Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Xiaoli Zhang, Wubin Wang, Na Guo, Youyi Zhang, Yuanpeng Bu, Jinming Zhao, Han Xing

ABSTRACT

BACKGROUND: Plant height (PH) is an important agronomic trait and is closely related to yield in soybean [Glycine max (L.) Merr.]. Previous studies have identified many QTLs for PH. Due to the complex genetic background of PH in soybean, there are few reports on its fine mapping. RESULTS: In this study, we used a mapping population derived from a cross between a chromosome segment substitution line CSSL3228 (donor N24852 (G. Soja), a receptor NN1138-2 (G. max)) and NN1138-2 to fine map a wild soybean allele of greater PH by QTL-seq and linkage mapping. We identified a QTL for PH in a 1.73 Mb region on soybean chromosome 13 through QTL-seq, which was confirmed by SSR marker-based classical QTL mapping in the mapping population. The linkage analysis showed that the QTLs of PH were located between the SSR markers BARCSOYSSR_13_1417 and BARCSOYSSR_13_1421 on chromosome 13, and the physical distance was 69.3 kb. RT-PCR and sequence analysis of possible candidate genes showed that Glyma.13 g249400 revealed significantly higher expression in higher PH genotypes, and the gene existed 6 differences in the amino acids encoding between the two parents. CONCLUSIONS: Data presented here provide support for Glyma.13 g249400 as a possible candidate genes for higher PH in wild soybean line N24852. More... »

PAGES

226

References to SciGraph publications

  • 1997-10. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci in THEORETICAL AND APPLIED GENETICS
  • 1996-02. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines in THEORETICAL AND APPLIED GENETICS
  • 2005-02. Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family in THEORETICAL AND APPLIED GENETICS
  • 2015-06. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean in EUPHYTICA
  • 1999-07. ‘Green revolution’ genes encode mutant gibberellin response modulators in NATURE
  • 1998-07. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium in THEORETICAL AND APPLIED GENETICS
  • 2014-06. An efficient and cost-effective approach for genic microsatellite marker-based large-scale trait association mapping: identification of candidate genes for seed weight in chickpea in MOLECULAR BREEDING
  • 2010-12. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection in NATURE GENETICS
  • 2003-02. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars in THEORETICAL AND APPLIED GENETICS
  • 2012-02. Genome sequencing reveals agronomically important loci in rice using MutMap in NATURE BIOTECHNOLOGY
  • 2010-01. Genome sequence of the palaeopolyploid soybean in NATURE
  • 2014-12. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing in NATURE COMMUNICATIONS
  • 2012-12. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense in BMC PLANT BIOLOGY
  • 2015-04. Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea in MOLECULAR GENETICS AND GENOMICS
  • 2009-08. SHOREmap: simultaneous mapping and mutation identification by deep sequencing in NATURE METHODS
  • 2013-01. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent in EUPHYTICA
  • 1996-10. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.) in MOLECULAR GENETICS AND GENOMICS
  • 2013-06. User guide for mapping-by-sequencing in Arabidopsis in GENOME BIOLOGY
  • 1980-02. A cluster analysis of wild and domesticated soybean phenotypes in EUPHYTICA
  • 2013-12. BSTA: a targeted approach combines bulked segregant analysis with next- generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower in BMC GENOMICS
  • 2010-04-15. Dissection of genetically complex traits with extremely large pools of yeast segregants in NATURE
  • 2010-03. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum) in EUPHYTICA
  • 2008-01. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations in THEORETICAL AND APPLIED GENETICS
  • 2014-12. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley in BMC GENOMICS
  • 2007-02. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean in FRONTIERS OF AGRICULTURE IN CHINA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-018-4582-4

    DOI

    http://dx.doi.org/10.1186/s12864-018-4582-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101770441

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29587637


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Linkage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seeds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Homology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soybeans", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaoli", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Wubin", 
            "id": "sg:person.016622666450.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622666450.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Na", 
            "id": "sg:person.01114637474.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114637474.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Youyi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bu", 
            "givenName": "Yuanpeng", 
            "id": "sg:person.014111272610.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014111272610.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Jinming", 
            "id": "sg:person.0725016346.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725016346.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Han", 
            "id": "sg:person.0613201012.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613201012.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s1671-2927(07)60062-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001041049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-009-0036-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001595132", 
              "https://doi.org/10.1007/s10681-009-0036-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-009-0036-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001595132", 
              "https://doi.org/10.1007/s10681-009-0036-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-009-0036-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001595132", 
              "https://doi.org/10.1007/s10681-009-0036-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001765888", 
              "https://doi.org/10.1038/ng.715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-6-r61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002598699", 
