Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Ying Wu, Xianfeng Ma, Zhiyong Pan, Shiv D. Kale, Yi Song, Harlan King, Qiong Zhang, Christian Presley, Xiuxin Deng, Cheng-I Wei, Shunyuan Xiao

ABSTRACT

BACKGROUND: Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. RESULTS: We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification. CONCLUSIONS: Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host. More... »

PAGES

705

References to SciGraph publications

  • 2013-08. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis in NATURE PROTOCOLS
  • 2014-12. In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei) in BMC GENOMICS
  • 2010-12. Identification and analysis of in planta expressed genes of Magnaporthe oryzae in BMC GENOMICS
  • 2016-03. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes in THEORETICAL AND APPLIED GENETICS
  • 2013-04. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2016-02. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species in NATURE GENETICS
  • 2004-12. Gene finding in novel genomes in BMC BIOINFORMATICS
  • 2012-06. Genome evolution in filamentous plant pathogens: why bigger can be better in NATURE REVIEWS MICROBIOLOGY
  • 2017-12. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis) in BMC EVOLUTIONARY BIOLOGY
  • 2013-08. Web Apollo: a web-based genomic annotation editing platform in GENOME BIOLOGY
  • 2010-12. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif in BMC GENOMICS
  • 2009-12. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines in BMC GENETICS
  • 2015-10. Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1 in TRANSGENIC RESEARCH
  • 2011-12. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects in BMC BIOINFORMATICS
  • 2018-12. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen in BMC GENOMICS
  • 2013-01. Differential analysis of gene regulation at transcript resolution with RNA-seq in NATURE BIOTECHNOLOGY
  • 2014-12. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator in BMC GENOMICS
  • 2015-12. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy in GENOME BIOLOGY
  • 2010-12. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project in BMC PLANT BIOLOGY
  • 2017-08-07. Evolution and genome architecture in fungal plant pathogens in NATURE REVIEWS MICROBIOLOGY
  • 2013-09. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph in NATURE GENETICS
  • 2015-12. A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber in BMC PLANT BIOLOGY
  • 2004-04. Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences in MYCOSCIENCE
  • 2012-12. Structure and evolution of barley powdery mildew effector candidates in BMC GENOMICS
  • 2011-12. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-018-5069-z

    DOI

    http://dx.doi.org/10.1186/s12864-018-5069-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107232750

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30253736


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universities at Shady Grove", 
              "id": "https://www.grid.ac/institutes/grid.440664.4", 
              "name": [
                "Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Ying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.257160.7", 
              "name": [
                "Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA", 
                "Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, 410128, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Xianfeng", 
            "id": "sg:person.01236533244.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236533244.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Huazhong Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.35155.37", 
              "name": [
                "Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pan", 
            "givenName": "Zhiyong", 
            "id": "sg:person.0614523132.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614523132.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Virginia Tech", 
              "id": "https://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Biocomplexity Institute, Virginia Tech, 24061, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kale", 
            "givenName": "Shiv D.", 
            "id": "sg:person.01241777046.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241777046.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "China Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.22935.3f", 
              "name": [
                "Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA", 
                "College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Yi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universities at Shady Grove", 
              "id": "https://www.grid.ac/institutes/grid.440664.4", 
              "name": [
                "Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "King", 
            "givenName": "Harlan", 
            "id": "sg:person.0627355544.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627355544.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universities at Shady Grove", 
              "id": "https://www.grid.ac/institutes/grid.440664.4", 
              "name": [
                "Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Qiong", 
            "id": "sg:person.0675470744.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675470744.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universities at Shady Grove", 
              "id": "https://www.grid.ac/institutes/grid.440664.4", 
              "name": [
                "Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Presley", 
            "givenName": "Christian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Huazhong Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.35155.37", 
              "name": [
                "Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deng", 
            "givenName": "Xiuxin", 
            "id": "sg:person.01136027400.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136027400.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "College of Agriculture & Natural Resources, University of Maryland, 20742, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Cheng-I", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA", 
                "Department of Plant Science and Landscape Architecture, University of Maryland, 20742, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Shunyuan", 
