Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Marina Naoumkina, Gregory N. Thyssen, David D. Fang, Johnie N. Jenkins, Jack C. McCarty, Christopher B. Florane

ABSTRACT

BACKGROUND: Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified. RESULTS: An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931. CONCLUSION: The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement. More... »

PAGES

112

Journal

TITLE

BMC Genomics

ISSUE

1

VOLUME

20

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-019-5427-5

DOI

http://dx.doi.org/10.1186/s12864-019-5427-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111954471

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30727946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, 70124, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naoumkina", 
        "givenName": "Marina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, 70124, New Orleans, LA, USA", 
            "Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, 70124, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thyssen", 
        "givenName": "Gregory N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, 70124, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "David D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, 39762, Mississippi State, MS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jenkins", 
        "givenName": "Johnie N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, 39762, Mississippi State, MS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCarty", 
        "givenName": "Jack C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, 70124, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Florane", 
        "givenName": "Christopher B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev-arplant-050213-035715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000027733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0056315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001294291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00289981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002379068", 
          "https://doi.org/10.1007/bf00289981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0019379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005754650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-016-2684-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006607613", 
          "https://doi.org/10.1007/s00122-016-2684-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.105.036434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007618509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.112.212357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012315526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2005.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012501249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0074-7696(08)61300-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012643343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3249-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014336665", 
          "https://doi.org/10.1186/s12864-016-3249-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3249-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014336665", 
          "https://doi.org/10.1186/s12864-016-3249-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2012.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014959561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018998297", 
          "https://doi.org/10.1186/1471-2164-12-445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-7-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021325263", 
          "https://doi.org/10.1186/1471-2229-7-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-015-2506-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022047922", 
          "https://doi.org/10.1007/s00122-015-2506-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-015-1021-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022373309", 
          "https://doi.org/10.1007/s00438-015-1021-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-015-1021-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022373309", 
          "https://doi.org/10.1007/s00438-015-1021-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-004-4731-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024004925", 
          "https://doi.org/10.1007/s11032-004-4731-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.010724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025260149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.026690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025262379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026460145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2560-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026763326", 
          "https://doi.org/10.1186/s12864-016-2560-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbi.12693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030798198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1525-142x.2001.00079.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030936181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-002-1025-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034953694", 
          "https://doi.org/10.1007/s00122-002-1025-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036147444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036408106", 
          "https://doi.org/10.1038/ng.2991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013699998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036427477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037216172", 
          "https://doi.org/10.1038/nbt.3207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1007879107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037284278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00425-010-1246-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038379862", 
          "https://doi.org/10.1007/s00425-010-1246-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00425-010-1246-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038379862", 
          "https://doi.org/10.1007/s00425-010-1246-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1223-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038388102", 
          "https://doi.org/10.1007/s00122-009-1223-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1223-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038388102", 
