CpG traffic lights are markers of regulatory regions in human genome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Anna V. Lioznova, Abdullah M. Khamis, Artem V. Artemov, Elizaveta Besedina, Vasily Ramensky, Vladimir B. Bajic, Ivan V. Kulakovskiy, Yulia A. Medvedeva

ABSTRACT

BACKGROUND: DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over genomic regions in the downstream bioinformatic analysis. RESULTS: We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable marker of such inactivation. CONCLUSIONS: CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to directly measuring gene expression due to more stable nature of DNA. More... »

PAGES

102

References to SciGraph publications

  • 2015-04. Epigenomics, gestational programming and risk of metabolic syndrome in INTERNATIONAL JOURNAL OF OBESITY
  • 2016-06. Negative selection maintains transcription factor binding motifs in human cancer in BMC GENOMICS
  • 2003-03. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals in NATURE GENETICS
  • 2012-09. The accessible chromatin landscape of the human genome in NATURE
  • 2012-03. ChromHMM: automating chromatin-state discovery and characterization in NATURE METHODS
  • 2015-12. Competition between DNA methylation and transcription factors determines binding of NRF1 in NATURE
  • 2012-10. Analysing and interpreting DNA methylation data in NATURE REVIEWS GENETICS
  • 2015-12. Gateways to the FANTOM5 promoter level mammalian expression atlas in GENOME BIOLOGY
  • 2002-08. Gene silencing in mammalian cells and the spread of DNA methylation in ONCOGENE
  • 2010. Epigenetic Regulation of Pluripotency in THE CELL BIOLOGY OF STEM CELLS
  • 2014-03. An atlas of active enhancers across human cell types and tissues in NATURE
  • 2016-02. A spectral approach integrating functional genomic annotations for coding and noncoding variants in NATURE GENETICS
  • 2012-07. Functions of DNA methylation: islands, start sites, gene bodies and beyond in NATURE REVIEWS GENETICS
  • 2016-12. Preservation of methylated CpG dinucleotides in human CpG islands in BIOLOGY DIRECT
  • 2007-04. Environmental epigenomics and disease susceptibility in NATURE REVIEWS GENETICS
  • 2014-03. A promoter-level mammalian expression atlas in NATURE
  • 2014-12. Effects of cytosine methylation on transcription factor binding sites in BMC GENOMICS
  • 2018-12. Genome-wide map of human and mouse transcription factor binding sites aggregated from ChIP-Seq data in BMC RESEARCH NOTES
  • 2015-02. Integrative analysis of 111 reference human epigenomes in NATURE
  • 2016-12. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer in GENOME BIOLOGY
  • 2010-04. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons in NATURE NEUROSCIENCE
  • 2010-05. Widespread transcription at neuronal activity-regulated enhancers in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-018-5387-1

    DOI

    http://dx.doi.org/10.1186/s12864-018-5387-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111839804

