Innate immunity in the simplest animals – placozoans View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-05

AUTHORS

Kai Kamm, Bernd Schierwater, Rob DeSalle

ABSTRACT

BACKGROUND: Innate immunity provides the core recognition system in animals for preventing infection, but also plays an important role in managing the relationship between an animal host and its symbiont. Most of our knowledge about innate immunity stems from a few animal model systems, but substantial variation between metazoan phyla has been revealed by comparative genomic studies. The exploration of more taxa is still needed to better understand the evolution of immunity related mechanisms. Placozoans are morphologically the simplest organized metazoans and the association between these enigmatic animals and their rickettsial endosymbionts has recently been elucidated. Our analyses of the novel placozoan nuclear genome of Trichoplax sp. H2 and its associated rickettsial endosymbiont genome clearly pointed to a mutualistic and co-evolutionary relationship. This discovery raises the question of how the placozoan holobiont manages symbiosis and, conversely, how it defends against harmful microorganisms. In this study, we examined the annotated genome of Trichoplax sp. H2 for the presence of genes involved in innate immune recognition and downstream signaling. RESULTS: A rich repertoire of genes belonging to the Toll-like and NOD-like receptor pathways, to scavenger receptors and to secreted fibrinogen-related domain genes was identified in the genome of Trichoplax sp. H2. Nevertheless, the innate immunity related pathways in placozoans deviate in several instances from well investigated vertebrates and invertebrates. While true Toll- and NOD-like receptors are absent, the presence of many genes of the downstream signaling cascade suggests at least primordial Toll-like receptor signaling in Placozoa. An abundance of scavenger receptors, fibrinogen-related domain genes and Apaf-1 genes clearly constitutes an expansion of the immunity related gene repertoire specific to Placozoa. CONCLUSIONS: The found wealth of immunity related genes present in Placozoa is surprising and quite striking in light of the extremely simple placozoan body plan and their sparse cell type makeup. Research is warranted to reveal how Placozoa utilize this immune repertoire to manage and maintain their associated microbiota as well as to fend-off pathogens. More... »

PAGES

5

References to SciGraph publications

  • 2004-03-02. The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary in DEVELOPMENT GENES AND EVOLUTION
  • 2013-06-18. Innate immune recognition of the microbiota promotes host-microbial symbiosis in NATURE IMMUNOLOGY
  • 2015-07-06. Recognition of Microbial Glycans by Human Intelectin in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1981-07. Ergänzende Untersuchungen zur Ultrastruktur von Trichoplax adhaerens F.E. Schulze (Placozoa) in ZOOMORPHOLOGY
  • 2011-09-29. SignalP 4.0: discriminating signal peptides from transmembrane regions in NATURE METHODS
  • 2007-04-16. The innate immune repertoire in Cnidaria - ancestral complexity and stochastic gene loss in GENOME BIOLOGY
  • 2013-08-09. Scavenger receptors in homeostasis and immunity in NATURE REVIEWS IMMUNOLOGY
  • 2008-01-16. The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors in BMC EVOLUTIONARY BIOLOGY
  • 2008-08. The Trichoplax genome and the nature of placozoans in NATURE
  • 1972-12. Eibildung und furchung von Trichoplax adhaerens F. E. Schulze (Placozoa) in ZOOMORPHOLOGY
  • 2011-09-20. Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates in CELL RESEARCH
  • 2018-07-24. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction in SCIENTIFIC REPORTS
  • 2009-12-15. BLAST+: architecture and applications in BMC BIOINFORMATICS
  • 2002-05. Evolution of the lectin–complement pathway and its role in innate immunity in NATURE REVIEWS IMMUNOLOGY
  • 2008-02. Phagocytosis and comparative innate immunity: learning on the fly in NATURE REVIEWS IMMUNOLOGY
  • 2008-01-04. The transcription factor NF-κB in the demosponge Amphimedon queenslandica: insights on the evolutionary origin of the Rel homology domain in DEVELOPMENT GENES AND EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-018-5377-3

