Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-16

AUTHORS

Majken Pagter, Jessica Alpers, Alexander Erban, Joachim Kopka, Ellen Zuther, Dirk K. Hincha

ABSTRACT

BackgroundDuring low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. This is accompanied by dampened oscillations of circadian clock genes and disrupted oscillations of output genes and metabolites. During deacclimation in response to warm temperatures, cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation.ResultsWe report metabolic (gas chromatography-mass spectrometry) and transcriptional (microarrays, quantitative RT-PCR) responses underlying deacclimation during the first 24 h after a shift of Arabidopsis thaliana (Columbia-0) plants cold acclimated at 4 °C back to warm temperature (20 °C). The data reveal a faster response of the transcriptome than of the metabolome and provide evidence for tightly regulated temporal responses at both levels. Metabolically, deacclimation is associated with decreasing contents of sugars, amino acids, glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. The early phase of deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Hormonal regulation appears particularly important during deacclimation, with extensive changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolism. Members of several transcription factor families that control fundamental aspects of morphogenesis and development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are transcriptionally highly interrelated processes. Expression patterns of some clock oscillator components resembled those under warm conditions, indicating at least partial re-activation of the circadian clock during deacclimation.ConclusionsThis study provides the first combined metabolomic and transcriptomic analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underlie the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a large-scale dataset of genes, metabolites and pathways that are crucial during the initial phase of deacclimation. The data will be an important reference for further analyses of this and other important but under-researched stress deacclimation processes. More... »

PAGES

731

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-017-4126-3

DOI

http://dx.doi.org/10.1186/s12864-017-4126-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091810258

