Signal enrichment with strain-level resolution in metagenomes using topological data analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-04

AUTHORS

Aldo Guzmán-Sáenz, Niina Haiminen, Saugata Basu, Laxmi Parida

ABSTRACT

BackgroundA metagenome is a collection of genomes, usually in a micro-environment, and sequencing a metagenomic sample en masse is a powerful means for investigating the community of the constituent microorganisms. One of the challenges is in distinguishing between similar organisms due to rampant multiple possible assignments of sequencing reads, resulting in false positive identifications. We map the problem to a topological data analysis (TDA) framework that extracts information from the geometric structure of data. Here the structure is defined by multi-way relationships between the sequencing reads using a reference database.ResultsBased primarily on the patterns of co-mapping of the reads to multiple organisms in the reference database, we use two models: one a subcomplex of a Barycentric subdivision complex and the other a Čech complex. The Barycentric subcomplex allows a natural mapping of the reads along with their coverage of organisms while the Čech complex takes simply the number of reads into account to map the problem to homology computation. Using simulated genome mixtures we show not just enrichment of signal but also microbe identification with strain-level resolution.ConclusionsIn particular, in the most refractory of cases where alternative algorithms that exploit unique reads (i.e., mapped to unique organisms) fail, we show that the TDA approach continues to show consistent performance. The Čech model that uses less information is equally effective, suggesting that even partial information when augmented with the appropriate structure is quite powerful. More... »

PAGES

194

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-019-5490-y

DOI

http://dx.doi.org/10.1186/s12864-019-5490-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113327547