            "id": "sg:person.01275113203.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275113203.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/eva.12178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001957932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10267-003-0159-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002573856", 
              "https://doi.org/10.1007/s10267-003-0159-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0904152106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003010377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(01)00609-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004920760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-1081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005040312", 
              "https://doi.org/10.1186/1471-2164-15-1081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006001436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.113.117226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008782781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-313x.2001.00982.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009048145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.15.00171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009309352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.myc.2012.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009569237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009847711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010979213", 
              "https://doi.org/10.1186/1471-2164-13-694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1612947113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011362574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1306807110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014125019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014996474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015232358", 
              "https://doi.org/10.1038/nrmicro2790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016649506", 
              "https://doi.org/10.1038/ng.3485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2006.02772.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016833900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-015-9878-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017518716", 
              "https://doi.org/10.1007/s11248-015-9878-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-015-9878-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017518716", 
              "https://doi.org/10.1007/s11248-015-9878-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.4315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018016237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2010.00657.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018047148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2010.00657.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018047148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fgb.2010.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019645480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msm088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020427894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pbi.2011.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020761222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021132933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2015.00584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021451517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021503516", 
              "https://doi.org/10.1186/1471-2164-11-104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2015.01168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021967944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.4042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022575813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/ec.00164-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022646916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.12327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023171031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.118851.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023660949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2016.00123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024009511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0721-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026229827", 
              "https://doi.org/10.1186/s13059-015-0721-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0721-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026229827", 
              "https://doi.org/10.1186/s13059-015-0721-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029024910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pbi.2011.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030232821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.05.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030482208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-015-2644-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032170323", 
              "https://doi.org/10.1007/s00122-015-2644-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032486702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032897440", 
              "https://doi.org/10.1038/ng.2704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2011.00718.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034422360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(00)02024-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035021159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/nph.14386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035031371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035309471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1992.tb02202.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036241049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036320682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037148423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-3059.1998.00207.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037720856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.081612.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039063397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-313x.2003.01977.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039430728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039713283", 
