Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Geert van Geest, Roeland E Voorrips, Danny Esselink, Aike Post, Richard GF Visser, Paul Arens

ABSTRACT

BACKGROUND: Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). RESULTS: With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. CONCLUSIONS: The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance. More... »

PAGES

585

References to SciGraph publications

  • 2015-12. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history in THEORETICAL AND APPLIED GENETICS
  • 2013-08. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis in NATURE PROTOCOLS
  • 2001-07. Detecting and mapping repulsion-phase linkage in polyploids with polysomic inheritance in THEORETICAL AND APPLIED GENETICS
  • 2009-07. Meiosis and pollen germinability in small-flowered anemone type chrysanthemum cultivars in PLANT SYSTEMATICS AND EVOLUTION
  • 1989-06. Inheritance in Chrysanthemum morifolium Ramat. in HEREDITY
  • 1986-11. The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance in EUPHYTICA
  • 2012-08. The mode of inheritance in tetraploid cut roses in THEORETICAL AND APPLIED GENETICS
  • 2014-12. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat in BMC GENOMICS
  • 2015-12. Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa in BMC GENOMICS
  • 2015-12. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing in BMC GENOMICS
  • 2011-12. Genotype calling in tetraploid species from bi-allelic marker data using mixture models in BMC BIOINFORMATICS
  • 2012-12. SNP markers retrieval for a non-model species: a practical approach in BMC RESEARCH NOTES
  • 2016-11. Integrating haplotype-specific linkage maps in tetraploid species using SNP markers in THEORETICAL AND APPLIED GENETICS
  • 2011-02. Cytogenetic study of three edible chrysanthemum cultivars in RUSSIAN JOURNAL OF GENETICS
  • 2008-05. Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers in MOLECULAR BREEDING
  • 2012-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2016-12. Advantages of continuous genotype values over genotype classes for GWAS in higher polyploids: a comparative study in hexaploid chrysanthemum in BMC GENOMICS
  • 1983-07. Studies on the control of diploid-like meiosis in polyploid taxa of Chrysanthemum in THEORETICAL AND APPLIED GENETICS
  • 2016-12. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array in HORTICULTURE RESEARCH
  • 1992-01. The detection and estimation of linkage in polyploids using single-dose restriction fragments in THEORETICAL AND APPLIED GENETICS
  • 2014-12. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure in NATURE COMMUNICATIONS
  • 2011-12. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R in BMC BIOINFORMATICS
  • 2003-04. A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers in MOLECULAR BREEDING
  • 2012-12. The simulation of meiosis in diploid and tetraploid organisms using various genetic models in BMC BIOINFORMATICS
  • 2011-09. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome in GENOME BIOLOGY
  • 2015-05. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-017-4003-0

    DOI

    http://dx.doi.org/10.1186/s12864-017-4003-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091080645

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28784083


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chrysanthemum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Inheritance Patterns", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, the Netherlands", 
                "Deliflor Chrysanten B.V, Korte Kruisweg 163, 2676 BS, Maasdijk, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Geest", 
            "givenName": "Geert", 
            "id": "sg:person.011557213673.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557213673.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Voorrips", 
            "givenName": "Roeland E", 
            "id": "sg:person.01331443365.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331443365.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esselink", 
            "givenName": "Danny", 
            "id": "sg:person.01023173054.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023173054.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Deliflor Chrysanten B.V, Korte Kruisweg 163, 2676 BS, Maasdijk, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Post", 
            "givenName": "Aike", 
            "id": "sg:person.016006306117.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006306117.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Visser", 
            "givenName": "Richard GF", 
            "id": "sg:person.07374343732.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wageningen University & Research", 
              "id": "https://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arens", 
            "givenName": "Paul", 
            "id": "sg:person.015552214062.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552214062.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00028604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000076353", 
              "https://doi.org/10.1007/bf00028604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00028604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000076353", 
              "https://doi.org/10.1007/bf00028604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-009-0173-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001301025", 
              "https://doi.org/10.1007/s00606-009-0173-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-009-0173-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001301025", 
              "https://doi.org/10.1007/s00606-009-0173-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-009-0173-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001301025", 
              "https://doi.org/10.1007/s00606-009-0173-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pmic.200401092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001478541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002337298", 
