Identification and analysis of ribosome-associated lncRNAs using ribosome profiling data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Chao Zeng, Tsukasa Fukunaga, Michiaki Hamada

ABSTRACT

BACKGROUND: Although the number of discovered long non-coding RNAs (lncRNAs) has increased dramatically, their biological roles have not been established. Many recent studies have used ribosome profiling data to assess the protein-coding capacity of lncRNAs. However, very little work has been done to identify ribosome-associated lncRNAs, here defined as lncRNAs interacting with ribosomes related to protein synthesis as well as other unclear biological functions. RESULTS: On average, 39.17% of expressed lncRNAs were observed to interact with ribosomes in human and 48.16% in mouse. We developed the ribosomal association index (RAI), which quantifies the evidence for ribosomal associability of lncRNAs over various tissues and cell types, to catalog 691 and 409 lncRNAs that are robustly associated with ribosomes in human and mouse, respectively. Moreover, we identified 78 and 42 lncRNAs with a high probability of coding peptides in human and mouse, respectively. Compared with ribosome-free lncRNAs, ribosome-associated lncRNAs were observed to be more likely to be located in the cytoplasm and more sensitive to nonsense-mediated decay. CONCLUSION: Our results suggest that RAI can be used as an integrative and evidence-based tool for distinguishing between ribosome-associated and free lncRNAs, providing a valuable resource for the study of lncRNA functions. More... »

PAGES

414

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-018-4765-z

DOI

http://dx.doi.org/10.1186/s12864-018-4765-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104283628