              "https://doi.org/10.1186/gb-2013-14-6-r61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-6-r61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002598699", 
              "https://doi.org/10.1186/gb-2013-14-6-r61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-1071-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003789485", 
              "https://doi.org/10.1007/s00122-002-1071-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/ern369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009359803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.089862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009605223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.089862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009605223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009790366", 
              "https://doi.org/10.1038/nbt.2095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-014-1252-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010411779", 
              "https://doi.org/10.1007/s10681-014-1252-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.131698.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011015457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-012-0817-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011471038", 
              "https://doi.org/10.1007/s10681-012-0817-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012031985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m405057200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013503794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj20071568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014295915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj20071568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014295915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/err310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015464205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(85)80161-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017441588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017534919", 
              "https://doi.org/10.1038/nature08670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017534919", 
              "https://doi.org/10.1038/nature08670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017945699", 
              "https://doi.org/10.1038/nature08923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017945699", 
              "https://doi.org/10.1038/nature08923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(00)00398-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019202497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1360-1385(01)01960-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019546138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.114.126938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019848944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021563275", 
              "https://doi.org/10.1007/s001220050654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021563275", 
              "https://doi.org/10.1007/s001220050654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1479262114000495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023804809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mp/sst005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023992796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.12105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026485371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1270/jsbbs.63.468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027361858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-014-0033-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028323631", 
              "https://doi.org/10.1007/s11032-014-0033-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0604379103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028833161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tplants.2005.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030815426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/dnares/dst015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032106054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/dnares/dsv004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032379622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/22307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033258815", 
              "https://doi.org/10.1038/22307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/22307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033258815", 
              "https://doi.org/10.1038/22307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00037246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035194234", 
              "https://doi.org/10.1007/bf00037246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00037246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035194234", 
              "https://doi.org/10.1007/bf00037246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/93.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2014.00135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036701402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0663-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875984", 
              "https://doi.org/10.1007/s00122-007-0663-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0663-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875984", 
              "https://doi.org/10.1007/s00122-007-0663-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1009526107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038283469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11703-007-0001-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039564368", 
              "https://doi.org/10.1007/s11703-007-0001-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00223376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039666151", 
              "https://doi.org/10.1007/bf00223376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042082245", 
              "https://doi.org/10.1007/s001220050882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042082245", 
              "https://doi.org/10.1007/s001220050882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.88.21.9828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043179054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044767419", 