              "https://doi.org/10.1186/1471-2164-15-276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.030031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003131882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.030031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003131882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.085027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004181227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.085027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004181227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/nph.14276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004443461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005754650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-0500-5-79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006696382", 
              "https://doi.org/10.1186/1756-0500-5-79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-0500-5-79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006696382", 
              "https://doi.org/10.1186/1756-0500-5-79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.ecolsys.29.1.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007309490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-007-9150-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007343527", 
              "https://doi.org/10.1007/s11032-007-9150-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1755-0998.12613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007613488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00281840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008782128", 
              "https://doi.org/10.1007/bf00281840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14620316.2013.11512940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008948383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molp.2015.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010160688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-16-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608153", 
              "https://doi.org/10.1186/1471-2164-16-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-16-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608153", 
              "https://doi.org/10.1186/1471-2164-16-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scienta.2015.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011558218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012031985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2503/jjshs.64.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012048437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-9-r88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012549562", 
              "https://doi.org/10.1186/gb-2011-12-9-r88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/g93-103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015193727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2016.01635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016010559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(03)00015-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016136412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(03)00015-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016136412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2926-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016899032", 
              "https://doi.org/10.1186/s12864-016-2926-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2926-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016899032", 
              "https://doi.org/10.1186/s12864-016-2926-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evt072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017129624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/esp008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019719455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/esp008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019719455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.arplant.58.032806.103835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019949209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1989.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020420283", 
              "https://doi.org/10.1038/hdy.1989.57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1989.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020420283", 
              "https://doi.org/10.1038/hdy.1989.57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0031745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020668380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022870917230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023674231", 
              "https://doi.org/10.1023/a:1022870917230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023859609", 
              "https://doi.org/10.1186/1471-2105-12-172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025904619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.174607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026452186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.174607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026452186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027275456", 
              "https://doi.org/10.1186/1471-2105-13-248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hortres.2016.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027359696", 
              "https://doi.org/10.1038/hortres.2016.52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0003376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028160249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1310-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028438505", 
              "https://doi.org/10.1186/s12864-015-1310-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1310-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028438505", 
              "https://doi.org/10.1186/s12864-015-1310-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220100647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032519417", 
              "https://doi.org/10.1007/s001220100647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220100647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032519417", 
              "https://doi.org/10.1007/s001220100647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2768-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033375982", 
              "https://doi.org/10.1007/s00122-016-2768-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2768-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033375982", 