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29843593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, 169-8555, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Chao", 
        "id": "sg:person.010703010022.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703010022.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, 169-8555, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukunaga", 
        "givenName": "Tsukasa", 
        "id": "sg:person.0640113135.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640113135.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nippon Medical School", 
          "id": "https://www.grid.ac/institutes/grid.410821.e", 
          "name": [
            "AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, 169-8555, Tokyo, Japan", 
            "Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, 169-8555, Tokyo, Japan", 
            "Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-41-6 Aomi, Koto-ku, 135-0064, Tokyo, Japan", 
            "Institute for Medical-oriented Structural Biology, Waseda University, 2-2, Wakamatsu-cho Shinjuku-ku, 162-8480, Tokyo, Japan", 
            "Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamada", 
        "givenName": "Michiaki", 
        "id": "sg:person.016106427443.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106427443.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003047559", 
          "https://doi.org/10.1038/nature11233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005297170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.135350.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012073457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2014.07.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012588602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0511-379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015138478", 
          "https://doi.org/10.1038/nmeth0511-379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2014.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015687882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1304124110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015840230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.246538.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016197459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.053561.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016307390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2014.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017424075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2014.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017424075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13062-016-0165-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018697497", 
          "https://doi.org/10.1186/s13062-016-0165-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13062-016-0165-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018697497", 
          "https://doi.org/10.1186/s13062-016-0165-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2005.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019547482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021902674", 
          "https://doi.org/10.1186/1471-2105-12-323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2009.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022012238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0904715106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022579887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024188713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbagrm.2015.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025810997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028060819", 
          "https://doi.org/10.1038/ng.3192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028308613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028308613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028743155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.03523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028980661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033298053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbw008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034384022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1168978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035665750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039786868", 
          "https://doi.org/10.1038/nbt.3441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/embj.201488411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041744407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042102077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12064-013-0178-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044481895", 
          "https://doi.org/10.1007/s12064-013-0178-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/527s6a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046542826", 
          "https://doi.org/10.1038/527s6a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.03528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047943520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0055684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048494987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050719676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052940103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.059055.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064587256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14806/ej.17.1.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067372670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2017.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083699612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128527", 
          "https://doi.org/10.1038/nature21374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092430256"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Although the number of discovered long non-coding RNAs (lncRNAs) has increased dramatically, their biological roles have not been established. Many recent studies have used ribosome profiling data to assess the protein-coding capacity of lncRNAs. However, very little work has been done to identify ribosome-associated lncRNAs, here defined as lncRNAs interacting with ribosomes related to protein synthesis as well as other unclear biological functions.\nRESULTS: On average, 39.17% of expressed lncRNAs were observed to interact with ribosomes in human and 48.16% in mouse. We developed the ribosomal association index (RAI), which quantifies the evidence for ribosomal associability of lncRNAs over various tissues and cell types, to catalog 691 and 409 lncRNAs that are robustly associated with ribosomes in human and mouse, respectively. Moreover, we identified 78 and 42 lncRNAs with a high probability of coding peptides in human and mouse, respectively. Compared with ribosome-free lncRNAs, ribosome-associated lncRNAs were observed to be more likely to be located in the cytoplasm and more sensitive to nonsense-mediated decay.\nCONCLUSION: Our results suggest that RAI can be used as an integrative and evidence-based tool for distinguishing between ribosome-associated and free lncRNAs, providing a valuable resource for the study of lncRNA functions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-018-4765-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5897553", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6957363", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5909914", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5899566", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Identification and analysis of ribosome-associated lncRNAs using ribosome profiling data", 
