Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Olivier Arnaiz, Erwin Van Dijk, Mireille Bétermier, Maoussi Lhuillier-Akakpo, Augustin de Vanssay, Sandra Duharcourt, Erika Sallet, Jérôme Gouzy, Linda Sperling

ABSTRACT

BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ). More... »

PAGES

483

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z

DOI

http://dx.doi.org/10.1186/s12864-017-3887-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086277680

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28651633


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paramecium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arnaiz", 
        "givenName": "Olivier", 
        "id": "sg:person.0764147333.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764147333.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Dijk", 
        "givenName": "Erwin", 
        "id": "sg:person.01152465211.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152465211.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9termier", 
        "givenName": "Mireille", 
        "id": "sg:person.0607163010.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607163010.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut Jacques Monod, CNRS, UMR 7592, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, F-75205, Paris, France", 
            "Current address: IRCM, CEA, INSERM UMR 967, Universit\u00e9 Paris Diderot, Universit\u00e9 Paris-Saclay, 92265, Fontenay-aux-Roses CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lhuillier-Akakpo", 
        "givenName": "Maoussi", 
        "id": "sg:person.0646076215.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646076215.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut Jacques Monod, CNRS, UMR 7592, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, F-75205, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Vanssay", 
        "givenName": "Augustin", 
        "id": "sg:person.01135344141.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135344141.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut Jacques Monod, CNRS, UMR 7592, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, F-75205, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duharcourt", 
        "givenName": "Sandra", 
        "id": "sg:person.01060070633.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060070633.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Interactions Plantes Micro-organismes", 
          "id": "https://www.grid.ac/institutes/grid.462754.6", 
          "name": [
            "LIPM, Universit\u00e9 de Toulouse, INRA, CNRS, Castanet-Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sallet", 
        "givenName": "Erika", 
        "id": "sg:person.01151654156.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151654156.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Interactions Plantes Micro-organismes", 
          "id": "https://www.grid.ac/institutes/grid.462754.6", 
          "name": [
            "LIPM, Universit\u00e9 de Toulouse, INRA, CNRS, Castanet-Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gouzy", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.0653227004.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653227004.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sperling", 
        "givenName": "Linda", 
        "id": "sg:person.01002307001.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002307001.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001668310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.1306009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004300039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004620188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004635314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008613513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-12-r175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016469219", 
          "https://doi.org/10.1186/gb-2008-9-12-r175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.163287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016879146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.163287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016879146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-4827(86)90492-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016989243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018230704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899367", 
          "https://doi.org/10.1038/nmeth.1491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899367", 
          "https://doi.org/10.1038/nmeth.1491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020033933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a017764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020543915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msv095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020813662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023987381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.473008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025371857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.173740.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025751562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(01)00674-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026283045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2013.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027158184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027876658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028302393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033286768", 
          "https://doi.org/10.1038/nature05230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033286768", 
          "https://doi.org/10.1038/nature05230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033286768", 
          "https://doi.org/10.1038/nature05230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ge.21.120187.000403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033471859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034142649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-genet-111212-133424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035462987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036995523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.23.7.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037021315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037799870", 
          "https://doi.org/10.1038/nature06495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044233298", 
          "https://doi.org/10.1186/1471-2164-11-547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047073835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1550-7408.2005.3327r.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050464534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052559833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157489308784340702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069217447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2016.12.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083759117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085443618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555819217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109532691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555819217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109532691"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage.\nRESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource.\nCONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-017-3887-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression", 