              "https://doi.org/10.1007/s00122-016-2768-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0028334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035181255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0062355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036478933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2014.00479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036941532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037216172", 
              "https://doi.org/10.1038/nbt.3207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/pbi.12183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037877462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-1855-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040458161", 
              "https://doi.org/10.1007/s00122-012-1855-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.12870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040635859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.ecolsys.33.010802.150437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040795962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7909.2005.00068.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042427572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7909.2005.00068.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042427572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042593822", 
              "https://doi.org/10.1186/1471-2105-12-35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042593822", 
              "https://doi.org/10.1186/1471-2105-12-35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042720804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddp473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043937984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-015-2593-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044288136", 
              "https://doi.org/10.1007/s00122-015-2593-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-015-2593-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044288136", 
              "https://doi.org/10.1007/s00122-015-2593-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045794546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2015.00249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045973466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046218484", 
              "https://doi.org/10.1038/ncomms4706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1022795411010054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046878306", 
              "https://doi.org/10.1134/s1022795411010054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0063939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047437701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00224274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049435767", 
              "https://doi.org/10.1007/bf00224274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2016.00001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049916889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2013.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051115056", 
              "https://doi.org/10.1038/nprot.2013.084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3923/rjagr.2010.78.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052207762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0630618100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052599700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/280872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058590995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1072545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062446620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082780639", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083068545", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.13496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083398456"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: Cultivated chrysanthemum is an outcrossing hexaploid (2n\u00a0=\u00a06\u00d7\u00a0=\u00a054) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183\u00a0k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5).\nRESULTS: With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n\u00a0=\u00a0405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage.\nCONCLUSIONS: The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-017-4003-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array", 
        "pagination": "585", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4a0f008bd08fc4b209699868d538dee2eebe0db3d27525e56579bc41105b401f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28784083"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-017-4003-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091080645"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-017-4003-0", 
          "https://app.dimensions.ai/details/publication/pub.1091080645"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12864-017-4003-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4003-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4003-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4003-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-4003-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    369 TRIPLES      21 PREDICATES      106 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-017-4003-0 schema:about N17c94151e6434717adb93fbad29df469
    2 N2f82f2906f024df2b74e5ed5d88beb57
    3 N5953729c1a014871a0fca3fd2cb02c07
    4 N61a8676da24f4576bef840d96892ef3e
    5 N93c823323791424ab23a6391141ebb0d
    6 N957601f77e8c4d7999986d40d4842d5a
    7 N9b11b4eb95a947f7aa1c9c176a136d2a
    8 Nf740922f44a1466895544f2a42881a3c
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Na7ec2afad4f4413693167abe66c21fc1
    12 schema:citation sg:pub.10.1007/bf00028604
    13 sg:pub.10.1007/bf00224274
    14 sg:pub.10.1007/bf00281840
    15 sg:pub.10.1007/s00122-012-1855-1
    16 sg:pub.10.1007/s00122-015-2593-y
    17 sg:pub.10.1007/s00122-016-2768-1
    18 sg:pub.10.1007/s001220100647
    19 sg:pub.10.1007/s00606-009-0173-9
    20 sg:pub.10.1007/s11032-007-9150-6
    21 sg:pub.10.1023/a:1022870917230
    22 sg:pub.10.1038/hdy.1989.57