              "https://doi.org/10.1186/1471-2105-12-491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039713283", 
              "https://doi.org/10.1186/1471-2105-12-491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ympev.2007.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040272135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0635-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041470755", 
              "https://doi.org/10.1186/s12870-015-0635-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042217342", 
              "https://doi.org/10.1186/1471-2105-5-59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042217342", 
              "https://doi.org/10.1186/1471-2105-5-59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-8-r93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042967701", 
              "https://doi.org/10.1186/gb-2013-14-8-r93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erq406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044899387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045152751", 
              "https://doi.org/10.1038/nbt.2450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.phyto.41.061002.083300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045416243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-313x.1996.09030341.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045875731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1677-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045993344", 
              "https://doi.org/10.1007/s00122-011-1677-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1364-3703.2003.00167.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046157336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fgb.2012.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046415726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3852/13-046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047013740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/nph.14372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047236323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.109.067587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047300266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048056339", 
              "https://doi.org/10.1186/1471-2164-11-317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-10-89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048446228", 
              "https://doi.org/10.1186/1471-2156-10-89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-10-88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049595770", 
              "https://doi.org/10.1186/1471-2229-10-88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gde.2015.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049729020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.110.077040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050083968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050639969", 
              "https://doi.org/10.1186/1471-2164-15-843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2006.01829.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050770345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2013.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051115056", 
              "https://doi.org/10.1038/nprot.2013.084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1464-6722.2001.00084.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051222817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0070723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051839388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/mpmi-01-13-0005-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060077359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/mpmi-21-1-0030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060078660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/mpmi-23-4-0497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060079007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/mpmi.1999.12.12.1031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060080034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1143708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062456110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1194573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062462703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.291.5501.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062572586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evx008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083685170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mmbr.00066-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084222122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2017.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091080906", 
              "https://doi.org/10.1038/nrmicro.2017.76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12862-017-1064-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092465856", 
              "https://doi.org/10.1186/s12862-017-1064-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-018-4750-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104089424", 
              "https://doi.org/10.1186/s12864-018-4750-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici.\nRESULTS: We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222\u00a0Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~\u200993%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification.\nCONCLUSIONS: Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-018-5069-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3982383", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew", 
        "pagination": "705", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f74728a6100b27304b07fd5fca60897cd965e111d301fb8203577e965e27d5c0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30253736"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-018-5069-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107232750"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-018-5069-z", 