              "https://doi.org/10.1186/1471-2164-14-628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-014-0932-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044886711", 
              "https://doi.org/10.1007/s00438-014-0932-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-014-0932-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044886711", 
              "https://doi.org/10.1007/s00438-014-0932-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-014-0932-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044886711", 
              "https://doi.org/10.1007/s00438-014-0932-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02172406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044925461", 
              "https://doi.org/10.1007/bf02172406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02172406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044925461", 
              "https://doi.org/10.1007/bf02172406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1900-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045227525", 
              "https://doi.org/10.1007/s00122-004-1900-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s147926211400029x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046142504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0068433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046716925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.066811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047329331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.066811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047329331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049667117", 
              "https://doi.org/10.1186/1471-2164-15-104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2014.00042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050339835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0809-550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050758139", 
              "https://doi.org/10.1038/nmeth0809-550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-12-229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050835016", 
              "https://doi.org/10.1186/1471-2229-12-229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/g00-043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051603411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051870567", 
              "https://doi.org/10.1038/ncomms5340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2000.4051438x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069026904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2010.01.0078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069031135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4238/2015.june.8.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072394318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.16.00074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084199347"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Plant height (PH) is an important agronomic trait and is closely related to yield in soybean [Glycine max (L.) Merr.]. Previous studies have identified many QTLs for PH. Due to the complex genetic background of PH in soybean, there are few reports on its fine mapping.\nRESULTS: In this study, we used a mapping population derived from a cross between a chromosome segment substitution line CSSL3228 (donor N24852 (G. Soja), a receptor NN1138-2 (G. max)) and NN1138-2 to fine map a wild soybean allele of greater PH by QTL-seq and linkage mapping. We identified a QTL for PH in a 1.73\u00a0Mb region on soybean chromosome 13 through QTL-seq, which was confirmed by SSR marker-based classical QTL mapping in the mapping population. The linkage analysis showed that the QTLs of PH were located between the SSR markers BARCSOYSSR_13_1417 and BARCSOYSSR_13_1421 on chromosome 13, and the physical distance was 69.3\u00a0kb. RT-PCR and sequence analysis of possible candidate genes showed that Glyma.13\u00a0g249400 revealed significantly higher expression in higher PH genotypes, and the gene existed 6 differences in the amino acids encoding between the two parents.\nCONCLUSIONS: Data presented here provide support for Glyma.13\u00a0g249400 as a possible candidate genes for higher PH in wild soybean line N24852.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-018-4582-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7204680", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height", 
        "pagination": "226", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "47de3d09dfeffb84861de0d16392c482361d148725e5abb73c834cffc6b2ecbb"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29587637"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-018-4582-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101770441"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-018-4582-4", 
          "https://app.dimensions.ai/details/publication/pub.1101770441"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88217_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12864-018-4582-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4582-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4582-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4582-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-018-4582-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    360 TRIPLES      21 PREDICATES      100 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-018-4582-4 schema:about N26d3f931feab4cd181a709d8a678e2d0
    2 N566d38f2fc69425d8a4444ecd7ebc0de
    3 N6b10199a082c450ba90ed35e000954bc
    4 N7b1984e522574902ab01118bd366bf16
    5 N8617d559150f4980859fe9b70a42add0
    6 Nac043d9bf34b40c2ac7e49a121f1fdc8
    7 Nb833b6599dc9429d90d04e94e2a65b82
    8 Nc0482d338aa94be884c795114703bb00
    9 Nc627b61180f7401587c1df7b3d34cbc4
    10 Ncdc43c4999a14da5a0782cbcd0bf84e0
    11 Neb1b1647791b427babf5a644c78e2908
    12 Nec9f79c5c40344b2b8e542b21155fa6f
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N2d34bb3d45e3475a9aa2d236534284a2
    16 schema:citation sg:pub.10.1007/bf00037246
    17 sg:pub.10.1007/bf00223376
    18 sg:pub.10.1007/bf02172406
    19 sg:pub.10.1007/s00122-002-1071-5
    20 sg:pub.10.1007/s00122-004-1900-9