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30709331


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lioznova", 
            "givenName": "Anna V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King Abdullah University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khamis", 
            "givenName": "Abdullah M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia", 
                "Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia", 
                "Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Artemov", 
            "givenName": "Artem V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Besedina", 
            "givenName": "Elizaveta", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow Institute of Physics and Technology", 
              "id": "https://www.grid.ac/institutes/grid.18763.3b", 
              "name": [
                "Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Moscow Region, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramensky", 
            "givenName": "Vasily", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King Abdullah University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bajic", 
            "givenName": "Vladimir B.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia", 
                "Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia", 
                "Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kulakovskiy", 
            "givenName": "Ivan V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia", 
                "Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Moscow Region, Russia", 
                "Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Medvedeva", 
            "givenName": "Yulia A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature11232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003040774", 
              "https://doi.org/10.1038/nature11232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003714959", 
              "https://doi.org/10.1038/nmeth.1906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2007.02.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005073092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/database/bav067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006173042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006290539", 
              "https://doi.org/10.1038/nn.2514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006290539", 
              "https://doi.org/10.1038/nn.2514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jnc.13646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006598847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.23758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006838181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008910488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-7037-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010537813", 
              "https://doi.org/10.1007/978-1-4419-7037-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-7037-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010537813", 
              "https://doi.org/10.1007/978-1-4419-7037-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1001025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010753644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2728-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011679403", 
              "https://doi.org/10.1186/s12864-016-2728-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2728-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011679403", 
              "https://doi.org/10.1186/s12864-016-2728-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.113027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011759591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neurobiolaging.2013.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012094014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012425816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014351455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.24.8.3497-3504.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014746027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014903556", 
              "https://doi.org/10.1038/nature16462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015302967", 
              "https://doi.org/10.1038/ng1089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015302967", 
              "https://doi.org/10.1038/ng1089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016001071", 
              "https://doi.org/10.1038/sj.onc.1205599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016001071", 
              "https://doi.org/10.1038/sj.onc.1205599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016247401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/theoncologist.2012-0465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016309953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.136101.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016398990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0056869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016777422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016906145", 
              "https://doi.org/10.1038/nature09033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016906145", 
              "https://doi.org/10.1038/nature09033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019192364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019852236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m403427200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020369341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020883389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022158752", 
              "https://doi.org/10.1038/nature12787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2015.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022503709", 
              "https://doi.org/10.1038/ijo.2015.13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022921387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023881211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024934603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circresaha.115.305206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025624449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circresaha.115.305206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025624449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028633739", 
              "https://doi.org/10.1038/nrg3230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370855", 
              "https://doi.org/10.1038/nature13182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.taap.2011.09.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029847209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031836937", 
              "https://doi.org/10.1038/nature14248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032451970", 
              "https://doi.org/10.1038/nrg3273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3835(02)00549-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032720568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3835(02)00549-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032720568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033153839", 
              "https://doi.org/10.1038/nrg2045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2016.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033372210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.08.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035697575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0879-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038383023", 
              "https://doi.org/10.1186/s13059-016-0879-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m111.253609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039624350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0008798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039656119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041099477", 