    23 sg:pub.10.1038/hortres.2016.52
    24 sg:pub.10.1038/nbt.3207
    25 sg:pub.10.1038/ncomms4706
    26 sg:pub.10.1038/nmeth.1923
    27 sg:pub.10.1038/nprot.2013.084
    28 sg:pub.10.1134/s1022795411010054
    29 sg:pub.10.1186/1471-2105-12-172
    30 sg:pub.10.1186/1471-2105-12-35
    31 sg:pub.10.1186/1471-2105-13-248
    32 sg:pub.10.1186/1471-2164-15-276
    33 sg:pub.10.1186/1471-2164-16-1
    34 sg:pub.10.1186/1756-0500-5-79
    35 sg:pub.10.1186/gb-2011-12-9-r88
    36 sg:pub.10.1186/s12864-015-1310-1
    37 sg:pub.10.1186/s12864-016-2926-5
    38 https://app.dimensions.ai/details/publication/pub.1082780639
    39 https://app.dimensions.ai/details/publication/pub.1083068545
    40 https://doi.org/10.1002/pmic.200401092
    41 https://doi.org/10.1016/j.molp.2015.02.002
    42 https://doi.org/10.1016/j.scienta.2015.05.009
    43 https://doi.org/10.1016/s0168-9525(03)00015-5
    44 https://doi.org/10.1073/pnas.0630618100
    45 https://doi.org/10.1080/14620316.2013.11512940
    46 https://doi.org/10.1086/280872
    47 https://doi.org/10.1093/bioinformatics/btp352
    48 https://doi.org/10.1093/bioinformatics/btp698
    49 https://doi.org/10.1093/bioinformatics/btq461
    50 https://doi.org/10.1093/bioinformatics/btu170
    51 https://doi.org/10.1093/gbe/evt072
    52 https://doi.org/10.1093/hmg/ddp473
    53 https://doi.org/10.1093/jhered/esp008
    54 https://doi.org/10.1093/nar/gkt333
    55 https://doi.org/10.1111/1755-0998.12613
    56 https://doi.org/10.1111/j.1744-7909.2005.00068.x
    57 https://doi.org/10.1111/nph.14276
    58 https://doi.org/10.1111/pbi.12183
    59 https://doi.org/10.1111/tpj.12870
    60 https://doi.org/10.1111/tpj.13496
    61 https://doi.org/10.1126/science.1072545
    62 https://doi.org/10.1139/g93-103
    63 https://doi.org/10.1146/annurev.arplant.58.032806.103835
    64 https://doi.org/10.1146/annurev.ecolsys.29.1.467
    65 https://doi.org/10.1146/annurev.ecolsys.33.010802.150437
    66 https://doi.org/10.1371/journal.pone.0003376
    67 https://doi.org/10.1371/journal.pone.0019379
    68 https://doi.org/10.1371/journal.pone.0028334
    69 https://doi.org/10.1371/journal.pone.0031745
    70 https://doi.org/10.1371/journal.pone.0062355
    71 https://doi.org/10.1371/journal.pone.0063939
    72 https://doi.org/10.1534/g3.116.030031
    73 https://doi.org/10.1534/genetics.107.085027
    74 https://doi.org/10.1534/genetics.115.174607
    75 https://doi.org/10.2503/jjshs.64.161
    76 https://doi.org/10.3389/fpls.2014.00479
    77 https://doi.org/10.3389/fpls.2015.00249
    78 https://doi.org/10.3389/fpls.2016.00001
    79 https://doi.org/10.3389/fpls.2016.01635
    80 https://doi.org/10.3923/rjagr.2010.78.83
    81 schema:datePublished 2017-12
    82 schema:datePublishedReg 2017-12-01
    83 schema:description BACKGROUND: Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). RESULTS: With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. CONCLUSIONS: The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.
    84 schema:genre research_article
    85 schema:inLanguage en
    86 schema:isAccessibleForFree true
    87 schema:isPartOf N8e2569bc98544007938aae0338258f50
    88 N9dde4c75428e4547b0b073c65f4f0757
    89 sg:journal.1023790
    90 schema:name Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array
    91 schema:pagination 585
    92 schema:productId N0fe451a394ec48c0a858b6aa32167727
    93 N2a4c774422e74e9f91869d30b234f0f4
    94 N3adbbb501b534332b2ca9bef82fa2b8a
    95 Nba00813858ff439f81107b4378535fdf
    96 Nbf950dcbdcc242c298f59fd7a8f89e1e
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091080645
    98 https://doi.org/10.1186/s12864-017-4003-0
    99 schema:sdDatePublished 2019-04-11T09:55
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher Nccc3ec4cb027458695f809c9622e8484
    102 schema:url https://link.springer.com/10.1186%2Fs12864-017-4003-0
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N00ddc25534b4445eb9b030516642f148 rdf:first sg:person.01331443365.83
    107 rdf:rest N0febfeee39cf4bada5ff558b03fa58e5
    108 N0fe451a394ec48c0a858b6aa32167727 schema:name doi
    109 schema:value 10.1186/s12864-017-4003-0
    110 rdf:type schema:PropertyValue
    111 N0febfeee39cf4bada5ff558b03fa58e5 rdf:first sg:person.01023173054.19
    112 rdf:rest N59ecc31fb0374716ba3e7679fdf9a295
    113 N12ef3150c94f4e8189cfcf9c7ff15555 rdf:first sg:person.07374343732.28
    114 rdf:rest N561245065554484daeeca6b212c82a90
    115 N17c94151e6434717adb93fbad29df469 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Genotype
    117 rdf:type schema:DefinedTerm
    118 N2a4c774422e74e9f91869d30b234f0f4 schema:name nlm_unique_id
    119 schema:value 100965258
    120 rdf:type schema:PropertyValue
    121 N2f82f2906f024df2b74e5ed5d88beb57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Alleles
    123 rdf:type schema:DefinedTerm
    124 N3adbbb501b534332b2ca9bef82fa2b8a schema:name readcube_id
    125 schema:value 4a0f008bd08fc4b209699868d538dee2eebe0db3d27525e56579bc41105b401f
    126 rdf:type schema:PropertyValue
    127 N561245065554484daeeca6b212c82a90 rdf:first sg:person.015552214062.76
    128 rdf:rest rdf:nil
    129 N5953729c1a014871a0fca3fd2cb02c07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Sequence Analysis, RNA
    131 rdf:type schema:DefinedTerm
    132 N59ecc31fb0374716ba3e7679fdf9a295 rdf:first sg:person.016006306117.32
    133 rdf:rest N12ef3150c94f4e8189cfcf9c7ff15555
    134 N61a8676da24f4576bef840d96892ef3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Chrysanthemum
    136 rdf:type schema:DefinedTerm
    137 N8225f5b970534d1aa7cece29a830741d schema:name Deliflor Chrysanten B.V, Korte Kruisweg 163, 2676 BS, Maasdijk, the Netherlands
    138 rdf:type schema:Organization
    139 N8e2569bc98544007938aae0338258f50 schema:issueNumber 1
    140 rdf:type schema:PublicationIssue
    141 N93c823323791424ab23a6391141ebb0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Oligonucleotide Array Sequence Analysis
    143 rdf:type schema:DefinedTerm
    144 N957601f77e8c4d7999986d40d4842d5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Polymorphism, Single Nucleotide
    146 rdf:type schema:DefinedTerm
    147 N9b11b4eb95a947f7aa1c9c176a136d2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Gene Expression Profiling
    149 rdf:type schema:DefinedTerm