    21 sg:pub.10.1007/s00122-007-0663-5
    22 sg:pub.10.1007/s001220050654
    23 sg:pub.10.1007/s001220050882
    24 sg:pub.10.1007/s00438-014-0932-3
    25 sg:pub.10.1007/s10681-009-0036-z
    26 sg:pub.10.1007/s10681-012-0817-7
    27 sg:pub.10.1007/s10681-014-1252-8
    28 sg:pub.10.1007/s11032-014-0033-3
    29 sg:pub.10.1007/s11703-007-0001-3
    30 sg:pub.10.1038/22307
    31 sg:pub.10.1038/nature08670
    32 sg:pub.10.1038/nature08923
    33 sg:pub.10.1038/nbt.2095
    34 sg:pub.10.1038/ncomms5340
    35 sg:pub.10.1038/ng.715
    36 sg:pub.10.1038/nmeth0809-550
    37 sg:pub.10.1186/1471-2164-14-628
    38 sg:pub.10.1186/1471-2164-15-104
    39 sg:pub.10.1186/1471-2229-12-229
    40 sg:pub.10.1186/gb-2013-14-6-r61
    41 https://doi.org/10.1016/j.tplants.2005.04.008
    42 https://doi.org/10.1016/s0022-5193(85)80161-2
    43 https://doi.org/10.1016/s0960-9822(00)00398-5
    44 https://doi.org/10.1016/s1360-1385(01)01960-4
    45 https://doi.org/10.1016/s1671-2927(07)60062-5
    46 https://doi.org/10.1017/s147926211400029x
    47 https://doi.org/10.1017/s1479262114000495
    48 https://doi.org/10.1042/bj20071568
    49 https://doi.org/10.1073/pnas.0604379103
    50 https://doi.org/10.1073/pnas.1009526107
    51 https://doi.org/10.1073/pnas.88.21.9828
    52 https://doi.org/10.1074/jbc.m405057200
    53 https://doi.org/10.1093/bioinformatics/btp324
    54 https://doi.org/10.1093/bioinformatics/btp698
    55 https://doi.org/10.1093/dnares/dst015
    56 https://doi.org/10.1093/dnares/dsv004
    57 https://doi.org/10.1093/jhered/93.1.77
    58 https://doi.org/10.1093/jxb/ern369
    59 https://doi.org/10.1093/jxb/err310
    60 https://doi.org/10.1093/mp/sst005
    61 https://doi.org/10.1101/gr.131698.111
    62 https://doi.org/10.1104/pp.16.00074
    63 https://doi.org/10.1105/tpc.114.126938
    64 https://doi.org/10.1111/tpj.12105
    65 https://doi.org/10.1139/g00-043
    66 https://doi.org/10.1270/jsbbs.63.468
    67 https://doi.org/10.1371/journal.pone.0068433
    68 https://doi.org/10.1534/genetics.106.066811
    69 https://doi.org/10.1534/genetics.108.089862
    70 https://doi.org/10.2135/cropsci2000.4051438x
    71 https://doi.org/10.2135/cropsci2010.01.0078
    72 https://doi.org/10.3389/fpls.2014.00042
    73 https://doi.org/10.3389/fpls.2014.00135
    74 https://doi.org/10.4238/2015.june.8.8
    75 schema:datePublished 2018-12
    76 schema:datePublishedReg 2018-12-01
    77 schema:description BACKGROUND: Plant height (PH) is an important agronomic trait and is closely related to yield in soybean [Glycine max (L.) Merr.]. Previous studies have identified many QTLs for PH. Due to the complex genetic background of PH in soybean, there are few reports on its fine mapping. RESULTS: In this study, we used a mapping population derived from a cross between a chromosome segment substitution line CSSL3228 (donor N24852 (G. Soja), a receptor NN1138-2 (G. max)) and NN1138-2 to fine map a wild soybean allele of greater PH by QTL-seq and linkage mapping. We identified a QTL for PH in a 1.73 Mb region on soybean chromosome 13 through QTL-seq, which was confirmed by SSR marker-based classical QTL mapping in the mapping population. The linkage analysis showed that the QTLs of PH were located between the SSR markers BARCSOYSSR_13_1417 and BARCSOYSSR_13_1421 on chromosome 13, and the physical distance was 69.3 kb. RT-PCR and sequence analysis of possible candidate genes showed that Glyma.13 g249400 revealed significantly higher expression in higher PH genotypes, and the gene existed 6 differences in the amino acids encoding between the two parents. CONCLUSIONS: Data presented here provide support for Glyma.13 g249400 as a possible candidate genes for higher PH in wild soybean line N24852.
    78 schema:genre research_article
    79 schema:inLanguage en
    80 schema:isAccessibleForFree true
    81 schema:isPartOf N036b5bf21f194ccfa0ac8704126157a6
    82 N166536815c0147ea8ce9aaa8fc779588
    83 sg:journal.1023790
    84 schema:name Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height
    85 schema:pagination 226
    86 schema:productId N14c73c2a8489465e9547bcea4e9bdf56
    87 N5432d1cd5a5c4ce4855793e9823c8c9d
    88 N5c427707ace241a7a963c0889e57c178
    89 Nd5a8a199b9e8491186042b211996c160
    90 Nf48f667f66d14793aa04e5e949368f76
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101770441
    92 https://doi.org/10.1186/s12864-018-4582-4
    93 schema:sdDatePublished 2019-04-11T13:06
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N9d09d69d6f9041308673964fbb29580a
    96 schema:url https://link.springer.com/10.1186%2Fs12864-018-4582-4
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N009d0778ed0843ec90040f2d03610743 rdf:first Nf341b30d50004f25902239cc2e6bf2ca
    101 rdf:rest N3a6c57ff77954c469477622e1ebd3447
    102 N036b5bf21f194ccfa0ac8704126157a6 schema:issueNumber 1
    103 rdf:type schema:PublicationIssue
    104 N14c73c2a8489465e9547bcea4e9bdf56 schema:name readcube_id
    105 schema:value 47de3d09dfeffb84861de0d16392c482361d148725e5abb73c834cffc6b2ecbb
    106 rdf:type schema:PropertyValue
    107 N166536815c0147ea8ce9aaa8fc779588 schema:volumeNumber 19
    108 rdf:type schema:PublicationVolume
    109 N24fb78deac3b4ca7be88cc9018712fdf rdf:first sg:person.0613201012.27
    110 rdf:rest rdf:nil
    111 N26d3f931feab4cd181a709d8a678e2d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Plant Proteins
    113 rdf:type schema:DefinedTerm
    114 N2d34bb3d45e3475a9aa2d236534284a2 rdf:first N56dee7c945c14aa8b99496e975638927
    115 rdf:rest Nadd51b8835a248cc9078f5f67ae3c87b
    116 N3436911598a04f1ea65730f66cf5f090 rdf:first sg:person.01114637474.40
    117 rdf:rest N009d0778ed0843ec90040f2d03610743
    118 N3a6c57ff77954c469477622e1ebd3447 rdf:first sg:person.014111272610.54
    119 rdf:rest N93e1ce03b5c044a9841b5c0affc7dd28
    120 N5432d1cd5a5c4ce4855793e9823c8c9d schema:name nlm_unique_id
    121 schema:value 100965258
    122 rdf:type schema:PropertyValue
    123 N566d38f2fc69425d8a4444ecd7ebc0de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Amino Acid Sequence
    125 rdf:type schema:DefinedTerm
    126 N56dee7c945c14aa8b99496e975638927 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    127 schema:familyName Zhang
    128 schema:givenName Xiaoli
    129 rdf:type schema:Person
    130 N5c427707ace241a7a963c0889e57c178 schema:name dimensions_id
    131 schema:value pub.1101770441
    132 rdf:type schema:PropertyValue