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28915789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acclimatization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cold Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Present address: Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg East, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5117.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
            "Present address: Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg East, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pagter", 
        "givenName": "Majken", 
        "id": "sg:person.01225134733.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225134733.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpers", 
        "givenName": "Jessica", 
        "id": "sg:person.01277306656.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277306656.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erban", 
        "givenName": "Alexander", 
        "id": "sg:person.01353252733.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kopka", 
        "givenName": "Joachim", 
        "id": "sg:person.0633132075.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuther", 
        "givenName": "Ellen", 
        "id": "sg:person.0627062115.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hincha", 
        "givenName": "Dirk K.", 
        "id": "sg:person.0636364224.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1015255030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007059921", 
          "https://doi.org/10.1023/a:1015255030047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0844-8_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041454340", 
          "https://doi.org/10.1007/978-1-4939-0844-8_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-014-0256-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273529", 
          "https://doi.org/10.1007/s11103-014-0256-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12870-015-0566-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017690320", 
          "https://doi.org/10.1186/s12870-015-0566-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026077404", 
          "https://doi.org/10.1038/srep34027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052785629", 
          "https://doi.org/10.1038/srep12199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10142-005-0014-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012232924", 
          "https://doi.org/10.1007/s10142-005-0014-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-007-0091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048222606", 
          "https://doi.org/10.1007/s00484-007-0091-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010456073", 
          "https://doi.org/10.1186/1471-2105-7-535"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-16", 
    "datePublishedReg": "2017-09-16", 
    "description": "BackgroundDuring low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. This is accompanied by dampened oscillations of circadian clock genes and disrupted oscillations of output genes and metabolites. During deacclimation in response to warm temperatures, cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation.ResultsWe report metabolic (gas chromatography-mass spectrometry) and transcriptional (microarrays, quantitative RT-PCR) responses underlying deacclimation during the first 24\u00a0h after a shift of Arabidopsis thaliana (Columbia-0) plants cold acclimated at 4\u00a0\u00b0C back to warm temperature (20\u00a0\u00b0C). The data reveal a faster response of the transcriptome than of the metabolome and provide evidence for tightly regulated temporal responses at both levels. Metabolically, deacclimation is associated with decreasing contents of sugars, amino acids, glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. The early phase of deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Hormonal regulation appears particularly important during deacclimation, with extensive changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolism. Members of several transcription factor families that control fundamental aspects of morphogenesis and development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are transcriptionally highly interrelated processes. Expression patterns of some clock oscillator components resembled those under warm conditions, indicating at least partial re-activation of the circadian clock during deacclimation.ConclusionsThis study provides the first combined metabolomic and transcriptomic analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underlie the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a large-scale dataset of genes, metabolites and pathways that are crucial during the initial phase of deacclimation. The data will be an important reference for further analyses of this and other important but under-researched stress deacclimation processes.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12864-017-4126-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3798627", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "freezing tolerance", 
      "deacclimation process", 
      "cold acclimation", 
      "temperate plant species", 
      "transcription factor family", 
      "Arabidopsis thaliana plant", 
      "circadian clock genes", 
      "respiratory energy production", 
      "warmer temperatures", 
      "expression of genes", 
      "cell wall components", 
      "activation of growth", 
      "thaliana plants", 
      "Arabidopsis thaliana", 
      "output genes", 
      "plant species", 
      "resumption of growth", 
      "transcriptomic analysis", 
      "developmental switch", 
      "factor family", 
      "circadian clock", 
      "clock genes", 
      "ethylene metabolism", 
      "expression patterns", 
      "low temperature exposure", 
      "metabolism of lipids", 
      "TCA cycle", 
      "metabolic regulation", 
      "protein synthesis", 
      "genes", 
      "wall components", 
      "oscillator components", 
      "growth resumption", 
      "amino acids", 
      "deacclimation", 
      "hormonal regulation", 
      "plants", 
      "content of sugars", 
      "regulation", 
      "carbon source", 
      "acclimation", 
      "metabolic basis", 
      "warm conditions", 
      "extensive changes", 
      "tolerance", 
      "metabolism", 
      "thaliana", 
      "brassinosteroids", 
      "transcriptome", 
      "jasmonate", 
      "auxin", 
      "metabolites", 
      "growth", 
      "morphogenesis", 
      "gibberellin", 
      "Further analysis", 
      "energy production", 
      "species", 
      "metabolome", 
      "pathway", 
      "cascade", 
      "expression", 
      "fundamental aspects", 
      "response", 
      "lipids", 
      "activation", 
      "family", 
      "clock", 
      "temporal response", 
      "considerable effort", 
      "temperature exposure", 
      "sugars", 