    150 N9dde4c75428e4547b0b073c65f4f0757 schema:volumeNumber 18
    151 rdf:type schema:PublicationVolume
    152 Na7ec2afad4f4413693167abe66c21fc1 rdf:first sg:person.011557213673.21
    153 rdf:rest N00ddc25534b4445eb9b030516642f148
    154 Nba00813858ff439f81107b4378535fdf schema:name pubmed_id
    155 schema:value 28784083
    156 rdf:type schema:PropertyValue
    157 Nbf950dcbdcc242c298f59fd7a8f89e1e schema:name dimensions_id
    158 schema:value pub.1091080645
    159 rdf:type schema:PropertyValue
    160 Nccc3ec4cb027458695f809c9622e8484 schema:name Springer Nature - SN SciGraph project
    161 rdf:type schema:Organization
    162 Nf740922f44a1466895544f2a42881a3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Inheritance Patterns
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Biological Sciences
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Genetics
    170 rdf:type schema:DefinedTerm
    171 sg:journal.1023790 schema:issn 1471-2164
    172 schema:name BMC Genomics
    173 rdf:type schema:Periodical
    174 sg:person.01023173054.19 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    175 schema:familyName Esselink
    176 schema:givenName Danny
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023173054.19
    178 rdf:type schema:Person
    179 sg:person.011557213673.21 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    180 schema:familyName van Geest
    181 schema:givenName Geert
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557213673.21
    183 rdf:type schema:Person
    184 sg:person.01331443365.83 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    185 schema:familyName Voorrips
    186 schema:givenName Roeland E
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331443365.83
    188 rdf:type schema:Person
    189 sg:person.015552214062.76 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    190 schema:familyName Arens
    191 schema:givenName Paul
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552214062.76
    193 rdf:type schema:Person
    194 sg:person.016006306117.32 schema:affiliation N8225f5b970534d1aa7cece29a830741d
    195 schema:familyName Post
    196 schema:givenName Aike
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006306117.32
    198 rdf:type schema:Person
    199 sg:person.07374343732.28 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
    200 schema:familyName Visser
    201 schema:givenName Richard GF
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28
    203 rdf:type schema:Person
    204 sg:pub.10.1007/bf00028604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000076353
    205 https://doi.org/10.1007/bf00028604
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/bf00224274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049435767
    208 https://doi.org/10.1007/bf00224274
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/bf00281840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008782128
    211 https://doi.org/10.1007/bf00281840
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00122-012-1855-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040458161
    214 https://doi.org/10.1007/s00122-012-1855-1
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00122-015-2593-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044288136
    217 https://doi.org/10.1007/s00122-015-2593-y
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s00122-016-2768-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033375982
    220 https://doi.org/10.1007/s00122-016-2768-1
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s001220100647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032519417
    223 https://doi.org/10.1007/s001220100647
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00606-009-0173-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001301025
    226 https://doi.org/10.1007/s00606-009-0173-9
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s11032-007-9150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007343527
    229 https://doi.org/10.1007/s11032-007-9150-6
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1023/a:1022870917230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023674231
    232 https://doi.org/10.1023/a:1022870917230
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/hdy.1989.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020420283
    235 https://doi.org/10.1038/hdy.1989.57
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/hortres.2016.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027359696
    238 https://doi.org/10.1038/hortres.2016.52
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nbt.3207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037216172
    241 https://doi.org/10.1038/nbt.3207
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ncomms4706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046218484
    244 https://doi.org/10.1038/ncomms4706
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    247 https://doi.org/10.1038/nmeth.1923
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nprot.2013.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051115056
    250 https://doi.org/10.1038/nprot.2013.084
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1134/s1022795411010054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046878306
    253 https://doi.org/10.1134/s1022795411010054
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/1471-2105-12-172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023859609
    256 https://doi.org/10.1186/1471-2105-12-172
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/1471-2105-12-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042593822
    259 https://doi.org/10.1186/1471-2105-12-35
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1471-2105-13-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275456
    262 https://doi.org/10.1186/1471-2105-13-248
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1186/1471-2164-15-276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002337298
    265 https://doi.org/10.1186/1471-2164-15-276
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1186/1471-2164-16-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608153
    268 https://doi.org/10.1186/1471-2164-16-1
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/1756-0500-5-79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006696382