    "pagination": "414", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "292ffe2d26396c5a72d42b702b3bce89d87b224c8f64ead0dfb3d3faa302af94"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29843593"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-018-4765-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104283628"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-018-4765-z", 
      "https://app.dimensions.ai/details/publication/pub.1104283628"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-018-4765-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4765-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4765-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4765-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4765-z'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-018-4765-z schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Ne88925c75ae64d13abe58ecf10d8a53f
4 schema:citation sg:pub.10.1007/s12064-013-0178-3
5 sg:pub.10.1038/527s6a
6 sg:pub.10.1038/nature11233
7 sg:pub.10.1038/nature21374
8 sg:pub.10.1038/nbt.3441
9 sg:pub.10.1038/ng.3192
10 sg:pub.10.1038/nmeth.1923
11 sg:pub.10.1038/nmeth0511-379
12 sg:pub.10.1186/1471-2105-12-323
13 sg:pub.10.1186/gb-2009-10-3-r25
14 sg:pub.10.1186/s13062-016-0165-y
15 https://doi.org/10.1002/embj.201488411
16 https://doi.org/10.1016/j.bbagrm.2015.07.014
17 https://doi.org/10.1016/j.cell.2011.10.002
18 https://doi.org/10.1016/j.cell.2013.06.009
19 https://doi.org/10.1016/j.cell.2014.02.006
20 https://doi.org/10.1016/j.celrep.2014.07.045
21 https://doi.org/10.1016/j.celrep.2014.12.029
22 https://doi.org/10.1016/j.gene.2005.08.010
23 https://doi.org/10.1016/j.gene.2017.02.004
24 https://doi.org/10.1016/j.molcel.2009.01.026
25 https://doi.org/10.1016/j.molcel.2014.02.024
26 https://doi.org/10.1038/msb.2011.28
27 https://doi.org/10.1073/pnas.0904715106
28 https://doi.org/10.1073/pnas.1304124110
29 https://doi.org/10.1093/bib/bbw008
30 https://doi.org/10.1093/bioinformatics/bts582
31 https://doi.org/10.1093/bioinformatics/btt087
32 https://doi.org/10.1093/nar/25.17.3389
33 https://doi.org/10.1093/nar/30.1.207
34 https://doi.org/10.1093/nar/gku1167
35 https://doi.org/10.1093/nar/gkw909
36 https://doi.org/10.1093/nar/gkx1130
37 https://doi.org/10.1101/gad.246538.114
38 https://doi.org/10.1101/gr.135350.111
39 https://doi.org/10.1126/science.1168978
40 https://doi.org/10.1261/rna.053561.115
41 https://doi.org/10.1261/rna.059055.116
42 https://doi.org/10.1371/journal.pone.0055684
43 https://doi.org/10.14806/ej.17.1.200
44 https://doi.org/10.7554/elife.03523
45 https://doi.org/10.7554/elife.03528
46 schema:datePublished 2018-12
47 schema:datePublishedReg 2018-12-01
48 schema:description BACKGROUND: Although the number of discovered long non-coding RNAs (lncRNAs) has increased dramatically, their biological roles have not been established. Many recent studies have used ribosome profiling data to assess the protein-coding capacity of lncRNAs. However, very little work has been done to identify ribosome-associated lncRNAs, here defined as lncRNAs interacting with ribosomes related to protein synthesis as well as other unclear biological functions. RESULTS: On average, 39.17% of expressed lncRNAs were observed to interact with ribosomes in human and 48.16% in mouse. We developed the ribosomal association index (RAI), which quantifies the evidence for ribosomal associability of lncRNAs over various tissues and cell types, to catalog 691 and 409 lncRNAs that are robustly associated with ribosomes in human and mouse, respectively. Moreover, we identified 78 and 42 lncRNAs with a high probability of coding peptides in human and mouse, respectively. Compared with ribosome-free lncRNAs, ribosome-associated lncRNAs were observed to be more likely to be located in the cytoplasm and more sensitive to nonsense-mediated decay. CONCLUSION: Our results suggest that RAI can be used as an integrative and evidence-based tool for distinguishing between ribosome-associated and free lncRNAs, providing a valuable resource for the study of lncRNA functions.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf Nb9ad70f31835419fb007f3a8762f1feb
53 Nf79784c309c3429db1be72aa617a9321
54 sg:journal.1023790
55 schema:name Identification and analysis of ribosome-associated lncRNAs using ribosome profiling data
56 schema:pagination 414
57 schema:productId N59c85add18a5458ab3b4fba64f8c6d8e
58 N703dc8a5d5e445c98ee4115a65a3581c
59 Nc886272387f54aa3ab3a29de0f724833
60 Nf0da48d91ce142d9861e24142f88d188
61 Nfd5412045dd64f9ea7a8f80bb60e6b32
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104283628
63 https://doi.org/10.1186/s12864-018-4765-z
64 schema:sdDatePublished 2019-04-11T01:17
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N7f5add1737434a318cf8fd3880ec204d
67 schema:url https://link.springer.com/10.1186%2Fs12864-018-4765-z
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N04abc24c6f9041de90511029c96498f6 rdf:first sg:person.0640113135.82
72 rdf:rest Na891a6eac175424ca57888d4735e870e
73 N59c85add18a5458ab3b4fba64f8c6d8e schema:name doi
74 schema:value 10.1186/s12864-018-4765-z
75 rdf:type schema:PropertyValue
76 N703dc8a5d5e445c98ee4115a65a3581c schema:name dimensions_id
77 schema:value pub.1104283628
78 rdf:type schema:PropertyValue
79 N7f5add1737434a318cf8fd3880ec204d schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Na891a6eac175424ca57888d4735e870e rdf:first sg:person.016106427443.03
82 rdf:rest rdf:nil
83 Nb9ad70f31835419fb007f3a8762f1feb schema:volumeNumber 19
84 rdf:type schema:PublicationVolume
85 Nc886272387f54aa3ab3a29de0f724833 schema:name readcube_id
86 schema:value 292ffe2d26396c5a72d42b702b3bce89d87b224c8f64ead0dfb3d3faa302af94
87 rdf:type schema:PropertyValue
88 Ne88925c75ae64d13abe58ecf10d8a53f rdf:first sg:person.010703010022.06
89 rdf:rest N04abc24c6f9041de90511029c96498f6
90 Nf0da48d91ce142d9861e24142f88d188 schema:name nlm_unique_id
91 schema:value 100965258
92 rdf:type schema:PropertyValue
93 Nf79784c309c3429db1be72aa617a9321 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 Nfd5412045dd64f9ea7a8f80bb60e6b32 schema:name pubmed_id
96 schema:value 29843593
97 rdf:type schema:PropertyValue
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biochemistry and Cell Biology
103 rdf:type schema:DefinedTerm
104 sg:grant.5897553 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-4765-z
105 rdf:type schema:MonetaryGrant
106 sg:grant.5899566 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-4765-z
107 rdf:type schema:MonetaryGrant
108 sg:grant.5909914 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-4765-z
109 rdf:type schema:MonetaryGrant