    DOI

    http://dx.doi.org/10.1186/s12864-018-5377-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111161482

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30611207


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunity, Innate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Invertebrates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Placozoa", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Symbiosis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, B\u00fcnteweg 17d, D-30559 Hannover, Germany", 
              "id": "http://www.grid.ac/institutes/grid.412970.9", 
              "name": [
                "ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, B\u00fcnteweg 17d, D-30559 Hannover, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamm", 
            "givenName": "Kai", 
            "id": "sg:person.0721522045.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721522045.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, B\u00fcnteweg 17d, D-30559 Hannover, Germany", 
                "Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA", 
                "Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schierwater", 
            "givenName": "Bernd", 
            "id": "sg:person.0651770450.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651770450.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA", 
              "id": "http://www.grid.ac/institutes/grid.241963.b", 
              "name": [
                "Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DeSalle", 
            "givenName": "Rob", 
            "id": "sg:person.01247120673.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247120673.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-018-29400-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105683839", 
              "https://doi.org/10.1038/s41598-018-29400-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2011.156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007562279", 
              "https://doi.org/10.1038/cr.2011.156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018308318", 
              "https://doi.org/10.1038/nature07191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri2240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002014242", 
              "https://doi.org/10.1038/nri2240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00427-004-0390-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002255684", 
              "https://doi.org/10.1007/s00427-004-0390-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00427-007-0197-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009371475", 
              "https://doi.org/10.1007/s00427-007-0197-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.3053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015127559", 
              "https://doi.org/10.1038/nsmb.3053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-4-r59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004815958", 
              "https://doi.org/10.1186/gb-2007-8-4-r59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050579230", 
              "https://doi.org/10.1186/1471-2105-10-421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00391925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016373660", 
              "https://doi.org/10.1007/bf00391925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00310320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029626457", 
              "https://doi.org/10.1007/bf00310320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028497102", 
              "https://doi.org/10.1038/nri800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.2635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017265756", 
              "https://doi.org/10.1038/ni.2635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049894869", 
              "https://doi.org/10.1038/nmeth.1701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri3515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019085796", 
              "https://doi.org/10.1038/nri3515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-8-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011411800", 
              "https://doi.org/10.1186/1471-2148-8-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-05", 
        "datePublishedReg": "2019-01-05", 