    133 N6b10199a082c450ba90ed35e000954bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Sequence Homology
    135 rdf:type schema:DefinedTerm
    136 N7b1984e522574902ab01118bd366bf16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Soybeans
    138 rdf:type schema:DefinedTerm
    139 N8617d559150f4980859fe9b70a42add0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Genotype
    141 rdf:type schema:DefinedTerm
    142 N93e1ce03b5c044a9841b5c0affc7dd28 rdf:first sg:person.0725016346.54
    143 rdf:rest N24fb78deac3b4ca7be88cc9018712fdf
    144 N9d09d69d6f9041308673964fbb29580a schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 Nac043d9bf34b40c2ac7e49a121f1fdc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Seeds
    148 rdf:type schema:DefinedTerm
    149 Nadd51b8835a248cc9078f5f67ae3c87b rdf:first sg:person.016622666450.15
    150 rdf:rest N3436911598a04f1ea65730f66cf5f090
    151 Nb833b6599dc9429d90d04e94e2a65b82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Alleles
    153 rdf:type schema:DefinedTerm
    154 Nc0482d338aa94be884c795114703bb00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Chromosome Mapping
    156 rdf:type schema:DefinedTerm
    157 Nc627b61180f7401587c1df7b3d34cbc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Chromosomes, Plant
    159 rdf:type schema:DefinedTerm
    160 Ncdc43c4999a14da5a0782cbcd0bf84e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Phenotype
    162 rdf:type schema:DefinedTerm
    163 Nd5a8a199b9e8491186042b211996c160 schema:name doi
    164 schema:value 10.1186/s12864-018-4582-4
    165 rdf:type schema:PropertyValue
    166 Neb1b1647791b427babf5a644c78e2908 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Quantitative Trait Loci
    168 rdf:type schema:DefinedTerm
    169 Nec9f79c5c40344b2b8e542b21155fa6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Genetic Linkage
    171 rdf:type schema:DefinedTerm
    172 Nf341b30d50004f25902239cc2e6bf2ca schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    173 schema:familyName Zhang
    174 schema:givenName Youyi
    175 rdf:type schema:Person
    176 Nf48f667f66d14793aa04e5e949368f76 schema:name pubmed_id
    177 schema:value 29587637
    178 rdf:type schema:PropertyValue
    179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Biological Sciences
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Genetics
    184 rdf:type schema:DefinedTerm
    185 sg:grant.7204680 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-018-4582-4
    186 rdf:type schema:MonetaryGrant
    187 sg:journal.1023790 schema:issn 1471-2164
    188 schema:name BMC Genomics
    189 rdf:type schema:Periodical
    190 sg:person.01114637474.40 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    191 schema:familyName Guo
    192 schema:givenName Na
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114637474.40
    194 rdf:type schema:Person
    195 sg:person.014111272610.54 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    196 schema:familyName Bu
    197 schema:givenName Yuanpeng
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014111272610.54
    199 rdf:type schema:Person
    200 sg:person.016622666450.15 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    201 schema:familyName Wang
    202 schema:givenName Wubin
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622666450.15
    204 rdf:type schema:Person
    205 sg:person.0613201012.27 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    206 schema:familyName Xing
    207 schema:givenName Han
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613201012.27
    209 rdf:type schema:Person
    210 sg:person.0725016346.54 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    211 schema:familyName Zhao
    212 schema:givenName Jinming
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725016346.54
    214 rdf:type schema:Person
    215 sg:pub.10.1007/bf00037246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035194234
    216 https://doi.org/10.1007/bf00037246
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf00223376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039666151
    219 https://doi.org/10.1007/bf00223376
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/bf02172406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044925461
    222 https://doi.org/10.1007/bf02172406
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s00122-002-1071-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003789485
    225 https://doi.org/10.1007/s00122-002-1071-5
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00122-004-1900-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045227525
    228 https://doi.org/10.1007/s00122-004-1900-9
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00122-007-0663-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875984
    231 https://doi.org/10.1007/s00122-007-0663-5
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s001220050654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021563275
    234 https://doi.org/10.1007/s001220050654
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s001220050882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042082245
    237 https://doi.org/10.1007/s001220050882
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00438-014-0932-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044886711
    240 https://doi.org/10.1007/s00438-014-0932-3
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s10681-009-0036-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001595132
    243 https://doi.org/10.1007/s10681-009-0036-z
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s10681-012-0817-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011471038
    246 https://doi.org/10.1007/s10681-012-0817-7
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s10681-014-1252-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010411779
    249 https://doi.org/10.1007/s10681-014-1252-8
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s11032-014-0033-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028323631
    252 https://doi.org/10.1007/s11032-014-0033-3
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s11703-007-0001-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039564368
    255 https://doi.org/10.1007/s11703-007-0001-3
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/22307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033258815
