Landscape of copy number variations in Bos taurus: individual – and inter-breed variability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

M. Mielczarek, M. Frąszczak, E. Nicolazzi, J. L. Williams, J. Szyda

ABSTRACT

BACKGROUND: The number of studies of Copy Number Variation in cattle has increased in recent years. This has been prompted by the increased availability of data on polymorphisms and their relationship with phenotypes. In addition, livestock species are good models for some human phenotypes. In the present study, we described the landscape of CNV driven genetic variation in a large population of 146 individuals representing 13 cattle breeds, using whole genome DNA sequence. RESULTS: A highly significant variation among all individuals and within each breed was observed in the number of duplications (P < 10-15) and in the number of deletions (P < 10-15). We also observed significant differences between breeds for duplication (P = 0.01932) and deletion (P = 0.01006) counts. The same variation CNV length - inter-individual and inter-breed differences were significant for duplications (P < 10-15) and deletions (P < 10-15). Moreover, breed-specific variants were identified, with the largest proportion of breed-specific duplications (9.57%) found for Fleckvieh and breed-specific deletions found for Brown Swiss (5.00%). Such breed-specific CNVs were predominantly located in intragenic regions, however in Simmental, one deletion present in five individuals was found in the coding sequence of a novel gene ENSBTAG00000000688 on chromosome 18. In Brown Swiss, Norwegian Red and Simmental breed-specific deletions were located within KIT and MC1R genes, which are responsible for a coat colour. The functional annotation of coding regions underlying the breed-specific CNVs showed that in Norwegian Red, Guernsey, and Simmental significantly under- and overrepresented GO terms were related to chemical stimulus involved in sensory perception of smell and the KEGG pathways for olfactory transduction. In addition, specifically for the Norwegian Red breed, the dopaminergic synapse KEGG pathway was significantly enriched within deleted parts of the genome. CONCLUSIONS: The CNV landscape in Bos taurus genome revealed by this study was highly complex, with inter-breed differences, but also a significant variation within breeds. The former, may explain some of the phenotypic differences among analysed breeds, and the latter contributes to within-breed variation available for selection. More... »

PAGES

410

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2016-12. Genome-wide identification of copy number variation using high-density single-nucleotide polymorphism array in Japanese Black cattle in BMC GENETICS
  • 2012-03. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2005-05. The Sequence Ontology: a tool for the unification of genome annotations in GENOME BIOLOGY
  • 2012-11. Copy number variation in the cattle genome in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2016-12. A practical approach to detect ancestral haplotypes in livestock populations in BMC GENETICS
  • 2010-12. Identification of copy number variations and common deletion polymorphisms in cattle in BMC GENOMICS
  • 2011-02-03. Mapping copy number variation by population-scale genome sequencing in NATURE
  • 2011-12. Identification and correction of systematic error in high-throughput sequence data in BMC BIOINFORMATICS
  • 2015-12. The assessment of inter-individual variation of whole-genome DNA sequence in 32 cows in MAMMALIAN GENOME
  • 2011-05. Genome structural variation discovery and genotyping in NATURE REVIEWS GENETICS
  • 2013-04. Genome-wide copy number variation in Hanwoo, Black Angus, and Holstein cattle in MAMMALIAN GENOME
  • 2015-04. Genome-wide characteristics of copy number variation in Polish Holstein and Polish Red cattle using SNP genotyping assay in GENETICA
  • 2011-12. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping in BMC GENOMICS
  • 2012-12. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array in BMC GENOMICS
  • 2015-02. Identification of copy number variations in Qinchuan cattle using BovineHD Genotyping Beadchip array in MOLECULAR GENETICS AND GENOMICS
  • 2010-12. Copy number variation in the bovine genome in BMC GENOMICS
  • 2016-09. Population-genetic properties of differentiated copy number variations in cattle in SCIENTIFIC REPORTS
  • 2009-11. Computational methods for discovering structural variation with next-generation sequencing in NATURE METHODS
  • 2013-12. Massive screening of copy number population-scale variation in Bos taurusgenome in BMC GENOMICS
  • 2015-03. Large multiallelic copy number variations in humans in NATURE GENETICS
  • 2016-11. Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle in JOURNAL OF APPLIED GENETICS
  • 2015-12. Genomic copy number variation in Mus musculus in BMC GENOMICS
  • 2014-12. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level in BMC GENOMICS
  • 2010-04. Origins and functional impact of copy number variation in the human genome in NATURE
  • 2009-04. A whole-genome assembly of the domestic cow, Bos taurus in GENOME BIOLOGY
  • 2012-02-01. Serial translocation by means of circular intermediates underlies colour sidedness in cattle in NATURE
  • 2011-12. Genomic characteristics of cattle copy number variations in BMC GENOMICS
  • 2011-12. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery in BMC GENOMICS
  • 2008-01. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-018-4815-6

    DOI

    http://dx.doi.org/10.1186/s12864-018-4815-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104285782

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29843606


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research Institute of Animal Production", 
              "id": "https://www.grid.ac/institutes/grid.419741.e", 
              "name": [
                "Biostatistics group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland", 
                "National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mielczarek", 