    271 https://doi.org/10.1186/1756-0500-5-79
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/gb-2011-12-9-r88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012549562
    274 https://doi.org/10.1186/gb-2011-12-9-r88
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/s12864-015-1310-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028438505
    277 https://doi.org/10.1186/s12864-015-1310-1
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/s12864-016-2926-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016899032
    280 https://doi.org/10.1186/s12864-016-2926-5
    281 rdf:type schema:CreativeWork
    282 https://app.dimensions.ai/details/publication/pub.1082780639 schema:CreativeWork
    283 https://app.dimensions.ai/details/publication/pub.1083068545 schema:CreativeWork
    284 https://doi.org/10.1002/pmic.200401092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001478541
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1016/j.molp.2015.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010160688
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1016/j.scienta.2015.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011558218
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1016/s0168-9525(03)00015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016136412
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1073/pnas.0630618100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052599700
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1080/14620316.2013.11512940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008948383
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1086/280872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058590995
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1093/bioinformatics/btq461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904619
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1093/gbe/evt072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017129624
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1093/hmg/ddp473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043937984
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1093/jhered/esp008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019719455
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1093/nar/gkt333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045794546
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1111/1755-0998.12613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007613488
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1111/j.1744-7909.2005.00068.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042427572
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1111/nph.14276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004443461
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1111/pbi.12183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037877462
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1111/tpj.12870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040635859
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1111/tpj.13496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083398456
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1126/science.1072545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446620
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1139/g93-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015193727
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1146/annurev.arplant.58.032806.103835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019949209
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1146/annurev.ecolsys.29.1.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007309490
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1146/annurev.ecolsys.33.010802.150437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040795962
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1371/journal.pone.0003376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028160249
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1371/journal.pone.0019379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005754650
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1371/journal.pone.0028334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035181255
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1371/journal.pone.0031745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020668380
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1371/journal.pone.0062355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036478933
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1371/journal.pone.0063939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047437701
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1534/g3.116.030031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003131882
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1534/genetics.107.085027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004181227
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1534/genetics.115.174607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026452186
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.2503/jjshs.64.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012048437
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.3389/fpls.2014.00479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036941532
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.3389/fpls.2015.00249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045973466
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.3389/fpls.2016.00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049916889
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.3389/fpls.2016.01635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016010559
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.3923/rjagr.2010.78.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052207762
    365 rdf:type schema:CreativeWork
    366 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
    367 schema:name Deliflor Chrysanten B.V, Korte Kruisweg 163, 2676 BS, Maasdijk, the Netherlands
    368 Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, the Netherlands
    369 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...