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30967115


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guzm\u00e1n-S\u00e1enz", 
        "givenName": "Aldo", 
        "id": "sg:person.015720005324.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720005324.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haiminen", 
        "givenName": "Niina", 
        "id": "sg:person.0746114007.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Purdue University, West Lafayette, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Department of Mathematics, Purdue University, West Lafayette, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basu", 
        "givenName": "Saugata", 
        "id": "sg:person.013033776043.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033776043.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.3960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092055967", 
          "https://doi.org/10.1038/nbt.3960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-004-1146-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049299815", 
          "https://doi.org/10.1007/s00454-004-1146-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-017-1299-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091875834", 
          "https://doi.org/10.1186/s13059-017-1299-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2014-15-3-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203790", 
          "https://doi.org/10.1186/gb-2014-15-3-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-14977-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039330230", 
          "https://doi.org/10.1007/978-3-319-14977-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010611135", 
          "https://doi.org/10.1038/nmeth.2066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-16706-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007713575", 
          "https://doi.org/10.1007/978-3-319-16706-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-16706-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017841119", 
          "https://doi.org/10.1007/978-3-319-16706-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-015-1419-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021400263", 
          "https://doi.org/10.1186/s12864-015-1419-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-04", 
    "datePublishedReg": "2019-04-04", 
    "description": "BackgroundA metagenome is a collection of genomes, usually in a micro-environment, and sequencing a metagenomic sample en masse is a powerful means for investigating the community of the constituent microorganisms. One of the challenges is in distinguishing between similar organisms due to rampant multiple possible assignments of sequencing reads, resulting in false positive identifications. We map the problem to a topological data analysis (TDA) framework that extracts information from the geometric structure of data. Here the structure is defined by multi-way relationships between the sequencing reads using a reference database.ResultsBased primarily on the patterns of co-mapping of the reads to multiple organisms in the reference database, we use two models: one a subcomplex of a Barycentric subdivision complex and the other a \u010cech complex. The Barycentric subcomplex allows a natural mapping of the reads along with their coverage of organisms while the \u010cech complex takes simply the number of reads into account to map the problem to homology computation. Using simulated genome mixtures we show not just enrichment of signal but also microbe identification with strain-level resolution.ConclusionsIn particular, in the most refractory of cases where alternative algorithms that exploit unique reads (i.e., mapped to unique organisms) fail, we show that the TDA approach continues to show consistent performance. The \u010cech model that uses less information is equally effective, suggesting that even partial information when augmented with the appropriate structure is quite powerful.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12864-019-5490-y", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5542507", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "\u010cech complex", 
      "topological data analysis", 
      "homology computation", 
      "TDA approach", 
      "geometric structure", 
      "partial information", 
      "alternative algorithms", 
      "data analysis framework", 
      "multi-way relationships", 
      "natural mapping", 
      "collection of genomes", 
      "reference database", 
      "coverage of organisms", 
      "analysis framework", 
      "problem", 
      "sequencing reads", 
      "consistent performance", 
      "computation", 
      "appropriate structure", 
      "enrichment of signals", 
      "data analysis", 
      "model", 
      "information", 
      "possible assignments", 
      "algorithm", 
      "metagenomic samples", 
      "number of reads", 
      "database", 
      "powerful means", 
      "structure", 
      "less information", 
      "reads", 
      "signal enrichment", 
      "false positive identifications", 
      "framework", 
      "strain-level resolution", 
      "account", 
      "resolution", 
      "approach", 
      "signals", 
      "performance", 
      "challenges", 
      "number", 
      "collection", 
      "assignment", 
      "means", 
      "constituent microorganisms", 
      "mapping", 
      "microbe identification", 
      "cases", 
      "identification", 
      "unique reads", 
      "data", 
      "multiple organisms", 
      "coverage", 
