 N6a7aaf66c2704e63aad32a75bf953c3c
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112766941
67 https://doi.org/10.1186/s12864-019-5507-6
68 schema:sdDatePublished 2019-04-11T13:19
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N7e47c7c10fd840458f1ce4b73df6880a
71 schema:url https://link.springer.com/10.1186%2Fs12864-019-5507-6
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N02637bcb08f4412187874d899db2ca70 schema:name pubmed_id
76 schema:value 30871455
77 rdf:type schema:PropertyValue
78 N0f4b791ccbda4fb4afa24c00cfa68b22 schema:volumeNumber 20
79 rdf:type schema:PublicationVolume
80 N1c7128b85f244462b9223d3f7c7fc542 schema:name dimensions_id
81 schema:value pub.1112766941
82 rdf:type schema:PropertyValue
83 N31fc4a30dc9c4e6f913e2413f667798e schema:name doi
84 schema:value 10.1186/s12864-019-5507-6
85 rdf:type schema:PropertyValue
86 N36e390f13904424eb6f5bbcd99e950d7 schema:affiliation https://www.grid.ac/institutes/grid.9619.7
87 schema:familyName Linial
88 schema:givenName Michal
89 rdf:type schema:Person
90 N43f8408c027c4d428ac6659517cd08fb schema:name nlm_unique_id
91 schema:value 100965258
92 rdf:type schema:PropertyValue
93 N6a7aaf66c2704e63aad32a75bf953c3c schema:name readcube_id
94 schema:value cb89d33480e3c71dde209061b527ed0228dccc4f0c0bfeb2f000fda76d65be49
95 rdf:type schema:PropertyValue
96 N7aed6a24b37b486cb0386e8b32d347d4 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N7e47c7c10fd840458f1ce4b73df6880a schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N968eb418cf7449429441a1552a12920e rdf:first N36e390f13904424eb6f5bbcd99e950d7
101 rdf:rest rdf:nil
102 Ndaf9106b0efc42f7aee6b771d00eae5e rdf:first Nf6b7b1dcac3940cc9684e8be06d5ef18
103 rdf:rest N968eb418cf7449429441a1552a12920e
104 Nf6b7b1dcac3940cc9684e8be06d5ef18 schema:affiliation https://www.grid.ac/institutes/grid.9619.7
105 schema:familyName Wainer Katsir
106 schema:givenName Kerem
107 rdf:type schema:Person
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
112 schema:name Genetics
113 rdf:type schema:DefinedTerm
114 sg:journal.1023790 schema:issn 1471-2164
115 schema:name BMC Genomics
116 rdf:type schema:Periodical
117 sg:pub.10.1007/s00439-011-1007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026556004
118 https://doi.org/10.1007/s00439-011-1007-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nature03440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026661886
121 https://doi.org/10.1038/nature03440
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature03479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477207
124 https://doi.org/10.1038/nature03479
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nature24265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152727
127 https://doi.org/10.1038/nature24265
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/ncomms11101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053189422
130 https://doi.org/10.1038/ncomms11101
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ng.3274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034405546
133 https://doi.org/10.1038/ng.3274
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/ng.3726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050932941
136 https://doi.org/10.1038/ng.3726
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nrg1602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023418640
139 https://doi.org/10.1038/nrg1602
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nrg3888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029201144
142 https://doi.org/10.1038/nrg3888
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nrm3231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006797924
145 https://doi.org/10.1038/nrm3231
146 rdf:type schema:CreativeWork
147 sg:pub.10.1186/gb-2010-11-6-213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296325
148 https://doi.org/10.1186/gb-2010-11-6-213
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/gb-2013-14-1-r7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043158487
151 https://doi.org/10.1186/gb-2013-14-1-r7
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/gb-2013-14-11-r122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010408425
154 https://doi.org/10.1186/gb-2013-14-11-r122
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/s13059-014-0467-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038703261
157 https://doi.org/10.1186/s13059-014-0467-2
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/s13293-015-0053-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038288653
160 https://doi.org/10.1186/s13293-015-0053-7
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/bies.201400032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023989022
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/0092-8674(90)90416-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1033645961
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ajhg.2014.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023007080
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.autrev.2011.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003604970
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ceb.2004.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013126353
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cell.2013.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043978712
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cell.2016.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020605725
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.gde.2015.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052036506
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.semcdb.2016.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047176233
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.tig.2016.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044003726
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.tig.2016.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036591453
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ygeno.2006.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051546763
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1038/msb.2011.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221483
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.0914812107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016456425
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.1213530109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015322861
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.1520113113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018544496
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bioinformatics/btp579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009524511
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/hmg/ddu564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005305273
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/hmg/ddx014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084184883
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/hmg/ddy039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100728230
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/hmg/ddy148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103692980
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/molbev/mst148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042151765
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/nar/gks425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018055535
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1101/cshperspect.a018382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004584661
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1101/gr.112680.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000921025
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1101/gr.161034.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018538260
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1101/gr.192278.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037020783
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.1237973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042718734
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.1245316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035294760
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1159/000443157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050574207
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pgen.1005079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036533421
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.9619.7 schema:alternateName Hebrew University of Jerusalem
225 schema:name Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190400, Jerusalem, Israel
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...