    "pagination": "483", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d33fd25fd3bf7d3c2a38b2b52f0c40d7a029652b9a81135bda3c3e8ed496604"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28651633"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-017-3887-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086277680"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-017-3887-z", 
      "https://app.dimensions.ai/details/publication/pub.1086277680"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70068_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-017-3887-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      72 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-017-3887-z schema:about N34078858f90f41068287379a22847ff3
2 N4a263d94a39b4aa18b4ff484216a2807
3 N667c5ea6e56b4f959d6484640b144258
4 N9480c90161ed46dbab99307cc1af1703
5 Nc84521a3b937428183a6b0fac9ef5b89
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author Na916a809763a4183969f815cbca97a86
9 schema:citation sg:pub.10.1038/75556
10 sg:pub.10.1038/nature05230
11 sg:pub.10.1038/nature06495
12 sg:pub.10.1038/nbt.1621
13 sg:pub.10.1038/nmeth.1491
14 sg:pub.10.1186/1471-2164-11-547
15 sg:pub.10.1186/gb-2008-9-12-r175
16 sg:pub.10.1186/s13059-014-0550-8
17 https://doi.org/10.1016/0014-4827(86)90492-1
18 https://doi.org/10.1016/j.cub.2005.07.033
19 https://doi.org/10.1016/j.cub.2016.12.057
20 https://doi.org/10.1016/j.molcel.2013.10.032
21 https://doi.org/10.1016/s0378-1119(01)00674-6
22 https://doi.org/10.1073/pnas.23.7.378
23 https://doi.org/10.1093/bioinformatics/btg1080
24 https://doi.org/10.1093/molbev/msv095
25 https://doi.org/10.1093/nar/gkn1018
26 https://doi.org/10.1093/nar/gkq918
27 https://doi.org/10.1093/nar/gku223
28 https://doi.org/10.1093/nar/gkw1318
29 https://doi.org/10.1101/cshperspect.a017764
30 https://doi.org/10.1101/gad.473008
31 https://doi.org/10.1101/gr.173740.114
32 https://doi.org/10.1111/j.1550-7408.2005.3327r.x
33 https://doi.org/10.1128/9781555819217
34 https://doi.org/10.1146/annurev-genet-111212-133424
35 https://doi.org/10.1146/annurev.ge.21.120187.000403
36 https://doi.org/10.1261/rna.1306009
37 https://doi.org/10.1371/journal.pbio.0040286
38 https://doi.org/10.1371/journal.pcbi.1002150
39 https://doi.org/10.1371/journal.pcbi.1005457
40 https://doi.org/10.1371/journal.pgen.1000944
41 https://doi.org/10.1371/journal.pgen.1002049
42 https://doi.org/10.1371/journal.pgen.1002984
43 https://doi.org/10.1371/journal.pgen.1004552
44 https://doi.org/10.1371/journal.pgen.1005383
45 https://doi.org/10.1534/genetics.114.163287
46 https://doi.org/10.2174/157489308784340702
47 schema:datePublished 2017-12
48 schema:datePublishedReg 2017-12-01
49 schema:description BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N51f21924d4974ecc81eee3ddf0538a54
54 Nc1c672b73ee54dc2b0c1934cfa15cc50
55 sg:journal.1023790
56 schema:name Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression
57 schema:pagination 483
58 schema:productId N1aec1a0359fd483cbdc59b483feec684
59 N72fb58ddf87d412181f933cceafc3e4d
60 N908fc2053d924c57a8577488ad90efa8
61 Naaa1153b507445f184c3051b802cf157
62 Ndf4f8b184918480788cb6bcc0b96b5a5
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086277680
64 https://doi.org/10.1186/s12864-017-3887-z
65 schema:sdDatePublished 2019-04-11T12:44
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N2732e4dd45a74474a3753872e965265e
68 schema:url https://link.springer.com/10.1186%2Fs12864-017-3887-z
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N15fcd6765c2e47f1bc94c5ae0c69d2e5 rdf:first sg:person.0607163010.11
73 rdf:rest Nc32e3bea3c6246f39123367baf0bb80f
74 N1aec1a0359fd483cbdc59b483feec684 schema:name pubmed_id
75 schema:value 28651633
76 rdf:type schema:PropertyValue
77 N2732e4dd45a74474a3753872e965265e schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N34078858f90f41068287379a22847ff3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Sequence Analysis, RNA
81 rdf:type schema:DefinedTerm
82 N41624b356e6a4ad289608272acaa94c2 rdf:first sg:person.01002307001.48
83 rdf:rest rdf:nil
84 N43a5e536c0954d898fcc349525b5a7b3 rdf:first sg:person.01135344141.47
85 rdf:rest Nbcf2dd40daa040d59f54739975bac621
86 N4a263d94a39b4aa18b4ff484216a2807 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Molecular Sequence Annotation
88 rdf:type schema:DefinedTerm
89 N4d99981b949e47169749359b0449f5d4 rdf:first sg:person.01152465211.52
90 rdf:rest N15fcd6765c2e47f1bc94c5ae0c69d2e5
91 N51f21924d4974ecc81eee3ddf0538a54 schema:volumeNumber 18
92 rdf:type schema:PublicationVolume
93 N667c5ea6e56b4f959d6484640b144258 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genomics
95 rdf:type schema:DefinedTerm
96 N72fb58ddf87d412181f933cceafc3e4d schema:name dimensions_id
97 schema:value pub.1086277680
98 rdf:type schema:PropertyValue
99 N908fc2053d924c57a8577488ad90efa8 schema:name doi
100 schema:value 10.1186/s12864-017-3887-z
101 rdf:type schema:PropertyValue
102 N90f3712bc64840b4afc180a6b5937bf5 rdf:first sg:person.0653227004.71
103 rdf:rest N41624b356e6a4ad289608272acaa94c2
104 N9480c90161ed46dbab99307cc1af1703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Paramecium
106 rdf:type schema:DefinedTerm
107 Na916a809763a4183969f815cbca97a86 rdf:first sg:person.0764147333.17
108 rdf:rest N4d99981b949e47169749359b0449f5d4
109 Naaa1153b507445f184c3051b802cf157 schema:name readcube_id
110 schema:value 2d33fd25fd3bf7d3c2a38b2b52f0c40d7a029652b9a81135bda3c3e8ed496604
111 rdf:type schema:PropertyValue
112 Nbcf2dd40daa040d59f54739975bac621 rdf:first sg:person.01060070633.62
113 rdf:rest Nedf295f8f9964de68cac30efaa9b0483
114 Nc1c672b73ee54dc2b0c1934cfa15cc50 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Nc32e3bea3c6246f39123367baf0bb80f rdf:first sg:person.0646076215.33
117 rdf:rest N43a5e536c0954d898fcc349525b5a7b3
118 Nc84521a3b937428183a6b0fac9ef5b89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gene Expression Profiling
120 rdf:type schema:DefinedTerm
121 Ndf4f8b184918480788cb6bcc0b96b5a5 schema:name nlm_unique_id
122 schema:value 100965258
123 rdf:type schema:PropertyValue
124 Nedf295f8f9964de68cac30efaa9b0483 rdf:first sg:person.01151654156.02
125 rdf:rest N90f3712bc64840b4afc180a6b5937bf5
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
130 schema:name Genetics
131 rdf:type schema:DefinedTerm
132 sg:journal.1023790 schema:issn 1471-2164
133 schema:name BMC Genomics
134 rdf:type schema:Periodical
135 sg:person.01002307001.48 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
136 schema:familyName Sperling
137 schema:givenName Linda
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002307001.48
139 rdf:type schema:Person
140 sg:person.01060070633.62 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
141 schema:familyName Duharcourt
142 schema:givenName Sandra