              "https://doi.org/10.1186/1471-2164-15-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041201648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.234294.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041721869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13062-016-0113-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041865795", 
              "https://doi.org/10.1186/s13062-016-0113-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/cshperspect.a019505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042515741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2011.39.3090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042573733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042720804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043158715", 
              "https://doi.org/10.1038/ng.3477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnbeh.2015.00347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045194168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/epi.15.102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046528193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.097857.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047484720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/22883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047581386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/123484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047639292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pros.21109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051475863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pros.21109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051475863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0560-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052793442", 
              "https://doi.org/10.1186/s13059-014-0560-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0560-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052793442", 
              "https://doi.org/10.1186/s13059-014-0560-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbv095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059932069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/me.2006-0205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064327754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14806/ej.17.1.200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067372670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074590915", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.212050.116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083854569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gutjnl-2016-312742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084225442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijms18030528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084435824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaj2239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085177708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13104-018-3856-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107798956", 
              "https://doi.org/10.1186/s13104-018-3856-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over genomic regions in the downstream bioinformatic analysis.\nRESULTS: We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable marker of such inactivation.\nCONCLUSIONS: CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to directly measuring gene expression due to more stable nature of DNA.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-018-5387-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6754139", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6959789", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "CpG traffic lights are markers of regulatory regions in human genome", 
        "pagination": "102", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bb2f3100b8b7d93bfa9ae903ec7aa5abc394a10703d457a04ec9b5cf1e87c91c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30709331"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-018-5387-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111839804"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-018-5387-1", 
          "https://app.dimensions.ai/details/publication/pub.1111839804"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105438_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12864-018-5387-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5387-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5387-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5387-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5387-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    362 TRIPLES      21 PREDICATES      100 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-018-5387-1 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N7d05d2cc4ed6477da0c19998c712edfa
    4 schema:citation sg:pub.10.1007/978-1-4419-7037-4_3
    5 sg:pub.10.1038/ijo.2015.13
    6 sg:pub.10.1038/nature09033
    7 sg:pub.10.1038/nature11232
    8 sg:pub.10.1038/nature12787
    9 sg:pub.10.1038/nature13182
    10 sg:pub.10.1038/nature14248
    11 sg:pub.10.1038/nature16462
    12 sg:pub.10.1038/ng.3477
    13 sg:pub.10.1038/ng1089
    14 sg:pub.10.1038/nmeth.1906
    15 sg:pub.10.1038/nn.2514
    16 sg:pub.10.1038/nrg2045
    17 sg:pub.10.1038/nrg3230
    18 sg:pub.10.1038/nrg3273
    19 sg:pub.10.1038/sj.onc.1205599
    20 sg:pub.10.1186/1471-2164-15-119
    21 sg:pub.10.1186/s12864-016-2728-9
    22 sg:pub.10.1186/s13059-014-0560-6
    23 sg:pub.10.1186/s13059-016-0879-2
    24 sg:pub.10.1186/s13062-016-0113-x
    25 sg:pub.10.1186/s13104-018-3856-x
    26 https://app.dimensions.ai/details/publication/pub.1074590915
    27 https://doi.org/10.1002/art.23758
    28 https://doi.org/10.1002/pros.21109
    29 https://doi.org/10.1016/j.cell.2016.08.056
    30 https://doi.org/10.1016/j.neurobiolaging.2013.01.005
    31 https://doi.org/10.1016/j.neuron.2007.02.022
    32 https://doi.org/10.1016/j.stem.2016.06.020
    33 https://doi.org/10.1016/j.taap.2011.09.016
    34 https://doi.org/10.1016/s0304-3835(02)00549-9
    35 https://doi.org/10.1074/jbc.m111.253609
    36 https://doi.org/10.1074/jbc.m403427200
    37 https://doi.org/10.1093/bib/bbv095
    38 https://doi.org/10.1093/bioinformatics/btp120
    39 https://doi.org/10.1093/bioinformatics/btr167
    40 https://doi.org/10.1093/bioinformatics/btt656
    41 https://doi.org/10.1093/bioinformatics/btu170
    42 https://doi.org/10.1093/database/bav067
    43 https://doi.org/10.1093/nar/gkt838
    44 https://doi.org/10.1093/nar/gkv1249
    45 https://doi.org/10.1093/nar/gkw1007
    46 https://doi.org/10.1093/nar/gkw1112
    47 https://doi.org/10.1093/nar/gkw426
    48 https://doi.org/10.1093/nar/gkw951
    49 https://doi.org/10.1093/nar/gkw995
    50 https://doi.org/10.1101/cshperspect.a019505
    51 https://doi.org/10.1101/gad.234294.113
    52 https://doi.org/10.1101/gr.097857.109
    53 https://doi.org/10.1101/gr.136101.111
    54 https://doi.org/10.1101/gr.212050.116
    55 https://doi.org/10.1111/jnc.13646
    56 https://doi.org/10.1126/science.aaj2239
    57 https://doi.org/10.1128/mcb.24.8.3497-3504.2004
    58 https://doi.org/10.1136/gutjnl-2016-312742
    59 https://doi.org/10.1155/2015/123484
    60 https://doi.org/10.1161/circresaha.115.305206
    61 https://doi.org/10.1200/jco.2011.39.3090
    62 https://doi.org/10.1210/me.2006-0205
    63 https://doi.org/10.1242/dev.113027
    64 https://doi.org/10.1371/journal.pcbi.1001025
    65 https://doi.org/10.1371/journal.pgen.1000602
    66 https://doi.org/10.1371/journal.pgen.1001103
    67 https://doi.org/10.1371/journal.pone.0008798
    68 https://doi.org/10.1371/journal.pone.0056869
    69 https://doi.org/10.14806/ej.17.1.200
    70 https://doi.org/10.1634/theoncologist.2012-0465
    71 https://doi.org/10.2217/epi.15.102
    72 https://doi.org/10.3389/fnbeh.2015.00347
    73 https://doi.org/10.3390/ijms18030528
    74 https://doi.org/10.5772/22883
    75 schema:datePublished 2019-12
    76 schema:datePublishedReg 2019-12-01