          "https://doi.org/10.1007/s00122-009-1223-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1223-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038388102", 
          "https://doi.org/10.1007/s00122-009-1223-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.108.059741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039213231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040763873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2011.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041685849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-002-0721-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042129634", 
          "https://doi.org/10.1007/s00438-002-0721-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.22.12637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044791295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00002908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045255473", 
          "https://doi.org/10.1007/pl00002908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00002908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045255473", 
          "https://doi.org/10.1007/pl00002908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2004.02016.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046563795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0090830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047946842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049727319", 
          "https://doi.org/10.1186/1471-2164-15-397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050509557", 
          "https://doi.org/10.1186/gb-2010-11-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-011-9549-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051417188", 
          "https://doi.org/10.1007/s11032-011-9549-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.105.069906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051818913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.107.055657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053398182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1976.0011183x001600060010x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069017361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2008.09.0547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069030763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3198/jpr2008.02.0080crg", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071120472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cssaspecpub7.c4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088346274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1537-2197.1974.tb06045.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100749589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1537-2197.1973.tb10209.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100753171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41588-018-0119-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103817437", 
          "https://doi.org/10.1038/s41588-018-0119-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12870-018-1414-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106910447", 
          "https://doi.org/10.1186/s12870-018-1414-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified.\nRESULTS: An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931.\nCONCLUSION: The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-019-5427-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population", 
    "pagination": "112", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ccb2c5ea671c2455696f88088bc7d76a8cd021541420693f0bb5a0586828f463"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30727946"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-019-5427-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111954471"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-019-5427-5", 
      "https://app.dimensions.ai/details/publication/pub.1111954471"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47966_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-019-5427-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5427-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5427-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5427-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-019-5427-5'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      84 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-019-5427-5 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N6b99b4050cea4776811baaa0b1ee5e86
4 schema:citation sg:pub.10.1007/bf00289981
5 sg:pub.10.1007/pl00002908
6 sg:pub.10.1007/s00122-002-1025-y
7 sg:pub.10.1007/s00122-009-1223-y
8 sg:pub.10.1007/s00122-015-2506-0
9 sg:pub.10.1007/s00122-016-2684-4
10 sg:pub.10.1007/s00425-010-1246-2
11 sg:pub.10.1007/s00438-002-0721-2
12 sg:pub.10.1007/s00438-015-1021-y
13 sg:pub.10.1007/s11032-004-4731-0
14 sg:pub.10.1007/s11032-011-9549-y
15 sg:pub.10.1038/nbt.3207
16 sg:pub.10.1038/ng.2991
17 sg:pub.10.1038/ng.546
18 sg:pub.10.1038/s41588-018-0119-7
19 sg:pub.10.1186/1471-2164-12-445
20 sg:pub.10.1186/1471-2164-15-397
21 sg:pub.10.1186/1471-2229-7-22
22 sg:pub.10.1186/gb-2010-11-3-r25
23 sg:pub.10.1186/s12864-016-2560-2
24 sg:pub.10.1186/s12864-016-3249-2
25 sg:pub.10.1186/s12870-018-1414-2
26 https://doi.org/10.1002/j.1537-2197.1973.tb10209.x
27 https://doi.org/10.1002/j.1537-2197.1974.tb06045.x
28 https://doi.org/10.1006/meth.2001.1262
29 https://doi.org/10.1016/j.fcr.2011.12.002
30 https://doi.org/10.1016/j.gene.2005.12.014
31 https://doi.org/10.1016/j.tig.2012.06.003
32 https://doi.org/10.1016/s0074-7696(08)61300-5
33 https://doi.org/10.1046/j.1525-142x.2001.00079.x
34 https://doi.org/10.1073/pnas.1007879107
35 https://doi.org/10.1073/pnas.93.22.12637
36 https://doi.org/10.1093/bioinformatics/btp352
37 https://doi.org/10.1093/bioinformatics/btq057
38 https://doi.org/10.1093/bioinformatics/bts444
39 https://doi.org/10.1093/nar/gkw910
40 https://doi.org/10.1093/oxfordjournals.molbev.a026131
41 https://doi.org/10.1104/pp.010724
42 https://doi.org/10.1104/pp.105.069906
43 https://doi.org/10.1104/pp.112.212357
44 https://doi.org/10.1105/tpc.104.026690
45 https://doi.org/10.1105/tpc.105.036434
46 https://doi.org/10.1105/tpc.107.055657
47 https://doi.org/10.1105/tpc.108.059741
48 https://doi.org/10.1111/j.1365-313x.2004.02016.x
49 https://doi.org/10.1111/pbi.12693