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060070633.62
144 rdf:type schema:Person
145 sg:person.01135344141.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
146 schema:familyName de Vanssay
147 schema:givenName Augustin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135344141.47
149 rdf:type schema:Person
150 sg:person.01151654156.02 schema:affiliation https://www.grid.ac/institutes/grid.462754.6
151 schema:familyName Sallet
152 schema:givenName Erika
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151654156.02
154 rdf:type schema:Person
155 sg:person.01152465211.52 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
156 schema:familyName Van Dijk
157 schema:givenName Erwin
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152465211.52
159 rdf:type schema:Person
160 sg:person.0607163010.11 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
161 schema:familyName Bétermier
162 schema:givenName Mireille
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607163010.11
164 rdf:type schema:Person
165 sg:person.0646076215.33 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
166 schema:familyName Lhuillier-Akakpo
167 schema:givenName Maoussi
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646076215.33
169 rdf:type schema:Person
170 sg:person.0653227004.71 schema:affiliation https://www.grid.ac/institutes/grid.462754.6
171 schema:familyName Gouzy
172 schema:givenName Jérôme
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653227004.71
174 rdf:type schema:Person
175 sg:person.0764147333.17 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
176 schema:familyName Arnaiz
177 schema:givenName Olivier
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764147333.17
179 rdf:type schema:Person
180 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
181 https://doi.org/10.1038/75556
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature05230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033286768
184 https://doi.org/10.1038/nature05230
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature06495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037799870
187 https://doi.org/10.1038/nature06495
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
190 https://doi.org/10.1038/nbt.1621
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nmeth.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019899367
193 https://doi.org/10.1038/nmeth.1491
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/1471-2164-11-547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044233298
196 https://doi.org/10.1186/1471-2164-11-547
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/gb-2008-9-12-r175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016469219
199 https://doi.org/10.1186/gb-2008-9-12-r175
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
202 https://doi.org/10.1186/s13059-014-0550-8
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/0014-4827(86)90492-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016989243
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.cub.2005.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004620188
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.cub.2016.12.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083759117
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.molcel.2013.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027158184
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0378-1119(01)00674-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026283045
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1073/pnas.23.7.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037021315
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/btg1080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008613513
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/molbev/msv095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020813662
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/gkn1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004635314
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/gkq918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036995523
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gku223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033933
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkw1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018230704
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1101/cshperspect.a017764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020543915
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1101/gad.473008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025371857
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1101/gr.173740.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025751562
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1111/j.1550-7408.2005.3327r.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050464534
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1128/9781555819217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109532691
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1146/annurev-genet-111212-133424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462987
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1146/annurev.ge.21.120187.000403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033471859
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1261/rna.1306009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004300039
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1371/journal.pbio.0040286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052559833
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1371/journal.pcbi.1002150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001668310
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pcbi.1005457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085443618
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1371/journal.pgen.1000944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142649
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pgen.1002049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027876658
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pgen.1002984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028302393
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pgen.1004552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023987381
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pgen.1005383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047073835
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1534/genetics.114.163287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016879146
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2174/157489308784340702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069217447
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
265 schema:name Current address: IRCM, CEA, INSERM UMR 967, Université Paris Diderot, Université Paris-Saclay, 92265, Fontenay-aux-Roses CEDEX, France
266 Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
267 Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.462754.6 schema:alternateName Laboratoire des Interactions Plantes Micro-organismes
270 schema:name LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...