    77 schema:description BACKGROUND: DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over genomic regions in the downstream bioinformatic analysis. RESULTS: We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable marker of such inactivation. CONCLUSIONS: CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to directly measuring gene expression due to more stable nature of DNA.
    78 schema:genre research_article
    79 schema:inLanguage en
    80 schema:isAccessibleForFree true
    81 schema:isPartOf N1e17ff170dff439bbd274a41a5be6c75
    82 N8b07b7c4d2f84578aa2cf22164734253
    83 sg:journal.1023790
    84 schema:name CpG traffic lights are markers of regulatory regions in human genome
    85 schema:pagination 102
    86 schema:productId N6745f87ab65e4a0084a0bad0ab7bfe7c
    87 N6f3ccc09ad8a4dd391917ec9780869dd
    88 N87cb42fa4ef54c8da632b9935b5d6f77
    89 Nfb05db6de3da4f5da1178f10466202d4
    90 Nfc4a6583b7484e6595d4b8626fcf41a6
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111839804
    92 https://doi.org/10.1186/s12864-018-5387-1
    93 schema:sdDatePublished 2019-04-11T09:02
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N386514053c244770a93be07b880dd862
    96 schema:url https://link.springer.com/10.1186%2Fs12864-018-5387-1
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N0bb9e7ac5dbc4c2d88f819ec0366e6d3 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    101 schema:familyName Besedina
    102 schema:givenName Elizaveta
    103 rdf:type schema:Person
    104 N0d34e318ca9c4b5390014cfb87876d31 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    105 schema:familyName Lioznova
    106 schema:givenName Anna V.
    107 rdf:type schema:Person
    108 N1e17ff170dff439bbd274a41a5be6c75 schema:issueNumber 1
    109 rdf:type schema:PublicationIssue
    110 N1ea66db91c93403d9b33684eadc1ca30 rdf:first Nffd27e3d04d54f2f8857e986833c0b0b
    111 rdf:rest N4ca8e5f4359e4631abf9488b6f81a7f6
    112 N386514053c244770a93be07b880dd862 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 N4ca8e5f4359e4631abf9488b6f81a7f6 rdf:first Na8febb8ce7e445f39089b6671e0e100c
    115 rdf:rest N96b7000fa87641f5a955252eff1727d3
    116 N6745f87ab65e4a0084a0bad0ab7bfe7c schema:name dimensions_id
    117 schema:value pub.1111839804
    118 rdf:type schema:PropertyValue
    119 N6f3ccc09ad8a4dd391917ec9780869dd schema:name nlm_unique_id
    120 schema:value 100965258
    121 rdf:type schema:PropertyValue
    122 N7126c60d909d432992b74b24ec1ec29e schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    123 schema:familyName Artemov
    124 schema:givenName Artem V.
    125 rdf:type schema:Person
    126 N7c17efc1e2b441d887714f6653eb81a1 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    127 schema:familyName Kulakovskiy
    128 schema:givenName Ivan V.
    129 rdf:type schema:Person
    130 N7d05d2cc4ed6477da0c19998c712edfa rdf:first N0d34e318ca9c4b5390014cfb87876d31
    131 rdf:rest N8eba11cc1b88479784e653fddac1fa41
    132 N87cb42fa4ef54c8da632b9935b5d6f77 schema:name pubmed_id
    133 schema:value 30709331
    134 rdf:type schema:PropertyValue
    135 N8b07b7c4d2f84578aa2cf22164734253 schema:volumeNumber 20
    136 rdf:type schema:PublicationVolume
    137 N8eba11cc1b88479784e653fddac1fa41 rdf:first Nc5b22b03275f401db989426f705d45fa
    138 rdf:rest Ncaebce6309bc4ce789bfae4fa8352db6
    139 N96b7000fa87641f5a955252eff1727d3 rdf:first N7c17efc1e2b441d887714f6653eb81a1
    140 rdf:rest Nc98b3c99b26746f598bf863bcb2cd675
    141 Na8febb8ce7e445f39089b6671e0e100c schema:affiliation https://www.grid.ac/institutes/grid.45672.32
    142 schema:familyName Bajic
    143 schema:givenName Vladimir B.
    144 rdf:type schema:Person
    145 Naba52e60c36b4fc2b1c94b1e1bf014d1 rdf:first N0bb9e7ac5dbc4c2d88f819ec0366e6d3
    146 rdf:rest N1ea66db91c93403d9b33684eadc1ca30
    147 Nc212e0974cdb4def817a45e1f137464e schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    148 schema:familyName Medvedeva
    149 schema:givenName Yulia A.
    150 rdf:type schema:Person
    151 Nc5b22b03275f401db989426f705d45fa schema:affiliation https://www.grid.ac/institutes/grid.45672.32
    152 schema:familyName Khamis
    153 schema:givenName Abdullah M.
    154 rdf:type schema:Person
    155 Nc98b3c99b26746f598bf863bcb2cd675 rdf:first Nc212e0974cdb4def817a45e1f137464e
    156 rdf:rest rdf:nil
    157 Ncaebce6309bc4ce789bfae4fa8352db6 rdf:first N7126c60d909d432992b74b24ec1ec29e
    158 rdf:rest Naba52e60c36b4fc2b1c94b1e1bf014d1
    159 Nfb05db6de3da4f5da1178f10466202d4 schema:name doi
    160 schema:value 10.1186/s12864-018-5387-1
    161 rdf:type schema:PropertyValue
    162 Nfc4a6583b7484e6595d4b8626fcf41a6 schema:name readcube_id
    163 schema:value bb2f3100b8b7d93bfa9ae903ec7aa5abc394a10703d457a04ec9b5cf1e87c91c
    164 rdf:type schema:PropertyValue
    165 Nffd27e3d04d54f2f8857e986833c0b0b schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
    166 schema:familyName Ramensky
    167 schema:givenName Vasily
    168 rdf:type schema:Person
    169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Biological Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Genetics
    174 rdf:type schema:DefinedTerm
    175 sg:grant.6754139 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-5387-1
    176 rdf:type schema:MonetaryGrant
    177 sg:grant.6959789 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-5387-1
    178 rdf:type schema:MonetaryGrant
    179 sg:journal.1023790 schema:issn 1471-2164
    180 schema:name BMC Genomics
    181 rdf:type schema:Periodical
    182 sg:pub.10.1007/978-1-4419-7037-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010537813
    183 https://doi.org/10.1007/978-1-4419-7037-4_3
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ijo.2015.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022503709
    186 https://doi.org/10.1038/ijo.2015.13
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature09033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016906145
    189 https://doi.org/10.1038/nature09033
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature11232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003040774
    192 https://doi.org/10.1038/nature11232
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
    195 https://doi.org/10.1038/nature12787
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature13182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029370855
    198 https://doi.org/10.1038/nature13182
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature14248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031836937
    201 https://doi.org/10.1038/nature14248
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature16462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014903556
    204 https://doi.org/10.1038/nature16462
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/ng.3477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043158715
    207 https://doi.org/10.1038/ng.3477
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ng1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015302967
    210 https://doi.org/10.1038/ng1089
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nmeth.1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003714959
    213 https://doi.org/10.1038/nmeth.1906
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nn.2514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006290539
    216 https://doi.org/10.1038/nn.2514
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nrg2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033153839
    219 https://doi.org/10.1038/nrg2045
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nrg3230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028633739
    222 https://doi.org/10.1038/nrg3230
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nrg3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032451970
    225 https://doi.org/10.1038/nrg3273
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/sj.onc.1205599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016001071
    228 https://doi.org/10.1038/sj.onc.1205599
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/1471-2164-15-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041099477
    231 https://doi.org/10.1186/1471-2164-15-119