          "https://app.dimensions.ai/details/publication/pub.1107232750"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000541.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12864-018-5069-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5069-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5069-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5069-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-5069-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    444 TRIPLES      21 PREDICATES      117 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-018-5069-z schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N111049548aac4d64b7ff09d98a8df5b0
    4 schema:citation sg:pub.10.1007/s00122-011-1677-6
    5 sg:pub.10.1007/s00122-015-2644-4
    6 sg:pub.10.1007/s10267-003-0159-3
    7 sg:pub.10.1007/s11248-015-9878-4
    8 sg:pub.10.1038/nbt.2450
    9 sg:pub.10.1038/ng.2704
    10 sg:pub.10.1038/ng.3485
    11 sg:pub.10.1038/nprot.2013.084
    12 sg:pub.10.1038/nrmicro.2017.76
    13 sg:pub.10.1038/nrmicro2790
    14 sg:pub.10.1186/1471-2105-12-491
    15 sg:pub.10.1186/1471-2105-5-59
    16 sg:pub.10.1186/1471-2156-10-89
    17 sg:pub.10.1186/1471-2164-11-104
    18 sg:pub.10.1186/1471-2164-11-317
    19 sg:pub.10.1186/1471-2164-13-694
    20 sg:pub.10.1186/1471-2164-15-1081
    21 sg:pub.10.1186/1471-2164-15-843
    22 sg:pub.10.1186/1471-2229-10-88
    23 sg:pub.10.1186/gb-2013-14-4-r36
    24 sg:pub.10.1186/gb-2013-14-8-r93
    25 sg:pub.10.1186/s12862-017-1064-2
    26 sg:pub.10.1186/s12864-018-4750-6
    27 sg:pub.10.1186/s12870-015-0635-x
    28 sg:pub.10.1186/s13059-015-0721-2
    29 https://doi.org/10.1006/jmbi.2000.4042
    30 https://doi.org/10.1006/jmbi.2000.4315
    31 https://doi.org/10.1016/j.fgb.2010.09.002
    32 https://doi.org/10.1016/j.fgb.2012.04.001
    33 https://doi.org/10.1016/j.gde.2015.09.001
    34 https://doi.org/10.1016/j.jmb.2004.05.028
    35 https://doi.org/10.1016/j.myc.2012.08.004
    36 https://doi.org/10.1016/j.pbi.2011.03.006
    37 https://doi.org/10.1016/j.pbi.2011.08.002
    38 https://doi.org/10.1016/j.ympev.2007.01.007
    39 https://doi.org/10.1016/s0092-8674(01)00609-2
    40 https://doi.org/10.1016/s0168-9525(00)02024-2
    41 https://doi.org/10.1046/j.1364-3703.2003.00167.x
    42 https://doi.org/10.1046/j.1365-3059.1998.00207.x
    43 https://doi.org/10.1046/j.1365-313x.1996.09030341.x
    44 https://doi.org/10.1046/j.1365-313x.2001.00982.x
    45 https://doi.org/10.1046/j.1365-313x.2003.01977.x
    46 https://doi.org/10.1046/j.1464-6722.2001.00084.x
    47 https://doi.org/10.1073/pnas.0904152106
    48 https://doi.org/10.1073/pnas.1306807110
    49 https://doi.org/10.1073/pnas.1612947113
    50 https://doi.org/10.1093/bioinformatics/bti610
    51 https://doi.org/10.1093/bioinformatics/btm071
    52 https://doi.org/10.1093/bioinformatics/btr011
    53 https://doi.org/10.1093/bioinformatics/btu031
    54 https://doi.org/10.1093/bioinformatics/btv351
    55 https://doi.org/10.1093/gbe/evx008
    56 https://doi.org/10.1093/jxb/erq406
    57 https://doi.org/10.1093/molbev/msm088
    58 https://doi.org/10.1093/nar/gkh379
    59 https://doi.org/10.1093/nar/gkt1178
    60 https://doi.org/10.1093/oxfordjournals.molbev.a026334
    61 https://doi.org/10.1094/mpmi-01-13-0005-r
    62 https://doi.org/10.1094/mpmi-21-1-0030
    63 https://doi.org/10.1094/mpmi-23-4-0497
    64 https://doi.org/10.1094/mpmi.1999.12.12.1031
    65 https://doi.org/10.1101/gr.081612.108
    66 https://doi.org/10.1101/gr.118851.110
    67 https://doi.org/10.1105/tpc.109.067587
    68 https://doi.org/10.1105/tpc.110.077040
    69 https://doi.org/10.1105/tpc.113.117226
    70 https://doi.org/10.1105/tpc.15.00171
    71 https://doi.org/10.1111/eva.12178
    72 https://doi.org/10.1111/j.1364-3703.2010.00657.x
    73 https://doi.org/10.1111/j.1364-3703.2011.00718.x
    74 https://doi.org/10.1111/j.1365-2958.1992.tb02202.x
    75 https://doi.org/10.1111/j.1365-313x.2006.02772.x
    76 https://doi.org/10.1111/j.1469-8137.2006.01829.x
    77 https://doi.org/10.1111/nph.14372
    78 https://doi.org/10.1111/nph.14386
    79 https://doi.org/10.1111/tpj.12327
    80 https://doi.org/10.1126/science.1143708
    81 https://doi.org/10.1126/science.1194573
    82 https://doi.org/10.1126/science.291.5501.118
    83 https://doi.org/10.1128/ec.00164-12
    84 https://doi.org/10.1128/mmbr.00066-16
    85 https://doi.org/10.1146/annurev.phyto.41.061002.083300
    86 https://doi.org/10.1371/journal.pgen.1002230
    87 https://doi.org/10.1371/journal.pone.0070723
    88 https://doi.org/10.3389/fpls.2015.00584
    89 https://doi.org/10.3389/fpls.2015.01168
    90 https://doi.org/10.3389/fpls.2016.00123
    91 https://doi.org/10.3852/13-046
    92 schema:datePublished 2018-12
    93 schema:datePublishedReg 2018-12-01
    94 schema:description BACKGROUND: Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. RESULTS: We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification. CONCLUSIONS: Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.
    95 schema:genre research_article
    96 schema:inLanguage en
    97 schema:isAccessibleForFree true
    98 schema:isPartOf N625290044c5a472ab8092db28199a6de
    99 N841518bd6bc742e1915e04cf9ab74b5e
    100 sg:journal.1023790
    101 schema:name Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew
    102 schema:pagination 705
    103 schema:productId N1d3c98f2ecf54b539b28fbeae21a05e6
    104 N58837ac5ca41494b86933dd7abb4e14b
    105 Na3c9fb2e6b3a41b396be7f152b38d655
    106 Nb6f686fcf97a4035a72aeb7fe94dd329
    107 Ne4d3aedf0da9411f9a347bab8af0856e
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107232750
    109 https://doi.org/10.1186/s12864-018-5069-z
    110 schema:sdDatePublished 2019-04-10T15:57
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher Ne7ef0af2f72a49b181ca5e9b415fc3cd
    113 schema:url https://link.springer.com/10.1186%2Fs12864-018-5069-z
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N111049548aac4d64b7ff09d98a8df5b0 rdf:first Nfa8946cc8bfe4eee96bd5c429f5a262b
    118 rdf:rest Nc167a381de194b3da4a126b8ff01a4e0
    119 N1d3c98f2ecf54b539b28fbeae21a05e6 schema:name dimensions_id
    120 schema:value pub.1107232750
    121 rdf:type schema:PropertyValue
    122 N2450074464d948d6aafba9580e263c25 rdf:first sg:person.01275113203.68
    123 rdf:rest rdf:nil
    124 N3f869eaa040f496fac7768cc8a30cd2d rdf:first sg:person.01241777046.51
    125 rdf:rest Nf69889e0dadf4de482695a6537b6371d
    126 N4d9ce05d4ac94c7b990e5861c55d457a rdf:first N99d68bf9e0874c709409f13a787f770d
    127 rdf:rest N2450074464d948d6aafba9580e263c25
    128 N5125d57916ec4f7ba7afe265d6d92533 schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
    129 schema:familyName Song
    130 schema:givenName Yi
    131 rdf:type schema:Person