        "description": "BACKGROUND: Innate immunity provides the core recognition system in animals for preventing infection, but also plays an important role in managing the relationship between an animal host and its symbiont. Most of our knowledge about innate immunity stems from a few animal model systems, but substantial variation between metazoan phyla has been revealed by comparative genomic studies. The exploration of more taxa is still needed to better understand the evolution of immunity related mechanisms. Placozoans are morphologically the simplest organized metazoans and the association between these enigmatic animals and their rickettsial endosymbionts has recently been elucidated. Our analyses of the novel placozoan nuclear genome of Trichoplax sp. H2 and its associated rickettsial endosymbiont genome clearly pointed to a mutualistic and co-evolutionary relationship. This discovery raises the question of how the placozoan holobiont manages symbiosis and, conversely, how it defends against harmful microorganisms. In this study, we examined the annotated genome of Trichoplax sp. H2 for the presence of genes involved in innate immune recognition and downstream signaling.\nRESULTS: A rich repertoire of genes belonging to the Toll-like and NOD-like receptor pathways, to scavenger receptors and to secreted fibrinogen-related domain genes was identified in the genome of Trichoplax sp. H2. Nevertheless, the innate immunity related pathways in placozoans deviate in several instances from well investigated vertebrates and invertebrates. While true Toll- and NOD-like receptors are absent, the presence of many genes of the downstream signaling cascade suggests at least primordial Toll-like receptor signaling in Placozoa. An abundance of scavenger receptors, fibrinogen-related domain genes and Apaf-1 genes clearly constitutes an expansion of the immunity related gene repertoire specific to Placozoa.\nCONCLUSIONS: The found wealth of immunity related genes present in Placozoa is surprising and quite striking in light of the extremely simple placozoan body plan and their sparse cell type makeup. Research is warranted to reveal how Placozoa utilize this immune repertoire to manage and maintain their associated microbiota as well as to fend-off pathogens.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12864-018-5377-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "domain genes", 
          "innate immunity", 
          "comparative genomic studies", 
          "evolution of immunity", 
          "co-evolutionary relationship", 
          "NOD-like receptor pathway", 
          "Apaf-1 gene", 
          "presence of genes", 
          "endosymbiont genomes", 
          "nuclear genome", 
          "metazoan phyla", 
          "scavenger receptors", 
          "body plan", 
          "rickettsial endosymbionts", 
          "genomic studies", 
          "NOD-like receptors", 
          "gene repertoire", 
          "enigmatic animal", 
          "Placozoa", 
          "more taxa", 
          "innate immune recognition", 
          "genome", 
          "downstream signaling", 
          "animal hosts", 
          "genes", 
          "placozoans", 
          "animal model systems", 
          "receptor pathway", 
          "sp", 
          "rich repertoire", 
          "model system", 
          "harmful microorganisms", 
          "Toll-like receptors", 
          "immune repertoire", 
          "pathway", 
          "immune recognition", 
          "repertoire", 
          "receptors", 
          "holobiont", 
          "symbionts", 
          "metazoans", 
          "endosymbionts", 
          "mutualistic", 
          "vertebrates", 
          "important role", 
          "invertebrates", 
          "phyla", 
          "taxa", 
          "symbiosis", 
          "true toll", 
          "substantial variation", 
          "signaling", 
          "immunity", 
          "abundance", 
          "microorganisms", 
          "animals", 
          "pathogens", 
          "host", 
          "cascade", 
          "microbiota", 
          "discovery", 
          "makeup", 
          "evolution", 
          "mechanism", 
          "presence", 
          "role", 
          "variation", 
          "relationship", 
          "study", 
          "light", 
          "expansion", 
          "infection", 
          "association", 
          "analysis", 
          "toll", 
          "recognition", 
          "wealth", 
          "knowledge", 
          "system", 
          "H2", 
          "questions", 
          "instances", 
          "exploration", 
          "research", 
          "plan", 
          "recognition system", 
          "core recognition system", 
          "novel placozoan nuclear genome", 
          "placozoan nuclear genome", 
          "Trichoplax sp", 
          "associated rickettsial endosymbiont genome", 
          "rickettsial endosymbiont genome", 
          "placozoan holobiont", 
          "fibrinogen-related domain genes", 
          "least primordial Toll-like receptor", 
          "primordial Toll-like receptor", 
          "immunity related gene repertoire", 
          "related gene repertoire", 
          "wealth of immunity", 
          "simple placozoan body plan", 
          "placozoan body plan", 
          "sparse cell type makeup", 
          "cell type makeup", 
          "type makeup", 
