Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Olivier Arnaiz, Erwin Van Dijk, Mireille Bétermier, Maoussi Lhuillier-Akakpo, Augustin de Vanssay, Sandra Duharcourt, Erika Sallet, Jérôme Gouzy, Linda Sperling

ABSTRACT

BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ). More... »

PAGES

483

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z

DOI

http://dx.doi.org/10.1186/s12864-017-3887-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086277680

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28651633


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paramecium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arnaiz", 
        "givenName": "Olivier", 
        "id": "sg:person.0764147333.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764147333.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Dijk", 
        "givenName": "Erwin", 
        "id": "sg:person.01152465211.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152465211.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9termier", 
        "givenName": "Mireille", 
        "id": "sg:person.0607163010.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607163010.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut Jacques Monod, CNRS, UMR 7592, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, F-75205, Paris, France", 
            "Current address: IRCM, CEA, INSERM UMR 967, Universit\u00e9 Paris Diderot, Universit\u00e9 Paris-Saclay, 92265, Fontenay-aux-Roses CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lhuillier-Akakpo", 
        "givenName": "Maoussi", 
        "id": "sg:person.0646076215.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646076215.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut Jacques Monod, CNRS, UMR 7592, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, F-75205, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Vanssay", 
        "givenName": "Augustin", 
        "id": "sg:person.01135344141.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135344141.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut Jacques Monod, CNRS, UMR 7592, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, F-75205, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duharcourt", 
        "givenName": "Sandra", 
        "id": "sg:person.01060070633.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060070633.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Interactions Plantes Micro-organismes", 
          "id": "https://www.grid.ac/institutes/grid.462754.6", 
          "name": [
            "LIPM, Universit\u00e9 de Toulouse, INRA, CNRS, Castanet-Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sallet", 
        "givenName": "Erika", 
        "id": "sg:person.01151654156.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151654156.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Interactions Plantes Micro-organismes", 
          "id": "https://www.grid.ac/institutes/grid.462754.6", 
          "name": [
            "LIPM, Universit\u00e9 de Toulouse, INRA, CNRS, Castanet-Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gouzy", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.0653227004.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653227004.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sperling", 
        "givenName": "Linda", 
        "id": "sg:person.01002307001.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002307001.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001668310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.1306009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004300039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004620188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004635314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008613513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-12-r175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016469219", 
          "https://doi.org/10.1186/gb-2008-9-12-r175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.163287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016879146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.114.163287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016879146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-4827(86)90492-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016989243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018230704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899367", 
          "https://doi.org/10.1038/nmeth.1491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899367", 
          "https://doi.org/10.1038/nmeth.1491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020033933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a017764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020543915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msv095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020813662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023987381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.473008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025371857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.173740.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025751562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(01)00674-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026283045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2013.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027158184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027876658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028302393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033286768", 
          "https://doi.org/10.1038/nature05230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033286768", 
          "https://doi.org/10.1038/nature05230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033286768", 
          "https://doi.org/10.1038/nature05230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ge.21.120187.000403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033471859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034142649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-genet-111212-133424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035462987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036995523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.23.7.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037021315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037799870", 
          "https://doi.org/10.1038/nature06495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044233298", 