            "givenName": "M.", 
            "id": "sg:person.0625601511.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625601511.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Biostatistics group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fr\u0105szczak", 
            "givenName": "M.", 
            "id": "sg:person.0716642363.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716642363.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Council on Dairy Cattle Breeding (CDCB), 4201 Northview Dr, 20716, Bowie, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nicolazzi", 
            "givenName": "E.", 
            "id": "sg:person.01207746231.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207746231.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Adelaide", 
              "id": "https://www.grid.ac/institutes/grid.1010.0", 
              "name": [
                "Davies Research Centre, University of Adelaide, School of Animal and Veterinary Sciences, 5371, Roseworthy, SA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "J. L.", 
            "id": "sg:person.01206167100.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206167100.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Animal Production", 
              "id": "https://www.grid.ac/institutes/grid.419741.e", 
              "name": [
                "Biostatistics group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland", 
                "National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szyda", 
            "givenName": "J.", 
            "id": "sg:person.0623327551.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623327551.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrg2958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004346662", 
              "https://doi.org/10.1038/nrg2958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-011-0252-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004536895", 
              "https://doi.org/10.1007/s10142-011-0252-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep23161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005637090", 
              "https://doi.org/10.1038/srep23161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/dnares/dsw013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005841075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/age.12519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006530091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007190876", 
              "https://doi.org/10.1038/ng.3200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007298772", 
              "https://doi.org/10.1186/1471-2164-14-124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007579609", 
              "https://doi.org/10.1186/1471-2164-11-232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008093352", 
              "https://doi.org/10.1186/1471-2164-13-376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-012-0289-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011875542", 
              "https://doi.org/10.1007/s10142-012-0289-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012653245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-013-9449-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013128534", 
              "https://doi.org/10.1007/s00335-013-9449-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014033494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014072340", 
              "https://doi.org/10.1186/1471-2164-12-557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-015-9606-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014934811", 
              "https://doi.org/10.1007/s00335-015-9606-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-015-9606-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014934811", 
              "https://doi.org/10.1007/s00335-015-9606-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.114876.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015143403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019637093", 
              "https://doi.org/10.1038/nmeth.1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019637093", 
              "https://doi.org/10.1038/nmeth.1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.105403.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022226250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024097093", 
              "https://doi.org/10.1186/gb-2009-10-4-r42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1005877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025119768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13353-016-0344-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025153388", 
              "https://doi.org/10.1007/s13353-016-0344-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1713-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025889800", 
              "https://doi.org/10.1186/s12864-015-1713-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1713-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025889800", 
              "https://doi.org/10.1186/s12864-015-1713-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2005-6-5-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026484271", 
              "https://doi.org/10.1186/gb-2005-6-5-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028554628", 
              "https://doi.org/10.1186/1471-2105-12-451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029099760", 
              "https://doi.org/10.1038/nature10757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029482975", 
              "https://doi.org/10.1186/1471-2164-12-127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-016-0405-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030024747", 
              "https://doi.org/10.1186/s12863-016-0405-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-016-0405-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030024747", 