50 https://doi.org/10.1146/annurev-arplant-050213-035715
51 https://doi.org/10.1214/aos/1013699998
52 https://doi.org/10.1371/journal.pone.0019379
53 https://doi.org/10.1371/journal.pone.0056315
54 https://doi.org/10.1371/journal.pone.0090830
55 https://doi.org/10.2135/cropsci1976.0011183x001600060010x
56 https://doi.org/10.2135/cropsci2008.09.0547
57 https://doi.org/10.2135/cssaspecpub7.c4
58 https://doi.org/10.3198/jpr2008.02.0080crg
59 schema:datePublished 2019-12
60 schema:datePublishedReg 2019-12-01
61 schema:description BACKGROUND: Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified. RESULTS: An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931. CONCLUSION: The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf N3ccb1155a2ba4f89844b24a700610526
66 N3d4c0027b1f2461bb628f2ee76b9f32f
67 sg:journal.1023790
68 schema:name Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population
69 schema:pagination 112
70 schema:productId N1a98b93eb23846aaac30e6eb13e325e0
71 N3fa20a6e8bbe4138ad718e5d4002f860
72 N855ec9b057014ce0bc975a257d8ea6dd
73 N9430811ad0a148d0908ffd12f8e99fa2
74 Ncb5f02976da14827a9312d093f67416e
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111954471
76 https://doi.org/10.1186/s12864-019-5427-5
77 schema:sdDatePublished 2019-04-11T09:09
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N059c654dc1af4a24b0d7f05b4ae699dd
80 schema:url https://link.springer.com/10.1186%2Fs12864-019-5427-5
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N059c654dc1af4a24b0d7f05b4ae699dd schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N1a98b93eb23846aaac30e6eb13e325e0 schema:name nlm_unique_id
87 schema:value 100965258
88 rdf:type schema:PropertyValue
89 N1c24f9630fba4231aac25ff505f1083f schema:affiliation https://www.grid.ac/institutes/grid.463419.d
90 schema:familyName Fang
91 schema:givenName David D.
92 rdf:type schema:Person
93 N373bf16d1e2e4065bbe1edd83b5d0310 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
94 schema:familyName Thyssen
95 schema:givenName Gregory N.
96 rdf:type schema:Person
97 N3ccb1155a2ba4f89844b24a700610526 schema:volumeNumber 20
98 rdf:type schema:PublicationVolume
99 N3d4c0027b1f2461bb628f2ee76b9f32f schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N3fa20a6e8bbe4138ad718e5d4002f860 schema:name dimensions_id
102 schema:value pub.1111954471
103 rdf:type schema:PropertyValue
104 N42ae881108e84e6bb8574f120bab6659 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
105 schema:familyName Florane
106 schema:givenName Christopher B.
107 rdf:type schema:Person
108 N6928cd5eae9a4a588e5c92fb05f7a191 rdf:first Nc88b8aeec1f84ad590fabd24fbb0f606
109 rdf:rest Nddc19b9ad516404bbe2f4bc109245565
110 N6b99b4050cea4776811baaa0b1ee5e86 rdf:first Nd81506a5764440ffae0aaa6fe87eb14e
111 rdf:rest Nedd0ed5fac254c52bfe61e43b41853b7
112 N855ec9b057014ce0bc975a257d8ea6dd schema:name doi
113 schema:value 10.1186/s12864-019-5427-5
114 rdf:type schema:PropertyValue
115 N9430811ad0a148d0908ffd12f8e99fa2 schema:name readcube_id
116 schema:value ccb2c5ea671c2455696f88088bc7d76a8cd021541420693f0bb5a0586828f463
117 rdf:type schema:PropertyValue
118 Na458dc4019a445fd995acc7c8df694f2 rdf:first N42ae881108e84e6bb8574f120bab6659
119 rdf:rest rdf:nil
120 Na9aa636aa749440eb419b121466fa5f7 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
121 schema:familyName McCarty
122 schema:givenName Jack C.
123 rdf:type schema:Person
124 Nb91ffba6c99c4d6e91f098fb44639808 rdf:first N1c24f9630fba4231aac25ff505f1083f
125 rdf:rest N6928cd5eae9a4a588e5c92fb05f7a191
126 Nc88b8aeec1f84ad590fabd24fbb0f606 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
127 schema:familyName Jenkins
128 schema:givenName Johnie N.
129 rdf:type schema:Person
130 Ncb5f02976da14827a9312d093f67416e schema:name pubmed_id
131 schema:value 30727946
132 rdf:type schema:PropertyValue
133 Nd81506a5764440ffae0aaa6fe87eb14e schema:affiliation https://www.grid.ac/institutes/grid.463419.d
134 schema:familyName Naoumkina
135 schema:givenName Marina
136 rdf:type schema:Person
137 Nddc19b9ad516404bbe2f4bc109245565 rdf:first Na9aa636aa749440eb419b121466fa5f7
138 rdf:rest Na458dc4019a445fd995acc7c8df694f2
139 Nedd0ed5fac254c52bfe61e43b41853b7 rdf:first N373bf16d1e2e4065bbe1edd83b5d0310
140 rdf:rest Nb91ffba6c99c4d6e91f098fb44639808
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
145 schema:name Genetics
146 rdf:type schema:DefinedTerm
147 sg:journal.1023790 schema:issn 1471-2164
148 schema:name BMC Genomics
149 rdf:type schema:Periodical
150 sg:pub.10.1007/bf00289981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002379068
151 https://doi.org/10.1007/bf00289981
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/pl00002908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045255473
154 https://doi.org/10.1007/pl00002908
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00122-002-1025-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034953694
157 https://doi.org/10.1007/s00122-002-1025-y
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00122-009-1223-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038388102
160 https://doi.org/10.1007/s00122-009-1223-y
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00122-015-2506-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022047922
163 https://doi.org/10.1007/s00122-015-2506-0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00122-016-2684-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006607613
166 https://doi.org/10.1007/s00122-016-2684-4
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00425-010-1246-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038379862
169 https://doi.org/10.1007/s00425-010-1246-2
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00438-002-0721-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042129634
172 https://doi.org/10.1007/s00438-002-0721-2
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00438-015-1021-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022373309
175 https://doi.org/10.1007/s00438-015-1021-y
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11032-004-4731-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024004925
178 https://doi.org/10.1007/s11032-004-4731-0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11032-011-9549-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051417188
181 https://doi.org/10.1007/s11032-011-9549-y
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nbt.3207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037216172