          "simplest animals \u2013 placozoans", 
          "animals \u2013 placozoans"
        ], 
        "name": "Innate immunity in the simplest animals \u2013 placozoans", 
        "pagination": "5", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111161482"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-018-5377-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30611207"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-018-5377-3", 
          "https://app.dimensions.ai/details/publication/pub.1111161482"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_829.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12864-018-5377-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5377-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5377-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5377-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5377-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    289 TRIPLES      22 PREDICATES      157 URIs      131 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-018-5377-3 schema:about N26f3ef1c3bc946028254ff35a61892e9
    2 N45b098e28167423098f0a462e6613624
    3 N5868b20e3079425b8ee581f863295522
    4 N75e680001b4b4729af33ab25b302d08f
    5 N948b6500c2a8463293250ad06fe3b144
    6 N9fddfbfafe9146e79c3da0268183937d
    7 Nd8879d1c5e3d4b68ad2f1a0bb940e0f2
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 anzsrc-for:11
    11 anzsrc-for:1107
    12 schema:author Nadb858c7ab8146afad6f59b94016b709
    13 schema:citation sg:pub.10.1007/bf00310320
    14 sg:pub.10.1007/bf00391925
    15 sg:pub.10.1007/s00427-004-0390-8
    16 sg:pub.10.1007/s00427-007-0197-5
    17 sg:pub.10.1038/cr.2011.156
    18 sg:pub.10.1038/nature07191
    19 sg:pub.10.1038/ni.2635
    20 sg:pub.10.1038/nmeth.1701
    21 sg:pub.10.1038/nri2240
    22 sg:pub.10.1038/nri3515
    23 sg:pub.10.1038/nri800
    24 sg:pub.10.1038/nsmb.3053
    25 sg:pub.10.1038/s41598-018-29400-y
    26 sg:pub.10.1186/1471-2105-10-421
    27 sg:pub.10.1186/1471-2148-8-9
    28 sg:pub.10.1186/gb-2007-8-4-r59
    29 schema:datePublished 2019-01-05
    30 schema:datePublishedReg 2019-01-05
    31 schema:description BACKGROUND: Innate immunity provides the core recognition system in animals for preventing infection, but also plays an important role in managing the relationship between an animal host and its symbiont. Most of our knowledge about innate immunity stems from a few animal model systems, but substantial variation between metazoan phyla has been revealed by comparative genomic studies. The exploration of more taxa is still needed to better understand the evolution of immunity related mechanisms. Placozoans are morphologically the simplest organized metazoans and the association between these enigmatic animals and their rickettsial endosymbionts has recently been elucidated. Our analyses of the novel placozoan nuclear genome of Trichoplax sp. H2 and its associated rickettsial endosymbiont genome clearly pointed to a mutualistic and co-evolutionary relationship. This discovery raises the question of how the placozoan holobiont manages symbiosis and, conversely, how it defends against harmful microorganisms. In this study, we examined the annotated genome of Trichoplax sp. H2 for the presence of genes involved in innate immune recognition and downstream signaling. RESULTS: A rich repertoire of genes belonging to the Toll-like and NOD-like receptor pathways, to scavenger receptors and to secreted fibrinogen-related domain genes was identified in the genome of Trichoplax sp. H2. Nevertheless, the innate immunity related pathways in placozoans deviate in several instances from well investigated vertebrates and invertebrates. While true Toll- and NOD-like receptors are absent, the presence of many genes of the downstream signaling cascade suggests at least primordial Toll-like receptor signaling in Placozoa. An abundance of scavenger receptors, fibrinogen-related domain genes and Apaf-1 genes clearly constitutes an expansion of the immunity related gene repertoire specific to Placozoa. CONCLUSIONS: The found wealth of immunity related genes present in Placozoa is surprising and quite striking in light of the extremely simple placozoan body plan and their sparse cell type makeup. Research is warranted to reveal how Placozoa utilize this immune repertoire to manage and maintain their associated microbiota as well as to fend-off pathogens.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N263c1b18819142a7b46fb56cb6b4a847
    36 N484cb569381f4df8945fbb044ad5bae8
    37 sg:journal.1023790
    38 schema:keywords Apaf-1 gene
    39 H2
    40 NOD-like receptor pathway
    41 NOD-like receptors
    42 Placozoa
    43 Toll-like receptors
    44 Trichoplax sp
    45 abundance
    46 analysis
    47 animal hosts
    48 animal model systems
    49 animals
    50 animals – placozoans
    51 associated rickettsial endosymbiont genome