              "https://doi.org/10.1186/s12863-016-0405-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030488894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032266264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-016-0335-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033554238", 
              "https://doi.org/10.1186/s12863-016-0335-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10709-015-9822-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034214269", 
              "https://doi.org/10.1007/s10709-015-9822-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034317216", 
              "https://doi.org/10.1186/1471-2164-12-559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034591246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034591246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034732435", 
              "https://doi.org/10.1038/nature09708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035976558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036249251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038290626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0135931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039954056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genom.9.081307.164217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040316789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1635157100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042077287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2014.00037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042240261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043688115", 
              "https://doi.org/10.1186/1471-2164-15-240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2007.08.180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045833900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-014-0923-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045986172", 
              "https://doi.org/10.1007/s00438-014-0923-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047117020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047360515", 
              "https://doi.org/10.1186/1471-2164-11-284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpsyg.2014.00247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048410386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2007.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051912858", 
              "https://doi.org/10.1038/ng.2007.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052442014", 
              "https://doi.org/10.1038/nature08516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052442014", 
              "https://doi.org/10.1038/nature08516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.133967.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052815969"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: The number of studies of Copy Number Variation in cattle has increased in recent years. This has been prompted by the increased availability of data on polymorphisms and their relationship with phenotypes. In addition, livestock species are good models for some human phenotypes. In the present study, we described the landscape of CNV driven genetic variation in a large population of 146 individuals representing 13 cattle breeds, using whole genome DNA sequence.\nRESULTS: A highly significant variation among all individuals and within each breed was observed in the number of duplications (P\u2009<\u200910-15) and in the number of deletions (P\u2009<\u200910-15). We also observed significant differences between breeds for duplication (P\u2009=\u20090.01932) and deletion (P\u2009=\u20090.01006) counts. The same variation CNV length - inter-individual and inter-breed differences were significant for duplications (P\u2009<\u200910-15) and deletions (P\u2009<\u200910-15). Moreover, breed-specific variants were identified, with the largest proportion of breed-specific duplications (9.57%) found for Fleckvieh and breed-specific deletions found for Brown Swiss (5.00%). Such breed-specific CNVs were predominantly located in intragenic regions, however in Simmental, one deletion present in five individuals was found in the coding sequence of a novel gene ENSBTAG00000000688 on chromosome 18. In Brown Swiss, Norwegian Red and Simmental breed-specific deletions were located within KIT and MC1R genes, which are responsible for a coat colour. The functional annotation of coding regions underlying the breed-specific CNVs showed that in Norwegian Red, Guernsey, and Simmental significantly under- and overrepresented GO terms were related to chemical stimulus involved in sensory perception of smell and the KEGG pathways for olfactory transduction. In addition, specifically for the Norwegian Red breed, the dopaminergic synapse KEGG pathway was significantly enriched within deleted parts of the genome.\nCONCLUSIONS: The CNV landscape in Bos taurus genome revealed by this study was highly complex, with inter-breed differences, but also a significant variation within breeds. The former, may explain some of the phenotypic differences among analysed breeds, and the latter contributes to within-breed variation available for selection.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-018-4815-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4943071", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3787783", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Landscape of copy number variations in Bos taurus: individual \u2013 and inter-breed variability", 
        "pagination": "410", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "549c9036757a6b0d272d6e52e4df092308d4033fef1f0d229dd5351578ac86a5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29843606"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-018-4815-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104285782"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-018-4815-6", 