    258 https://doi.org/10.1038/22307
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nature08670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017534919
    261 https://doi.org/10.1038/nature08670
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nature08923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017945699
    264 https://doi.org/10.1038/nature08923
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nbt.2095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009790366
    267 https://doi.org/10.1038/nbt.2095
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/ncomms5340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051870567
    270 https://doi.org/10.1038/ncomms5340
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/ng.715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001765888
    273 https://doi.org/10.1038/ng.715
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nmeth0809-550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050758139
    276 https://doi.org/10.1038/nmeth0809-550
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/1471-2164-14-628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044767419
    279 https://doi.org/10.1186/1471-2164-14-628
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1186/1471-2164-15-104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049667117
    282 https://doi.org/10.1186/1471-2164-15-104
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1186/1471-2229-12-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050835016
    285 https://doi.org/10.1186/1471-2229-12-229
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1186/gb-2013-14-6-r61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002598699
    288 https://doi.org/10.1186/gb-2013-14-6-r61
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1016/j.tplants.2005.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030815426
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1016/s0022-5193(85)80161-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017441588
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1016/s0960-9822(00)00398-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202497
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1016/s1360-1385(01)01960-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019546138
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1016/s1671-2927(07)60062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001041049
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1017/s147926211400029x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046142504
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1017/s1479262114000495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023804809
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1042/bj20071568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014295915
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1073/pnas.0604379103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028833161
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1073/pnas.1009526107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038283469
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1073/pnas.88.21.9828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043179054
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1074/jbc.m405057200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013503794
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1093/dnares/dst015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032106054
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1093/dnares/dsv004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032379622
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1093/jhered/93.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613632
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1093/jxb/ern369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009359803
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1093/jxb/err310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015464205
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1093/mp/sst005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023992796
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1101/gr.131698.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011015457
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1104/pp.16.00074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084199347
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1105/tpc.114.126938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019848944
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1111/tpj.12105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026485371
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1139/g00-043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051603411
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1270/jsbbs.63.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027361858
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1371/journal.pone.0068433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046716925
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1534/genetics.106.066811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047329331
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1534/genetics.108.089862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009605223
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.2135/cropsci2000.4051438x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026904
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.2135/cropsci2010.01.0078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031135
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.3389/fpls.2014.00042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050339835
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.3389/fpls.2014.00135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036701402
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.4238/2015.june.8.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072394318
    357 rdf:type schema:CreativeWork
    358 https://www.grid.ac/institutes/grid.27871.3b schema:alternateName Nanjing Agricultural University
    359 schema:name Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, 210095, Nanjing, China
    360 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...