    52 association
    53 body plan
    54 cascade
    55 cell type makeup
    56 co-evolutionary relationship
    57 comparative genomic studies
    58 core recognition system
    59 discovery
    60 domain genes
    61 downstream signaling
    62 endosymbiont genomes
    63 endosymbionts
    64 enigmatic animal
    65 evolution
    66 evolution of immunity
    67 expansion
    68 exploration
    69 fibrinogen-related domain genes
    70 gene repertoire
    71 genes
    72 genome
    73 genomic studies
    74 harmful microorganisms
    75 holobiont
    76 host
    77 immune recognition
    78 immune repertoire
    79 immunity
    80 immunity related gene repertoire
    81 important role
    82 infection
    83 innate immune recognition
    84 innate immunity
    85 instances
    86 invertebrates
    87 knowledge
    88 least primordial Toll-like receptor
    89 light
    90 makeup
    91 mechanism
    92 metazoan phyla
    93 metazoans
    94 microbiota
    95 microorganisms
    96 model system
    97 more taxa
    98 mutualistic
    99 novel placozoan nuclear genome
    100 nuclear genome
    101 pathogens
    102 pathway
    103 phyla
    104 placozoan body plan
    105 placozoan holobiont
    106 placozoan nuclear genome
    107 placozoans
    108 plan
    109 presence
    110 presence of genes
    111 primordial Toll-like receptor
    112 questions
    113 receptor pathway
    114 receptors
    115 recognition
    116 recognition system
    117 related gene repertoire
    118 relationship
    119 repertoire
    120 research
    121 rich repertoire
    122 rickettsial endosymbiont genome
    123 rickettsial endosymbionts
    124 role
    125 scavenger receptors
    126 signaling
    127 simple placozoan body plan
    128 simplest animals – placozoans
    129 sp
    130 sparse cell type makeup
    131 study
    132 substantial variation
    133 symbionts
    134 symbiosis
    135 system
    136 taxa
    137 toll
    138 true toll
    139 type makeup
    140 variation
    141 vertebrates
    142 wealth
    143 wealth of immunity
    144 schema:name Innate immunity in the simplest animals – placozoans
    145 schema:pagination 5
    146 schema:productId N3fb0f55cfa284d57aeb5003d7e40ea7f
    147 Naabb0ce5b86e42968a37414a1241a69c
    148 Nea5900d24d2948798b1ab2552649d60b
    149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111161482
    150 https://doi.org/10.1186/s12864-018-5377-3
    151 schema:sdDatePublished 2021-11-01T18:35
    152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    153 schema:sdPublisher N433c151412db4f1896a41f6bc9a4e2b8
    154 schema:url https://doi.org/10.1186/s12864-018-5377-3
    155 sgo:license sg:explorer/license/
    156 sgo:sdDataset articles
    157 rdf:type schema:ScholarlyArticle
    158 N263c1b18819142a7b46fb56cb6b4a847 schema:volumeNumber 20
    159 rdf:type schema:PublicationVolume
    160 N26f3ef1c3bc946028254ff35a61892e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Invertebrates
    162 rdf:type schema:DefinedTerm
    163 N27d4fbcc64714aada18a8c9e3a704020 rdf:first sg:person.01247120673.28
    164 rdf:rest rdf:nil
    165 N3fb0f55cfa284d57aeb5003d7e40ea7f schema:name dimensions_id
    166 schema:value pub.1111161482
    167 rdf:type schema:PropertyValue
    168 N433c151412db4f1896a41f6bc9a4e2b8 schema:name Springer Nature - SN SciGraph project
    169 rdf:type schema:Organization
    170 N453edb26555a4c0cbbc358b462824933 rdf:first sg:person.0651770450.67
    171 rdf:rest N27d4fbcc64714aada18a8c9e3a704020
    172 N45b098e28167423098f0a462e6613624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Immunity, Innate
    174 rdf:type schema:DefinedTerm
    175 N484cb569381f4df8945fbb044ad5bae8 schema:issueNumber 1
    176 rdf:type schema:PublicationIssue
    177 N5868b20e3079425b8ee581f863295522 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Phylogeny
    179 rdf:type schema:DefinedTerm
    180 N75e680001b4b4729af33ab25b302d08f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Symbiosis
    182 rdf:type schema:DefinedTerm
    183 N948b6500c2a8463293250ad06fe3b144 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Animals
    185 rdf:type schema:DefinedTerm
    186 N9fddfbfafe9146e79c3da0268183937d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Placozoa
    188 rdf:type schema:DefinedTerm
    189 Naabb0ce5b86e42968a37414a1241a69c schema:name doi
    190 schema:value 10.1186/s12864-018-5377-3
    191 rdf:type schema:PropertyValue
    192 Nadb858c7ab8146afad6f59b94016b709 rdf:first sg:person.0721522045.32
    193 rdf:rest N453edb26555a4c0cbbc358b462824933
    194 Nd8879d1c5e3d4b68ad2f1a0bb940e0f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Genome
    196 rdf:type schema:DefinedTerm
    197 Nea5900d24d2948798b1ab2552649d60b schema:name pubmed_id
    198 schema:value 30611207
    199 rdf:type schema:PropertyValue