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/s12864-016-2728-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011679403
    234 https://doi.org/10.1186/s12864-016-2728-9
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/s13059-014-0560-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052793442
    237 https://doi.org/10.1186/s13059-014-0560-6
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/s13059-016-0879-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038383023
    240 https://doi.org/10.1186/s13059-016-0879-2
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/s13062-016-0113-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041865795
    243 https://doi.org/10.1186/s13062-016-0113-x
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/s13104-018-3856-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107798956
    246 https://doi.org/10.1186/s13104-018-3856-x
    247 rdf:type schema:CreativeWork
    248 https://app.dimensions.ai/details/publication/pub.1074590915 schema:CreativeWork
    249 https://doi.org/10.1002/art.23758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006838181
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1002/pros.21109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051475863
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/j.cell.2016.08.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035697575
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/j.neurobiolaging.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012094014
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/j.neuron.2007.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005073092
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/j.stem.2016.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033372210
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.taap.2011.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029847209
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/s0304-3835(02)00549-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032720568
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1074/jbc.m111.253609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039624350
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1074/jbc.m403427200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020369341
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1093/bib/bbv095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413120
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/bioinformatics/btr167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022921387
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btt656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016247401
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/database/bav067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006173042
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1093/nar/gkt838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008910488
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/nar/gkv1249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019852236
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/nar/gkw1007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023881211
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/nar/gkw1112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059932069
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/nar/gkw426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024934603
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/nar/gkw951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014351455
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/nar/gkw995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019192364
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1101/cshperspect.a019505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042515741
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1101/gad.234294.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041721869
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1101/gr.097857.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047484720
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1101/gr.136101.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016398990
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1101/gr.212050.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083854569
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1111/jnc.13646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006598847
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1126/science.aaj2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085177708
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1128/mcb.24.8.3497-3504.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014746027
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1136/gutjnl-2016-312742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084225442
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1155/2015/123484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047639292
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1161/circresaha.115.305206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025624449
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1200/jco.2011.39.3090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042573733
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1210/me.2006-0205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064327754
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1242/dev.113027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011759591
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1371/journal.pcbi.1001025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010753644
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1371/journal.pgen.1000602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020883389
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1371/journal.pgen.1001103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041201648
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1371/journal.pone.0008798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039656119
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1371/journal.pone.0056869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016777422
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1634/theoncologist.2012-0465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016309953
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.2217/epi.15.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046528193
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.3389/fnbeh.2015.00347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045194168
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.3390/ijms18030528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084435824
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.5772/22883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047581386
    344 rdf:type schema:CreativeWork
    345 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    346 schema:name Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia
    347 rdf:type schema:Organization
    348 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
    349 schema:name Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Moscow Region, Russia
    350 rdf:type schema:Organization
    351 https://www.grid.ac/institutes/grid.45672.32 schema:alternateName King Abdullah University of Science and Technology
    352 schema:name Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
    353 rdf:type schema:Organization
    354 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    355 schema:name Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
    356 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia
    357 Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051, Moscow, Russia
    358 Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
    359 Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
    360 Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Moscow Region, Russia
    361 Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
    362 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...