          "https://app.dimensions.ai/details/publication/pub.1104285782"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000570.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12864-018-4815-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4815-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4815-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4815-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4815-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      21 PREDICATES      82 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-018-4815-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nab7078867a154a8a8aa9723062ed136e
    4 schema:citation sg:pub.10.1007/s00335-013-9449-z
    5 sg:pub.10.1007/s00335-015-9606-7
    6 sg:pub.10.1007/s00438-014-0923-4
    7 sg:pub.10.1007/s10142-011-0252-1
    8 sg:pub.10.1007/s10142-012-0289-9
    9 sg:pub.10.1007/s10709-015-9822-9
    10 sg:pub.10.1007/s13353-016-0344-7
    11 sg:pub.10.1038/75556
    12 sg:pub.10.1038/nature08516
    13 sg:pub.10.1038/nature09708
    14 sg:pub.10.1038/nature10757
    15 sg:pub.10.1038/ng.2007.40
    16 sg:pub.10.1038/ng.3200
    17 sg:pub.10.1038/nmeth.1374
    18 sg:pub.10.1038/nrg2958
    19 sg:pub.10.1038/srep23161
    20 sg:pub.10.1186/1471-2105-12-451
    21 sg:pub.10.1186/1471-2164-11-232
    22 sg:pub.10.1186/1471-2164-11-284
    23 sg:pub.10.1186/1471-2164-12-127
    24 sg:pub.10.1186/1471-2164-12-557
    25 sg:pub.10.1186/1471-2164-12-559
    26 sg:pub.10.1186/1471-2164-13-376
    27 sg:pub.10.1186/1471-2164-14-124
    28 sg:pub.10.1186/1471-2164-15-240
    29 sg:pub.10.1186/gb-2005-6-5-r44
    30 sg:pub.10.1186/gb-2009-10-4-r42
    31 sg:pub.10.1186/s12863-016-0335-z
    32 sg:pub.10.1186/s12863-016-0405-2
    33 sg:pub.10.1186/s12864-015-1713-z
    34 https://doi.org/10.1016/j.bbrc.2007.08.180
    35 https://doi.org/10.1073/pnas.1635157100
    36 https://doi.org/10.1093/bioinformatics/btp324
    37 https://doi.org/10.1093/bioinformatics/btp352
    38 https://doi.org/10.1093/bioinformatics/btp394
    39 https://doi.org/10.1093/bioinformatics/btq330
    40 https://doi.org/10.1093/bioinformatics/btu356
    41 https://doi.org/10.1093/dnares/dsw013
    42 https://doi.org/10.1093/nar/gkl167
    43 https://doi.org/10.1093/nar/gkr483
    44 https://doi.org/10.1093/nar/gkw1108
    45 https://doi.org/10.1101/gr.105403.110
    46 https://doi.org/10.1101/gr.114876.110
    47 https://doi.org/10.1101/gr.133967.111
    48 https://doi.org/10.1111/age.12519
    49 https://doi.org/10.1146/annurev.genom.9.081307.164217
    50 https://doi.org/10.1371/journal.pgen.1001139
    51 https://doi.org/10.1371/journal.pgen.1004148
    52 https://doi.org/10.1371/journal.pgen.1004830
    53 https://doi.org/10.1371/journal.pgen.1005877
    54 https://doi.org/10.1371/journal.pone.0135931
    55 https://doi.org/10.3389/fgene.2014.00037
    56 https://doi.org/10.3389/fpsyg.2014.00247
    57 schema:datePublished 2018-12
    58 schema:datePublishedReg 2018-12-01
    59 schema:description BACKGROUND: The number of studies of Copy Number Variation in cattle has increased in recent years. This has been prompted by the increased availability of data on polymorphisms and their relationship with phenotypes. In addition, livestock species are good models for some human phenotypes. In the present study, we described the landscape of CNV driven genetic variation in a large population of 146 individuals representing 13 cattle breeds, using whole genome DNA sequence. RESULTS: A highly significant variation among all individuals and within each breed was observed in the number of duplications (P < 10-15) and in the number of deletions (P < 10-15). We also observed significant differences between breeds for duplication (P = 0.01932) and deletion (P = 0.01006) counts. The same variation CNV length - inter-individual and inter-breed differences were significant for duplications (P < 10-15) and deletions (P < 10-15). Moreover, breed-specific variants were identified, with the largest proportion of breed-specific duplications (9.57%) found for Fleckvieh and breed-specific deletions found for Brown Swiss (5.00%). Such breed-specific CNVs were predominantly located in intragenic regions, however in Simmental, one deletion present in five individuals was found in the coding sequence of a novel gene ENSBTAG00000000688 on chromosome 18. In Brown Swiss, Norwegian Red and Simmental breed-specific deletions were located within KIT and MC1R genes, which are responsible for a coat colour. The functional annotation of coding regions underlying the breed-specific CNVs showed that in Norwegian Red, Guernsey, and Simmental significantly under- and overrepresented GO terms were related to chemical stimulus involved in sensory perception of smell and the KEGG pathways for olfactory transduction. In addition, specifically for the Norwegian Red breed, the dopaminergic synapse KEGG pathway was significantly enriched within deleted parts of the genome. CONCLUSIONS: The CNV landscape in Bos taurus genome revealed by this study was highly complex, with inter-breed differences, but also a significant variation within breeds. The former, may explain some of the phenotypic differences among analysed breeds, and the latter contributes to within-breed variation available for selection.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree true
    63 schema:isPartOf N34408cc44d424c4a84c84401602ba5da
    64 Nf7619f296987460494066a5b454d927f
    65 sg:journal.1023790
    66 schema:name Landscape of copy number variations in Bos taurus: individual – and inter-breed variability
    67 schema:pagination 410
    68 schema:productId N06f6287f8374487182fbc3a0b303f7a7
    69 N3b6950a7d9bb426fb7376575a93609bb
    70 N9654f91d505f42c0aa979115e2b0b2be
    71 Na4e12d37bd0b470da843edc926699f63
    72 Nc0e8f7f482a5459897774f177d3117a2
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104285782
    74 https://doi.org/10.1186/s12864-018-4815-6
    75 schema:sdDatePublished 2019-04-10T16:51
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Nc3cd89b3fa3242d58bfd9988e73af637
    78 schema:url https://link.springer.com/10.1186%2Fs12864-018-4815-6
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N06f6287f8374487182fbc3a0b303f7a7 schema:name doi
    83 schema:value 10.1186/s12864-018-4815-6