    200 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    201 schema:name Biological Sciences
    202 rdf:type schema:DefinedTerm
    203 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    204 schema:name Genetics
    205 rdf:type schema:DefinedTerm
    206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Medical and Health Sciences
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Immunology
    211 rdf:type schema:DefinedTerm
    212 sg:journal.1023790 schema:issn 1471-2164
    213 schema:name BMC Genomics
    214 schema:publisher Springer Nature
    215 rdf:type schema:Periodical
    216 sg:person.01247120673.28 schema:affiliation grid-institutes:grid.241963.b
    217 schema:familyName DeSalle
    218 schema:givenName Rob
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247120673.28
    220 rdf:type schema:Person
    221 sg:person.0651770450.67 schema:affiliation grid-institutes:grid.47100.32
    222 schema:familyName Schierwater
    223 schema:givenName Bernd
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651770450.67
    225 rdf:type schema:Person
    226 sg:person.0721522045.32 schema:affiliation grid-institutes:grid.412970.9
    227 schema:familyName Kamm
    228 schema:givenName Kai
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721522045.32
    230 rdf:type schema:Person
    231 sg:pub.10.1007/bf00310320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029626457
    232 https://doi.org/10.1007/bf00310320
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/bf00391925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016373660
    235 https://doi.org/10.1007/bf00391925
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00427-004-0390-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002255684
    238 https://doi.org/10.1007/s00427-004-0390-8
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00427-007-0197-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009371475
    241 https://doi.org/10.1007/s00427-007-0197-5
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/cr.2011.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007562279
    244 https://doi.org/10.1038/cr.2011.156
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nature07191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018308318
    247 https://doi.org/10.1038/nature07191
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/ni.2635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017265756
    250 https://doi.org/10.1038/ni.2635
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nmeth.1701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049894869
    253 https://doi.org/10.1038/nmeth.1701
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nri2240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002014242
    256 https://doi.org/10.1038/nri2240
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nri3515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019085796
    259 https://doi.org/10.1038/nri3515
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nri800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028497102
    262 https://doi.org/10.1038/nri800
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nsmb.3053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015127559
    265 https://doi.org/10.1038/nsmb.3053
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/s41598-018-29400-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105683839
    268 https://doi.org/10.1038/s41598-018-29400-y
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
    271 https://doi.org/10.1186/1471-2105-10-421
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/1471-2148-8-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011411800
    274 https://doi.org/10.1186/1471-2148-8-9
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/gb-2007-8-4-r59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004815958
    277 https://doi.org/10.1186/gb-2007-8-4-r59
    278 rdf:type schema:CreativeWork
    279 grid-institutes:grid.241963.b schema:alternateName Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
    280 schema:name Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
    281 rdf:type schema:Organization
    282 grid-institutes:grid.412970.9 schema:alternateName ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17d, D-30559 Hannover, Germany
    283 schema:name ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17d, D-30559 Hannover, Germany
    284 rdf:type schema:Organization
    285 grid-institutes:grid.47100.32 schema:alternateName Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA
    286 schema:name Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA
    287 ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17d, D-30559 Hannover, Germany
    288 Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
    289 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...