110 sg:grant.6957363 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-4765-z
111 rdf:type schema:MonetaryGrant
112 sg:journal.1023790 schema:issn 1471-2164
113 schema:name BMC Genomics
114 rdf:type schema:Periodical
115 sg:person.010703010022.06 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
116 schema:familyName Zeng
117 schema:givenName Chao
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703010022.06
119 rdf:type schema:Person
120 sg:person.016106427443.03 schema:affiliation https://www.grid.ac/institutes/grid.410821.e
121 schema:familyName Hamada
122 schema:givenName Michiaki
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106427443.03
124 rdf:type schema:Person
125 sg:person.0640113135.82 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
126 schema:familyName Fukunaga
127 schema:givenName Tsukasa
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640113135.82
129 rdf:type schema:Person
130 sg:pub.10.1007/s12064-013-0178-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044481895
131 https://doi.org/10.1007/s12064-013-0178-3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/527s6a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046542826
134 https://doi.org/10.1038/527s6a
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature11233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003047559
137 https://doi.org/10.1038/nature11233
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature21374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128527
140 https://doi.org/10.1038/nature21374
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nbt.3441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039786868
143 https://doi.org/10.1038/nbt.3441
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ng.3192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028060819
146 https://doi.org/10.1038/ng.3192
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
149 https://doi.org/10.1038/nmeth.1923
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmeth0511-379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015138478
152 https://doi.org/10.1038/nmeth0511-379
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-12-323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021902674
155 https://doi.org/10.1186/1471-2105-12-323
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
158 https://doi.org/10.1186/gb-2009-10-3-r25
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/s13062-016-0165-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018697497
161 https://doi.org/10.1186/s13062-016-0165-y
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/embj.201488411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041744407
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.bbagrm.2015.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025810997
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.cell.2011.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042102077
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.cell.2013.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003454355
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.cell.2014.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050719676
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.celrep.2014.07.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012588602
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.celrep.2014.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017424075
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.gene.2005.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547482
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.gene.2017.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083699612
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.molcel.2009.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022012238
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.molcel.2014.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015687882
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1038/msb.2011.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028308613
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.0904715106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022579887
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.1304124110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015840230
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bib/bbw008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034384022
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/bts582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024188713
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btt087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052940103
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/30.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005297170
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/nar/gku1167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028743155
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/nar/gkw909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033298053
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/gkx1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092430256
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1101/gad.246538.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016197459
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1101/gr.135350.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012073457
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1168978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035665750
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1261/rna.053561.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016307390
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1261/rna.059055.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064587256
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0055684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048494987
218 rdf:type schema:CreativeWork
219 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
220 rdf:type schema:CreativeWork
221 https://doi.org/10.7554/elife.03523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028980661
222 rdf:type schema:CreativeWork
223 https://doi.org/10.7554/elife.03528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047943520
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.410821.e schema:alternateName Nippon Medical School
226 schema:name AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, 169-8555, Tokyo, Japan
227 Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-41-6 Aomi, Koto-ku, 135-0064, Tokyo, Japan
228 Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, 169-8555, Tokyo, Japan
229 Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
230 Institute for Medical-oriented Structural Biology, Waseda University, 2-2, Wakamatsu-cho Shinjuku-ku, 162-8480, Tokyo, Japan
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.5290.e schema:alternateName Waseda University
233 schema:name AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, 169-8555, Tokyo, Japan
234 Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, 169-8555, Tokyo, Japan
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...