    84 rdf:type schema:PropertyValue
    85 N2bc1f451cc1b422a830e327ce1bd022d rdf:first sg:person.01206167100.22
    86 rdf:rest N6b61c03246a64fe18f6b54cc066be38e
    87 N34408cc44d424c4a84c84401602ba5da schema:issueNumber 1
    88 rdf:type schema:PublicationIssue
    89 N3773044f302c4862987b87fa0b09be52 schema:name Biostatistics group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
    90 rdf:type schema:Organization
    91 N3b6950a7d9bb426fb7376575a93609bb schema:name nlm_unique_id
    92 schema:value 100965258
    93 rdf:type schema:PropertyValue
    94 N6b61c03246a64fe18f6b54cc066be38e rdf:first sg:person.0623327551.71
    95 rdf:rest rdf:nil
    96 N9530c17b1d9c4027bf349a0bce4cb9cd schema:name Council on Dairy Cattle Breeding (CDCB), 4201 Northview Dr, 20716, Bowie, MD, USA
    97 rdf:type schema:Organization
    98 N9654f91d505f42c0aa979115e2b0b2be schema:name pubmed_id
    99 schema:value 29843606
    100 rdf:type schema:PropertyValue
    101 Na4e12d37bd0b470da843edc926699f63 schema:name dimensions_id
    102 schema:value pub.1104285782
    103 rdf:type schema:PropertyValue
    104 Nab7078867a154a8a8aa9723062ed136e rdf:first sg:person.0625601511.09
    105 rdf:rest Nf6bf6bacd69d40aeaf9d3dfab61daf6f
    106 Nc0e8f7f482a5459897774f177d3117a2 schema:name readcube_id
    107 schema:value 549c9036757a6b0d272d6e52e4df092308d4033fef1f0d229dd5351578ac86a5
    108 rdf:type schema:PropertyValue
    109 Nc3cd89b3fa3242d58bfd9988e73af637 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Ne16bae83af7a43c8a23384d633aeb147 rdf:first sg:person.01207746231.10
    112 rdf:rest N2bc1f451cc1b422a830e327ce1bd022d
    113 Nf6bf6bacd69d40aeaf9d3dfab61daf6f rdf:first sg:person.0716642363.61
    114 rdf:rest Ne16bae83af7a43c8a23384d633aeb147
    115 Nf7619f296987460494066a5b454d927f schema:volumeNumber 19
    116 rdf:type schema:PublicationVolume
    117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Biological Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Genetics
    122 rdf:type schema:DefinedTerm
    123 sg:grant.3787783 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-4815-6
    124 rdf:type schema:MonetaryGrant
    125 sg:grant.4943071 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-4815-6
    126 rdf:type schema:MonetaryGrant
    127 sg:journal.1023790 schema:issn 1471-2164
    128 schema:name BMC Genomics
    129 rdf:type schema:Periodical
    130 sg:person.01206167100.22 schema:affiliation https://www.grid.ac/institutes/grid.1010.0
    131 schema:familyName Williams
    132 schema:givenName J. L.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206167100.22
    134 rdf:type schema:Person
    135 sg:person.01207746231.10 schema:affiliation N9530c17b1d9c4027bf349a0bce4cb9cd
    136 schema:familyName Nicolazzi
    137 schema:givenName E.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207746231.10
    139 rdf:type schema:Person
    140 sg:person.0623327551.71 schema:affiliation https://www.grid.ac/institutes/grid.419741.e
    141 schema:familyName Szyda
    142 schema:givenName J.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623327551.71
    144 rdf:type schema:Person
    145 sg:person.0625601511.09 schema:affiliation https://www.grid.ac/institutes/grid.419741.e
    146 schema:familyName Mielczarek
    147 schema:givenName M.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625601511.09
    149 rdf:type schema:Person
    150 sg:person.0716642363.61 schema:affiliation N3773044f302c4862987b87fa0b09be52
    151 schema:familyName Frąszczak
    152 schema:givenName M.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716642363.61
    154 rdf:type schema:Person
    155 sg:pub.10.1007/s00335-013-9449-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013128534
    156 https://doi.org/10.1007/s00335-013-9449-z
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00335-015-9606-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014934811
    159 https://doi.org/10.1007/s00335-015-9606-7
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00438-014-0923-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045986172
    162 https://doi.org/10.1007/s00438-014-0923-4
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10142-011-0252-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004536895
    165 https://doi.org/10.1007/s10142-011-0252-1
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10142-012-0289-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011875542
    168 https://doi.org/10.1007/s10142-012-0289-9
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10709-015-9822-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034214269
    171 https://doi.org/10.1007/s10709-015-9822-9
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s13353-016-0344-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025153388
    174 https://doi.org/10.1007/s13353-016-0344-7
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    177 https://doi.org/10.1038/75556
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nature08516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052442014
    180 https://doi.org/10.1038/nature08516
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nature09708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034732435
    183 https://doi.org/10.1038/nature09708
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature10757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029099760
    186 https://doi.org/10.1038/nature10757
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ng.2007.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051912858
    189 https://doi.org/10.1038/ng.2007.40
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/ng.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007190876
    192 https://doi.org/10.1038/ng.3200
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmeth.1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019637093
    195 https://doi.org/10.1038/nmeth.1374
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nrg2958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004346662