    132 N58837ac5ca41494b86933dd7abb4e14b schema:name doi
    133 schema:value 10.1186/s12864-018-5069-z
    134 rdf:type schema:PropertyValue
    135 N625290044c5a472ab8092db28199a6de schema:volumeNumber 19
    136 rdf:type schema:PublicationVolume
    137 N65b183aa13c44e2eace263e823588212 rdf:first sg:person.0627355544.84
    138 rdf:rest N6ada20cef3b54d92aaa145826097bd25
    139 N66d27310ec8a44a4b99376c62984e79f rdf:first sg:person.0614523132.24
    140 rdf:rest N3f869eaa040f496fac7768cc8a30cd2d
    141 N6ada20cef3b54d92aaa145826097bd25 rdf:first sg:person.0675470744.30
    142 rdf:rest Naa97201739c6482782b424bac9dcd06f
    143 N841518bd6bc742e1915e04cf9ab74b5e schema:issueNumber 1
    144 rdf:type schema:PublicationIssue
    145 N914c1a37078e402f8b77c3dcaaa40f03 schema:affiliation https://www.grid.ac/institutes/grid.440664.4
    146 schema:familyName Presley
    147 schema:givenName Christian
    148 rdf:type schema:Person
    149 N99d68bf9e0874c709409f13a787f770d schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    150 schema:familyName Wei
    151 schema:givenName Cheng-I
    152 rdf:type schema:Person
    153 Na3c9fb2e6b3a41b396be7f152b38d655 schema:name readcube_id
    154 schema:value f74728a6100b27304b07fd5fca60897cd965e111d301fb8203577e965e27d5c0
    155 rdf:type schema:PropertyValue
    156 Naa97201739c6482782b424bac9dcd06f rdf:first N914c1a37078e402f8b77c3dcaaa40f03
    157 rdf:rest Nbd7e46b48fe24694adf6d3db0fc7a5d2
    158 Nb6f686fcf97a4035a72aeb7fe94dd329 schema:name pubmed_id
    159 schema:value 30253736
    160 rdf:type schema:PropertyValue
    161 Nbd7e46b48fe24694adf6d3db0fc7a5d2 rdf:first sg:person.01136027400.52
    162 rdf:rest N4d9ce05d4ac94c7b990e5861c55d457a
    163 Nc167a381de194b3da4a126b8ff01a4e0 rdf:first sg:person.01236533244.41
    164 rdf:rest N66d27310ec8a44a4b99376c62984e79f
    165 Ne4d3aedf0da9411f9a347bab8af0856e schema:name nlm_unique_id
    166 schema:value 100965258
    167 rdf:type schema:PropertyValue
    168 Ne7ef0af2f72a49b181ca5e9b415fc3cd schema:name Springer Nature - SN SciGraph project
    169 rdf:type schema:Organization
    170 Nf69889e0dadf4de482695a6537b6371d rdf:first N5125d57916ec4f7ba7afe265d6d92533
    171 rdf:rest N65b183aa13c44e2eace263e823588212
    172 Nfa8946cc8bfe4eee96bd5c429f5a262b schema:affiliation https://www.grid.ac/institutes/grid.440664.4
    173 schema:familyName Wu
    174 schema:givenName Ying
    175 rdf:type schema:Person
    176 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Biological Sciences
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Genetics
    181 rdf:type schema:DefinedTerm
    182 sg:grant.3982383 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-5069-z
    183 rdf:type schema:MonetaryGrant
    184 sg:journal.1023790 schema:issn 1471-2164
    185 schema:name BMC Genomics
    186 rdf:type schema:Periodical
    187 sg:person.01136027400.52 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
    188 schema:familyName Deng
    189 schema:givenName Xiuxin
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136027400.52
    191 rdf:type schema:Person
    192 sg:person.01236533244.41 schema:affiliation https://www.grid.ac/institutes/grid.257160.7
    193 schema:familyName Ma
    194 schema:givenName Xianfeng
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236533244.41
    196 rdf:type schema:Person
    197 sg:person.01241777046.51 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
    198 schema:familyName Kale
    199 schema:givenName Shiv D.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241777046.51
    201 rdf:type schema:Person
    202 sg:person.01275113203.68 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    203 schema:familyName Xiao
    204 schema:givenName Shunyuan
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275113203.68
    206 rdf:type schema:Person
    207 sg:person.0614523132.24 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
    208 schema:familyName Pan
    209 schema:givenName Zhiyong
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614523132.24
    211 rdf:type schema:Person
    212 sg:person.0627355544.84 schema:affiliation https://www.grid.ac/institutes/grid.440664.4
    213 schema:familyName King
    214 schema:givenName Harlan
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627355544.84
    216 rdf:type schema:Person
    217 sg:person.0675470744.30 schema:affiliation https://www.grid.ac/institutes/grid.440664.4
    218 schema:familyName Zhang
    219 schema:givenName Qiong
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675470744.30
    221 rdf:type schema:Person
    222 sg:pub.10.1007/s00122-011-1677-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045993344
    223 https://doi.org/10.1007/s00122-011-1677-6
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00122-015-2644-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032170323
    226 https://doi.org/10.1007/s00122-015-2644-4
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s10267-003-0159-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002573856
    229 https://doi.org/10.1007/s10267-003-0159-3
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s11248-015-9878-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017518716
    232 https://doi.org/10.1007/s11248-015-9878-4
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nbt.2450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045152751
    235 https://doi.org/10.1038/nbt.2450
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/ng.2704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032897440
    238 https://doi.org/10.1038/ng.2704
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/ng.3485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016649506
    241 https://doi.org/10.1038/ng.3485
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nprot.2013.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051115056
    244 https://doi.org/10.1038/nprot.2013.084
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nrmicro.2017.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091080906
    247 https://doi.org/10.1038/nrmicro.2017.76
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nrmicro2790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015232358
    250 https://doi.org/10.1038/nrmicro2790
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1186/1471-2105-12-491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039713283
    253 https://doi.org/10.1186/1471-2105-12-491