      "analysis", 
      "community", 
      "subcomplex", 
      "mixture", 
      "patterns", 
      "metagenomes", 
      "samples", 
      "positive identification", 
      "masse", 
      "relationship", 
      "ResultsBased", 
      "similar organisms", 
      "complexes", 
      "enrichment", 
      "ConclusionsIn", 
      "genome", 
      "organisms", 
      "microorganisms", 
      "refractory"
    ], 
    "name": "Signal enrichment with strain-level resolution in metagenomes using topological data analysis", 
    "pagination": "194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113327547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-019-5490-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30967115"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-019-5490-y", 
      "https://app.dimensions.ai/details/publication/pub.1113327547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_815.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12864-019-5490-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5490-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5490-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5490-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5490-y'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      116 URIs      98 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-019-5490-y schema:about N0f04c1a2931643b8a4c0845b0cdd6089
2 N53a77a280bff4c57bc49abb18d625003
3 N715d27f3ef0c40e29f83dfcf60fe73e0
4 N8c61ab38944144ac81d0202732cbf1f4
5 Nae7255c4624c461f9ecb6b742bca58a7
6 Nf85aa034aabf476680035bab33197588
7 Nfc2c39c667b844eda001129f5caee967
8 anzsrc-for:08
9 anzsrc-for:0806
10 schema:author Nfe850c374bce4cf992fb0359a7ef7fd0
11 schema:citation sg:pub.10.1007/978-3-319-14977-6
12 sg:pub.10.1007/978-3-319-16706-0
13 sg:pub.10.1007/978-3-319-16706-0_4
14 sg:pub.10.1007/s00454-004-1146-y
15 sg:pub.10.1038/nbt.3960
16 sg:pub.10.1038/nmeth.2066
17 sg:pub.10.1186/gb-2009-10-3-r25
18 sg:pub.10.1186/gb-2014-15-3-r46
19 sg:pub.10.1186/s12864-015-1419-2
20 sg:pub.10.1186/s13059-017-1299-7
21 schema:datePublished 2019-04-04
22 schema:datePublishedReg 2019-04-04
23 schema:description BackgroundA metagenome is a collection of genomes, usually in a micro-environment, and sequencing a metagenomic sample en masse is a powerful means for investigating the community of the constituent microorganisms. One of the challenges is in distinguishing between similar organisms due to rampant multiple possible assignments of sequencing reads, resulting in false positive identifications. We map the problem to a topological data analysis (TDA) framework that extracts information from the geometric structure of data. Here the structure is defined by multi-way relationships between the sequencing reads using a reference database.ResultsBased primarily on the patterns of co-mapping of the reads to multiple organisms in the reference database, we use two models: one a subcomplex of a Barycentric subdivision complex and the other a Čech complex. The Barycentric subcomplex allows a natural mapping of the reads along with their coverage of organisms while the Čech complex takes simply the number of reads into account to map the problem to homology computation. Using simulated genome mixtures we show not just enrichment of signal but also microbe identification with strain-level resolution.ConclusionsIn particular, in the most refractory of cases where alternative algorithms that exploit unique reads (i.e., mapped to unique organisms) fail, we show that the TDA approach continues to show consistent performance. The Čech model that uses less information is equally effective, suggesting that even partial information when augmented with the appropriate structure is quite powerful.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N56b62d21976b439db7c7c32474bb8811
27 Nc1418b437a7b447da8a6173e4d79a293
28 sg:journal.1023790
29 schema:keywords ConclusionsIn
30 ResultsBased
31 TDA approach
32 account
33 algorithm
34 alternative algorithms
35 analysis
36 analysis framework
37 approach
38 appropriate structure
39 assignment
40 cases
41 challenges
42 collection
43 collection of genomes
44 community
45 complexes
46 computation
47 consistent performance
48 constituent microorganisms
49 coverage
50 coverage of organisms
51 data
52 data analysis
53 data analysis framework
54 database
55 enrichment
56 enrichment of signals
57 false positive identifications
58 framework
59 genome
60 geometric structure
61 homology computation
62 identification
63 information
64 less information
65 mapping
66 masse
67 means
68 metagenomes
69 metagenomic samples
70 microbe identification
71 microorganisms
72 mixture
73 model
74 multi-way relationships
75 multiple organisms
76 natural mapping
77 number
78 number of reads
79 organisms
80 partial information
81 patterns
82 performance
83 positive identification
84 possible assignments
85 powerful means
86 problem
87 reads
88 reference database
89 refractory
90 relationship
91 resolution
92 samples
93 sequencing reads
94 signal enrichment
95 signals
96 similar organisms
97 strain-level resolution
98 structure
99 subcomplex
100 topological data analysis
101 unique reads
102 Čech complex
103 schema:name Signal enrichment with strain-level resolution in metagenomes using topological data analysis
104 schema:pagination 194
105 schema:productId N47adcda8fdd9420e909ce3eed51c071d
106 N853b71693adf44c7b2cb81f92fabb097
107 N96957327399541c898270e0c00c0d04f
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113327547
109 https://doi.org/10.1186/s12864-019-5490-y
110 schema:sdDatePublished 2022-10-01T06:45