    198 https://doi.org/10.1038/nrg2958
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/srep23161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005637090
    201 https://doi.org/10.1038/srep23161
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1186/1471-2105-12-451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028554628
    204 https://doi.org/10.1186/1471-2105-12-451
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/1471-2164-11-232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007579609
    207 https://doi.org/10.1186/1471-2164-11-232
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/1471-2164-11-284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047360515
    210 https://doi.org/10.1186/1471-2164-11-284
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/1471-2164-12-127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029482975
    213 https://doi.org/10.1186/1471-2164-12-127
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1471-2164-12-557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014072340
    216 https://doi.org/10.1186/1471-2164-12-557
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1471-2164-12-559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034317216
    219 https://doi.org/10.1186/1471-2164-12-559
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/1471-2164-13-376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008093352
    222 https://doi.org/10.1186/1471-2164-13-376
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/1471-2164-14-124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007298772
    225 https://doi.org/10.1186/1471-2164-14-124
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/1471-2164-15-240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043688115
    228 https://doi.org/10.1186/1471-2164-15-240
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/gb-2005-6-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026484271
    231 https://doi.org/10.1186/gb-2005-6-5-r44
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
    234 https://doi.org/10.1186/gb-2009-10-4-r42
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/s12863-016-0335-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033554238
    237 https://doi.org/10.1186/s12863-016-0335-z
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/s12863-016-0405-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030024747
    240 https://doi.org/10.1186/s12863-016-0405-2
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/s12864-015-1713-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025889800
    243 https://doi.org/10.1186/s12864-015-1713-z
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/j.bbrc.2007.08.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045833900
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1073/pnas.1635157100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042077287
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/bioinformatics/btp394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032266264
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1093/bioinformatics/btq330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047117020
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1093/bioinformatics/btu356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036249251
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1093/dnares/dsw013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005841075
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1093/nar/gkl167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035976558
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1093/nar/gkr483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012653245
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1093/nar/gkw1108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034591246
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1101/gr.105403.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022226250
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1101/gr.114876.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015143403
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1101/gr.133967.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052815969
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1111/age.12519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006530091
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1146/annurev.genom.9.081307.164217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040316789
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1371/journal.pgen.1001139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030488894
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1371/journal.pgen.1004148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014033494
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1371/journal.pgen.1004830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038290626
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1371/journal.pgen.1005877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025119768
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1371/journal.pone.0135931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039954056
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.3389/fgene.2014.00037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042240261
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.3389/fpsyg.2014.00247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048410386
    290 rdf:type schema:CreativeWork
    291 https://www.grid.ac/institutes/grid.1010.0 schema:alternateName University of Adelaide
    292 schema:name Davies Research Centre, University of Adelaide, School of Animal and Veterinary Sciences, 5371, Roseworthy, SA, Australia
    293 rdf:type schema:Organization
    294 https://www.grid.ac/institutes/grid.419741.e schema:alternateName National Research Institute of Animal Production
    295 schema:name Biostatistics group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
    296 National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...