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/1471-2105-5-59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042217342
    256 https://doi.org/10.1186/1471-2105-5-59
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/1471-2156-10-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048446228
    259 https://doi.org/10.1186/1471-2156-10-89
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1471-2164-11-104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021503516
    262 https://doi.org/10.1186/1471-2164-11-104
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1186/1471-2164-11-317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048056339
    265 https://doi.org/10.1186/1471-2164-11-317
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1186/1471-2164-13-694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010979213
    268 https://doi.org/10.1186/1471-2164-13-694
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/1471-2164-15-1081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005040312
    271 https://doi.org/10.1186/1471-2164-15-1081
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/1471-2164-15-843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050639969
    274 https://doi.org/10.1186/1471-2164-15-843
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/1471-2229-10-88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049595770
    277 https://doi.org/10.1186/1471-2229-10-88
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    280 https://doi.org/10.1186/gb-2013-14-4-r36
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1186/gb-2013-14-8-r93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042967701
    283 https://doi.org/10.1186/gb-2013-14-8-r93
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1186/s12862-017-1064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092465856
    286 https://doi.org/10.1186/s12862-017-1064-2
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1186/s12864-018-4750-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104089424
    289 https://doi.org/10.1186/s12864-018-4750-6
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1186/s12870-015-0635-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041470755
    292 https://doi.org/10.1186/s12870-015-0635-x
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1186/s13059-015-0721-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026229827
    295 https://doi.org/10.1186/s13059-015-0721-2
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1006/jmbi.2000.4042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022575813
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1006/jmbi.2000.4315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016237
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1016/j.fgb.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019645480
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1016/j.fgb.2012.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046415726
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1016/j.gde.2015.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049729020
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1016/j.jmb.2004.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030482208
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1016/j.myc.2012.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009569237
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1016/j.pbi.2011.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030232821
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1016/j.pbi.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020761222
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1016/j.ympev.2007.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040272135
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1016/s0092-8674(01)00609-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004920760
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1016/s0168-9525(00)02024-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035021159
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1046/j.1364-3703.2003.00167.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046157336
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1046/j.1365-3059.1998.00207.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037720856
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1046/j.1365-313x.1996.09030341.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045875731
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1046/j.1365-313x.2001.00982.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009048145
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1046/j.1365-313x.2003.01977.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039430728
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1046/j.1464-6722.2001.00084.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051222817
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1073/pnas.0904152106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003010377
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1073/pnas.1306807110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014125019
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1073/pnas.1612947113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011362574
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1093/bioinformatics/bti610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006001436
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1093/bioinformatics/btm071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014996474
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1093/bioinformatics/btr011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032486702
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1093/bioinformatics/btu031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036320682
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1093/bioinformatics/btv351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021132933
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1093/gbe/evx008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083685170
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1093/jxb/erq406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044899387
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1093/molbev/msm088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020427894