      "early phase", 
      "members", 
      "resumption", 
      "less information", 
      "acid", 
      "development", 
      "Metabolic", 
      "interrelated processes", 
      "components", 
      "production", 
      "changes", 
      "process", 
      "switch", 
      "initial phase", 
      "patterns", 
      "analysis", 
      "cycle", 
      "synthesis", 
      "loss", 
      "evidence", 
      "basis", 
      "large-scale datasets", 
      "important reference", 
      "levels", 
      "data", 
      "exposure", 
      "content", 
      "shift", 
      "ConclusionsThis study", 
      "conditions", 
      "dataset", 
      "source", 
      "study", 
      "efforts", 
      "aspects", 
      "information", 
      "phase", 
      "temperature", 
      "oscillations", 
      "reference", 
      "need", 
      "fast response"
    ], 
    "name": "Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana", 
    "pagination": "731", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091810258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-017-4126-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28915789"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-017-4126-3", 
      "https://app.dimensions.ai/details/publication/pub.1091810258"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12864-017-4126-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4126-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4126-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4126-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4126-3'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      22 PREDICATES      159 URIs      140 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-017-4126-3 schema:about N10dcafc0955644c386884d10f520eadb
2 N45590fac255f4c288067bad3c6ba2ec7
3 N4a1f46f62d83477da5e10e1ee21a667d
4 N66b76aab74dc4687821e76837d405aae
5 N7a5be50b71254c6e96d8f11664f7156d
6 N80750de1c3334838bf3dfffc486d5501
7 N8bdabd1d81734d118aaad7f92e7602c0
8 Nc8ac7ba2fb1c43febeec6df047eb8cda
9 anzsrc-for:06
10 anzsrc-for:0601
11 anzsrc-for:0604
12 anzsrc-for:0607
13 schema:author N56a6b3b6e8b54938a994797225b680ae
14 schema:citation sg:pub.10.1007/978-1-4939-0844-8_14
15 sg:pub.10.1007/s00484-007-0091-x
16 sg:pub.10.1007/s10142-005-0014-z
17 sg:pub.10.1007/s11103-014-0256-z
18 sg:pub.10.1023/a:1015255030047
19 sg:pub.10.1038/srep12199
20 sg:pub.10.1038/srep34027
21 sg:pub.10.1186/1471-2105-7-535
22 sg:pub.10.1186/s12870-015-0566-6
23 schema:datePublished 2017-09-16
24 schema:datePublishedReg 2017-09-16
25 schema:description BackgroundDuring low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. This is accompanied by dampened oscillations of circadian clock genes and disrupted oscillations of output genes and metabolites. During deacclimation in response to warm temperatures, cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation.ResultsWe report metabolic (gas chromatography-mass spectrometry) and transcriptional (microarrays, quantitative RT-PCR) responses underlying deacclimation during the first 24 h after a shift of Arabidopsis thaliana (Columbia-0) plants cold acclimated at 4 °C back to warm temperature (20 °C). The data reveal a faster response of the transcriptome than of the metabolome and provide evidence for tightly regulated temporal responses at both levels. Metabolically, deacclimation is associated with decreasing contents of sugars, amino acids, glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. The early phase of deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Hormonal regulation appears particularly important during deacclimation, with extensive changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolism. Members of several transcription factor families that control fundamental aspects of morphogenesis and development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are transcriptionally highly interrelated processes. Expression patterns of some clock oscillator components resembled those under warm conditions, indicating at least partial re-activation of the circadian clock during deacclimation.ConclusionsThis study provides the first combined metabolomic and transcriptomic analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underlie the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a large-scale dataset of genes, metabolites and pathways that are crucial during the initial phase of deacclimation. The data will be an important reference for further analyses of this and other important but under-researched stress deacclimation processes.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N031010655e0e49b3b888e3d2c239fb9d
30 N0768b9429e184430837a7bf18d25523d
31 sg:journal.1023790
32 schema:keywords Arabidopsis thaliana
33 Arabidopsis thaliana plant
34 ConclusionsThis study
35 Further analysis
36 Metabolic
37 TCA cycle
38 acclimation
39 acid
40 activation
41 activation of growth
42 amino acids
43 analysis
44 aspects
45 auxin
46 basis
47 brassinosteroids
48 carbon source
49 cascade
50 cell wall components
51 changes
52 circadian clock
53 circadian clock genes
54 clock
55 clock genes
56 cold acclimation
57 components
58 conditions
59 considerable effort
60 content
61 content of sugars
62 cycle
63 data
64 dataset
65 deacclimation
66 deacclimation process
67 development
68 developmental switch
69 early phase
70 efforts
71 energy production
72 ethylene metabolism
73 evidence
74 exposure
75 expression
76 expression of genes
77 expression patterns
78 extensive changes
79 factor family
80 family
81 fast response
82 freezing tolerance
83 fundamental aspects
84 genes
85 gibberellin
86 growth
87 growth resumption
88 hormonal regulation
89 important reference
90 information
91 initial phase
92 interrelated processes
93 jasmonate
94 large-scale datasets
95 less information
96 levels
97 lipids
98 loss
99 low temperature exposure
100 members
101 metabolic basis
102 metabolic regulation
103 metabolism
104 metabolism of lipids
105 metabolites
106 metabolome
107 morphogenesis
108 need
109 oscillations
110 oscillator components
111 output genes
112 pathway
113 patterns
114 phase
115 plant species
116 plants
117 process
118 production
119 protein synthesis
120 reference
121 regulation
122 respiratory energy production
123 response
124 resumption
125 resumption of growth
126 shift
127 source
128 species
129 study
130 sugars
131 switch
132 synthesis
133 temperate plant species
134 temperature
135 temperature exposure
136 temporal response
137 thaliana
138 thaliana plants
139 tolerance
140 transcription factor family
141 transcriptome
142 transcriptomic analysis
143 wall components
144 warm conditions
145 warmer temperatures
146 schema:name Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana
147 schema:pagination 731
148 schema:productId N4a4a9e60cfed48ef94b28593aca32f9e
149 N57704b871e024a51a9ff8056e86e4378
150 Nfdfb755714e94111b5321a5e18e93ff2
151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091810258
152 https://doi.org/10.1186/s12864-017-4126-3