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N3199bd3c6e954ad98d988cfbbfca6a13
113 schema:url https://doi.org/10.1186/s12864-019-5490-y
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0f04c1a2931643b8a4c0845b0cdd6089 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Sequence Analysis, DNA
119 rdf:type schema:DefinedTerm
120 N180d739bb6f54cb6b674c5aca131caf7 rdf:first sg:person.0746114007.76
121 rdf:rest N8ef0cc0ba245434384a2d8b67d247440
122 N3199bd3c6e954ad98d988cfbbfca6a13 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N47adcda8fdd9420e909ce3eed51c071d schema:name doi
125 schema:value 10.1186/s12864-019-5490-y
126 rdf:type schema:PropertyValue
127 N53a77a280bff4c57bc49abb18d625003 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Data Analysis
129 rdf:type schema:DefinedTerm
130 N56b62d21976b439db7c7c32474bb8811 schema:issueNumber Suppl 2
131 rdf:type schema:PublicationIssue
132 N715d27f3ef0c40e29f83dfcf60fe73e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name High-Throughput Nucleotide Sequencing
134 rdf:type schema:DefinedTerm
135 N853b71693adf44c7b2cb81f92fabb097 schema:name pubmed_id
136 schema:value 30967115
137 rdf:type schema:PropertyValue
138 N8c61ab38944144ac81d0202732cbf1f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Metagenomics
140 rdf:type schema:DefinedTerm
141 N8ef0cc0ba245434384a2d8b67d247440 rdf:first sg:person.013033776043.37
142 rdf:rest Ndd20cd629f2848559880566817ab63f4
143 N96957327399541c898270e0c00c0d04f schema:name dimensions_id
144 schema:value pub.1113327547
145 rdf:type schema:PropertyValue
146 Nae7255c4624c461f9ecb6b742bca58a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Bacteria
148 rdf:type schema:DefinedTerm
149 Nc1418b437a7b447da8a6173e4d79a293 schema:volumeNumber 20
150 rdf:type schema:PublicationVolume
151 Ndd20cd629f2848559880566817ab63f4 rdf:first sg:person.01336557015.68
152 rdf:rest rdf:nil
153 Nf85aa034aabf476680035bab33197588 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Algorithms
155 rdf:type schema:DefinedTerm
156 Nfc2c39c667b844eda001129f5caee967 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Metagenome
158 rdf:type schema:DefinedTerm
159 Nfe850c374bce4cf992fb0359a7ef7fd0 rdf:first sg:person.015720005324.51
160 rdf:rest N180d739bb6f54cb6b674c5aca131caf7
161 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
162 schema:name Information and Computing Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
165 schema:name Information Systems
166 rdf:type schema:DefinedTerm
167 sg:grant.5542507 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-019-5490-y
168 rdf:type schema:MonetaryGrant
169 sg:journal.1023790 schema:issn 1471-2164
170 schema:name BMC Genomics
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.013033776043.37 schema:affiliation grid-institutes:grid.169077.e
174 schema:familyName Basu
175 schema:givenName Saugata
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033776043.37
177 rdf:type schema:Person
178 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
179 schema:familyName Parida
180 schema:givenName Laxmi
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
182 rdf:type schema:Person
183 sg:person.015720005324.51 schema:affiliation grid-institutes:grid.481554.9
184 schema:familyName Guzmán-Sáenz
185 schema:givenName Aldo
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720005324.51
187 rdf:type schema:Person
188 sg:person.0746114007.76 schema:affiliation grid-institutes:grid.481554.9
189 schema:familyName Haiminen
190 schema:givenName Niina
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76
192 rdf:type schema:Person
193 sg:pub.10.1007/978-3-319-14977-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039330230
194 https://doi.org/10.1007/978-3-319-14977-6
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/978-3-319-16706-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007713575
197 https://doi.org/10.1007/978-3-319-16706-0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/978-3-319-16706-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017841119
200 https://doi.org/10.1007/978-3-319-16706-0_4
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00454-004-1146-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049299815
203 https://doi.org/10.1007/s00454-004-1146-y
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nbt.3960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092055967
206 https://doi.org/10.1038/nbt.3960
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
209 https://doi.org/10.1038/nmeth.2066
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
212 https://doi.org/10.1186/gb-2009-10-3-r25
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/gb-2014-15-3-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203790
215 https://doi.org/10.1186/gb-2014-15-3-r46
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/s12864-015-1419-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021400263
218 https://doi.org/10.1186/s12864-015-1419-2
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/s13059-017-1299-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091875834
221 https://doi.org/10.1186/s13059-017-1299-7
222 rdf:type schema:CreativeWork
223 grid-institutes:grid.169077.e schema:alternateName Department of Mathematics, Purdue University, West Lafayette, IN, USA
224 schema:name Department of Mathematics, Purdue University, West Lafayette, IN, USA
225 rdf:type schema:Organization
226 grid-institutes:grid.481554.9 schema:alternateName Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
227 schema:name Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...