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1093/nar/gkh379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029024910
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1093/nar/gkt1178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035309471
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1093/oxfordjournals.molbev.a026334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037148423
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1094/mpmi-01-13-0005-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1060077359
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1094/mpmi-21-1-0030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078660
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1094/mpmi-23-4-0497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060079007
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1094/mpmi.1999.12.12.1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060080034
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1101/gr.081612.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039063397
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.1101/gr.118851.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023660949
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.1105/tpc.109.067587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047300266
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.1105/tpc.110.077040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050083968
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.1105/tpc.113.117226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008782781
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.1105/tpc.15.00171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009309352
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.1111/eva.12178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001957932
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.1111/j.1364-3703.2010.00657.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018047148
    384 rdf:type schema:CreativeWork
    385 https://doi.org/10.1111/j.1364-3703.2011.00718.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034422360
    386 rdf:type schema:CreativeWork
    387 https://doi.org/10.1111/j.1365-2958.1992.tb02202.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036241049
    388 rdf:type schema:CreativeWork
    389 https://doi.org/10.1111/j.1365-313x.2006.02772.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016833900
    390 rdf:type schema:CreativeWork
    391 https://doi.org/10.1111/j.1469-8137.2006.01829.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050770345
    392 rdf:type schema:CreativeWork
    393 https://doi.org/10.1111/nph.14372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047236323
    394 rdf:type schema:CreativeWork
    395 https://doi.org/10.1111/nph.14386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035031371
    396 rdf:type schema:CreativeWork
    397 https://doi.org/10.1111/tpj.12327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023171031
    398 rdf:type schema:CreativeWork
    399 https://doi.org/10.1126/science.1143708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456110
    400 rdf:type schema:CreativeWork
    401 https://doi.org/10.1126/science.1194573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462703
    402 rdf:type schema:CreativeWork
    403 https://doi.org/10.1126/science.291.5501.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572586
    404 rdf:type schema:CreativeWork
    405 https://doi.org/10.1128/ec.00164-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022646916
    406 rdf:type schema:CreativeWork
    407 https://doi.org/10.1128/mmbr.00066-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084222122
    408 rdf:type schema:CreativeWork
    409 https://doi.org/10.1146/annurev.phyto.41.061002.083300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045416243
    410 rdf:type schema:CreativeWork
    411 https://doi.org/10.1371/journal.pgen.1002230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009847711
    412 rdf:type schema:CreativeWork
    413 https://doi.org/10.1371/journal.pone.0070723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051839388
    414 rdf:type schema:CreativeWork
    415 https://doi.org/10.3389/fpls.2015.00584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021451517
    416 rdf:type schema:CreativeWork
    417 https://doi.org/10.3389/fpls.2015.01168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021967944
    418 rdf:type schema:CreativeWork
    419 https://doi.org/10.3389/fpls.2016.00123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024009511
    420 rdf:type schema:CreativeWork
    421 https://doi.org/10.3852/13-046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047013740
    422 rdf:type schema:CreativeWork
    423 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
    424 schema:name College of Agriculture & Natural Resources, University of Maryland, 20742, College Park, MD, USA
    425 Department of Plant Science and Landscape Architecture, University of Maryland, 20742, College Park, MD, USA
    426 Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA
    427 rdf:type schema:Organization
    428 https://www.grid.ac/institutes/grid.22935.3f schema:alternateName China Agricultural University
    429 schema:name College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
    430 Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA
    431 rdf:type schema:Organization
    432 https://www.grid.ac/institutes/grid.257160.7 schema:alternateName Hunan Agricultural University
    433 schema:name Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, 410128, Changsha, China
    434 Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA
    435 rdf:type schema:Organization
    436 https://www.grid.ac/institutes/grid.35155.37 schema:alternateName Huazhong Agricultural University
    437 schema:name Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
    438 rdf:type schema:Organization
    439 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
    440 schema:name Biocomplexity Institute, Virginia Tech, 24061, Blacksburg, VA, USA
    441 rdf:type schema:Organization
    442 https://www.grid.ac/institutes/grid.440664.4 schema:alternateName Universities at Shady Grove
    443 schema:name Institute for Bioscience and Biotechnology Research, University of Maryland, 20850, College Park, MD, USA
    444 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...