153 schema:sdDatePublished 2022-05-10T10:17
154 schema:sdLicense https://scigraph.springernature.com/explorer/license/
155 schema:sdPublisher Nfcbb5dc634b445c9b817f342bfc2e29e
156 schema:url https://doi.org/10.1186/s12864-017-4126-3
157 sgo:license sg:explorer/license/
158 sgo:sdDataset articles
159 rdf:type schema:ScholarlyArticle
160 N031010655e0e49b3b888e3d2c239fb9d schema:volumeNumber 18
161 rdf:type schema:PublicationVolume
162 N0768b9429e184430837a7bf18d25523d schema:issueNumber 1
163 rdf:type schema:PublicationIssue
164 N10dcafc0955644c386884d10f520eadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Arabidopsis
166 rdf:type schema:DefinedTerm
167 N1d4c0aca09414717a00182023de258f1 rdf:first sg:person.01277306656.64
168 rdf:rest Nf84d2c155a9249859c16436731a769a2
169 N45590fac255f4c288067bad3c6ba2ec7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Time Factors
171 rdf:type schema:DefinedTerm
172 N4783ff42e3a2415daff1ae951496327f rdf:first sg:person.0633132075.84
173 rdf:rest N87e547fff14d410da281d8c35471f6df
174 N496723a86021404da6612cc1a48ca4a6 rdf:first sg:person.0636364224.44
175 rdf:rest rdf:nil
176 N4a1f46f62d83477da5e10e1ee21a667d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Acclimatization
178 rdf:type schema:DefinedTerm
179 N4a4a9e60cfed48ef94b28593aca32f9e schema:name pubmed_id
180 schema:value 28915789
181 rdf:type schema:PropertyValue
182 N56a6b3b6e8b54938a994797225b680ae rdf:first sg:person.01225134733.74
183 rdf:rest N1d4c0aca09414717a00182023de258f1
184 N57704b871e024a51a9ff8056e86e4378 schema:name doi
185 schema:value 10.1186/s12864-017-4126-3
186 rdf:type schema:PropertyValue
187 N66b76aab74dc4687821e76837d405aae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Arabidopsis Proteins
189 rdf:type schema:DefinedTerm
190 N7a5be50b71254c6e96d8f11664f7156d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Transcription, Genetic
192 rdf:type schema:DefinedTerm
193 N80750de1c3334838bf3dfffc486d5501 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Transcription Factors
195 rdf:type schema:DefinedTerm
196 N87e547fff14d410da281d8c35471f6df rdf:first sg:person.0627062115.49
197 rdf:rest N496723a86021404da6612cc1a48ca4a6
198 N8bdabd1d81734d118aaad7f92e7602c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Gene Expression Profiling
200 rdf:type schema:DefinedTerm
201 Nc8ac7ba2fb1c43febeec6df047eb8cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Cold Temperature
203 rdf:type schema:DefinedTerm
204 Nf84d2c155a9249859c16436731a769a2 rdf:first sg:person.01353252733.38
205 rdf:rest N4783ff42e3a2415daff1ae951496327f
206 Nfcbb5dc634b445c9b817f342bfc2e29e schema:name Springer Nature - SN SciGraph project
207 rdf:type schema:Organization
208 Nfdfb755714e94111b5321a5e18e93ff2 schema:name dimensions_id
209 schema:value pub.1091810258
210 rdf:type schema:PropertyValue
211 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
212 schema:name Biological Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
215 schema:name Biochemistry and Cell Biology
216 rdf:type schema:DefinedTerm
217 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
218 schema:name Genetics
219 rdf:type schema:DefinedTerm
220 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
221 schema:name Plant Biology
222 rdf:type schema:DefinedTerm
223 sg:grant.3798627 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-017-4126-3
224 rdf:type schema:MonetaryGrant
225 sg:journal.1023790 schema:issn 1471-2164
226 schema:name BMC Genomics
227 schema:publisher Springer Nature
228 rdf:type schema:Periodical
229 sg:person.01225134733.74 schema:affiliation grid-institutes:grid.5117.2
230 schema:familyName Pagter
231 schema:givenName Majken
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225134733.74
233 rdf:type schema:Person
234 sg:person.01277306656.64 schema:affiliation grid-institutes:grid.418390.7
235 schema:familyName Alpers
236 schema:givenName Jessica
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277306656.64
238 rdf:type schema:Person
239 sg:person.01353252733.38 schema:affiliation grid-institutes:grid.418390.7
240 schema:familyName Erban
241 schema:givenName Alexander
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38
243 rdf:type schema:Person
244 sg:person.0627062115.49 schema:affiliation grid-institutes:grid.418390.7
245 schema:familyName Zuther
246 schema:givenName Ellen
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49
248 rdf:type schema:Person
249 sg:person.0633132075.84 schema:affiliation grid-institutes:grid.418390.7
250 schema:familyName Kopka
251 schema:givenName Joachim
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84
253 rdf:type schema:Person
254 sg:person.0636364224.44 schema:affiliation grid-institutes:grid.418390.7
255 schema:familyName Hincha
256 schema:givenName Dirk K.
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44
258 rdf:type schema:Person
259 sg:pub.10.1007/978-1-4939-0844-8_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041454340
260 https://doi.org/10.1007/978-1-4939-0844-8_14
261 rdf:type schema:CreativeWork
262 sg:pub.10.1007/s00484-007-0091-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048222606
263 https://doi.org/10.1007/s00484-007-0091-x
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s10142-005-0014-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012232924
266 https://doi.org/10.1007/s10142-005-0014-z
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s11103-014-0256-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273529
269 https://doi.org/10.1007/s11103-014-0256-z
270 rdf:type schema:CreativeWork
271 sg:pub.10.1023/a:1015255030047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007059921
272 https://doi.org/10.1023/a:1015255030047
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/srep12199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052785629
275 https://doi.org/10.1038/srep12199
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/srep34027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026077404
278 https://doi.org/10.1038/srep34027
279 rdf:type schema:CreativeWork
280 sg:pub.10.1186/1471-2105-7-535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010456073
281 https://doi.org/10.1186/1471-2105-7-535
282 rdf:type schema:CreativeWork
283 sg:pub.10.1186/s12870-015-0566-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017690320
284 https://doi.org/10.1186/s12870-015-0566-6
285 rdf:type schema:CreativeWork
286 grid-institutes:grid.418390.7 schema:alternateName Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
287 schema:name Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
288 rdf:type schema:Organization
289 grid-institutes:grid.5117.2 schema:alternateName Present address: Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg East, Denmark
290 schema:name Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
291 Present address: Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg East, Denmark
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...