184 https://doi.org/10.1038/nbt.3207
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/ng.2991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036408106
187 https://doi.org/10.1038/ng.2991
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ng.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017784241
190 https://doi.org/10.1038/ng.546
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/s41588-018-0119-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103817437
193 https://doi.org/10.1038/s41588-018-0119-7
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/1471-2164-12-445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018998297
196 https://doi.org/10.1186/1471-2164-12-445
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1471-2164-15-397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049727319
199 https://doi.org/10.1186/1471-2164-15-397
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1471-2229-7-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021325263
202 https://doi.org/10.1186/1471-2229-7-22
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
205 https://doi.org/10.1186/gb-2010-11-3-r25
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/s12864-016-2560-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026763326
208 https://doi.org/10.1186/s12864-016-2560-2
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/s12864-016-3249-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014336665
211 https://doi.org/10.1186/s12864-016-3249-2
212 rdf:type schema:CreativeWork
213 sg:pub.10.1186/s12870-018-1414-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106910447
214 https://doi.org/10.1186/s12870-018-1414-2
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/j.1537-2197.1973.tb10209.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100753171
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/j.1537-2197.1974.tb06045.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100749589
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1006/meth.2001.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621591
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.fcr.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041685849
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.gene.2005.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012501249
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.tig.2012.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014959561
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0074-7696(08)61300-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012643343
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1046/j.1525-142x.2001.00079.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030936181
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.1007879107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037284278
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.93.22.12637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044791295
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/btq057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025260149
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bioinformatics/bts444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036147444
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/gkw910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040763873
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/oxfordjournals.molbev.a026131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026460145
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1104/pp.010724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024927818
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1104/pp.105.069906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051818913
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1104/pp.112.212357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012315526
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1105/tpc.104.026690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025262379
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1105/tpc.105.036434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007618509
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1105/tpc.107.055657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053398182
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1105/tpc.108.059741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039213231
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1111/j.1365-313x.2004.02016.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046563795
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1111/pbi.12693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030798198
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1146/annurev-arplant-050213-035715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000027733
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1214/aos/1013699998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036427477
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1371/journal.pone.0019379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005754650
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1371/journal.pone.0056315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001294291
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1371/journal.pone.0090830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047946842
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2135/cropsci1976.0011183x001600060010x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069017361
275 rdf:type schema:CreativeWork
276 https://doi.org/10.2135/cropsci2008.09.0547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030763
277 rdf:type schema:CreativeWork
278 https://doi.org/10.2135/cssaspecpub7.c4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088346274
279 rdf:type schema:CreativeWork
280 https://doi.org/10.3198/jpr2008.02.0080crg schema:sameAs https://app.dimensions.ai/details/publication/pub.1071120472
281 rdf:type schema:CreativeWork
282 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
283 schema:name Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, 70124, New Orleans, LA, USA
284 Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, 70124, New Orleans, LA, USA
285 Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, 39762, Mississippi State, MS, USA
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...