          "https://doi.org/10.1186/1471-2164-11-547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047073835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1550-7408.2005.3327r.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050464534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052559833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157489308784340702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069217447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2016.12.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083759117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085443618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555819217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109532691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555819217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109532691"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage.\nRESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource.\nCONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-017-3887-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression", 
    "pagination": "483", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d33fd25fd3bf7d3c2a38b2b52f0c40d7a029652b9a81135bda3c3e8ed496604"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28651633"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-017-3887-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086277680"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-017-3887-z", 
      "https://app.dimensions.ai/details/publication/pub.1086277680"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70068_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-017-3887-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3887-z'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      72 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-017-3887-z schema:about N12b08f9b4ac940cdbda7e202ba107794
2 N45c665fbed094bbbb685a188b5dcf5d8
3 N4c2b3ea1dc244fa2825c5211fd102713
4 N6aabed8d07d246e79e2b9e4f32e661d8
5 N839d0ce4e97948c0931e9c6ae5a059ba
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N8a509c56c0164c5eac51e508961f9def
9 schema:citation sg:pub.10.1038/75556
10 sg:pub.10.1038/nature05230
11 sg:pub.10.1038/nature06495
12 sg:pub.10.1038/nbt.1621
13 sg:pub.10.1038/nmeth.1491
14 sg:pub.10.1186/1471-2164-11-547
15 sg:pub.10.1186/gb-2008-9-12-r175
16 sg:pub.10.1186/s13059-014-0550-8
17 https://doi.org/10.1016/0014-4827(86)90492-1
18 https://doi.org/10.1016/j.cub.2005.07.033
19 https://doi.org/10.1016/j.cub.2016.12.057
20 https://doi.org/10.1016/j.molcel.2013.10.032
21 https://doi.org/10.1016/s0378-1119(01)00674-6
22 https://doi.org/10.1073/pnas.23.7.378
23 https://doi.org/10.1093/bioinformatics/btg1080
24 https://doi.org/10.1093/molbev/msv095
25 https://doi.org/10.1093/nar/gkn1018
26 https://doi.org/10.1093/nar/gkq918
27 https://doi.org/10.1093/nar/gku223
28 https://doi.org/10.1093/nar/gkw1318
29 https://doi.org/10.1101/cshperspect.a017764
30 https://doi.org/10.1101/gad.473008
31 https://doi.org/10.1101/gr.173740.114
32 https://doi.org/10.1111/j.1550-7408.2005.3327r.x
33 https://doi.org/10.1128/9781555819217
34 https://doi.org/10.1146/annurev-genet-111212-133424
35 https://doi.org/10.1146/annurev.ge.21.120187.000403
36 https://doi.org/10.1261/rna.1306009
37 https://doi.org/10.1371/journal.pbio.0040286
38 https://doi.org/10.1371/journal.pcbi.1002150
39 https://doi.org/10.1371/journal.pcbi.1005457
40 https://doi.org/10.1371/journal.pgen.1000944
41 https://doi.org/10.1371/journal.pgen.1002049
42 https://doi.org/10.1371/journal.pgen.1002984
43 https://doi.org/10.1371/journal.pgen.1004552
44 https://doi.org/10.1371/journal.pgen.1005383
45 https://doi.org/10.1534/genetics.114.163287
46 https://doi.org/10.2174/157489308784340702
47 schema:datePublished 2017-12
48 schema:datePublishedReg 2017-12-01
49 schema:description BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N4b3edbf0ba11488ba7b50aded20dde81
54 Nfcc0ecf3dedb4665a82678e46d04b48e
55 sg:journal.1023790
56 schema:name Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression
57 schema:pagination 483
58 schema:productId N06e0cf16592d4c4c9cb6f9f64361f069
59 N4268e117bb2f497180e3910da3b38b00
60 N8320b9fb1b814deb84fa38e56c260440
61 N966094a1cbef4440a5af9bda8219e9ec
62 Nda658f4fcd69412687f4b9ad858f4533
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086277680
64 https://doi.org/10.1186/s12864-017-3887-z
65 schema:sdDatePublished 2019-04-11T12:44
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N06134cbc61d14015b25f50ee8b760610
68 schema:url https://link.springer.com/10.1186%2Fs12864-017-3887-z
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N06134cbc61d14015b25f50ee8b760610 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N06e0cf16592d4c4c9cb6f9f64361f069 schema:name pubmed_id
75 schema:value 28651633
76 rdf:type schema:PropertyValue
77 N0d349b5465514788a267692ade0e8342 rdf:first sg:person.01135344141.47
78 rdf:rest Nbf23144ab64949e99790d7063d81d2a0
79 N12b08f9b4ac940cdbda7e202ba107794 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Sequence Analysis, RNA
81 rdf:type schema:DefinedTerm
82 N1845838db0e94f84868b9d6cfae69d03 rdf:first sg:person.0653227004.71
83 rdf:rest N39280ec554134e22be7aa1eccec44e9b
84 N39280ec554134e22be7aa1eccec44e9b rdf:first sg:person.01002307001.48
85 rdf:rest rdf:nil
86 N4268e117bb2f497180e3910da3b38b00 schema:name readcube_id
87 schema:value 2d33fd25fd3bf7d3c2a38b2b52f0c40d7a029652b9a81135bda3c3e8ed496604
88 rdf:type schema:PropertyValue
89 N45c665fbed094bbbb685a188b5dcf5d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Paramecium
91 rdf:type schema:DefinedTerm
92 N4b3edbf0ba11488ba7b50aded20dde81 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N4c2b3ea1dc244fa2825c5211fd102713 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Gene Expression Profiling
96 rdf:type schema:DefinedTerm
97 N5714adc46b4e4d9882d4d0c90d6f1bc7 rdf:first sg:person.0607163010.11
98 rdf:rest N5c5da3589a304fbba6860e2d725ac23e
99 N5c5da3589a304fbba6860e2d725ac23e rdf:first sg:person.0646076215.33
100 rdf:rest N0d349b5465514788a267692ade0e8342
101 N6aabed8d07d246e79e2b9e4f32e661d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Molecular Sequence Annotation
103 rdf:type schema:DefinedTerm
104 N8320b9fb1b814deb84fa38e56c260440 schema:name nlm_unique_id
105 schema:value 100965258
106 rdf:type schema:PropertyValue
107 N839d0ce4e97948c0931e9c6ae5a059ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genomics
109 rdf:type schema:DefinedTerm
110 N8a0f5b466420478d807f45833f28ee53 rdf:first sg:person.01152465211.52
111 rdf:rest N5714adc46b4e4d9882d4d0c90d6f1bc7
112 N8a509c56c0164c5eac51e508961f9def rdf:first sg:person.0764147333.17
113 rdf:rest N8a0f5b466420478d807f45833f28ee53
114 N966094a1cbef4440a5af9bda8219e9ec schema:name dimensions_id
115 schema:value pub.1086277680
116 rdf:type schema:PropertyValue
117 Nbf23144ab64949e99790d7063d81d2a0 rdf:first sg:person.01060070633.62
118 rdf:rest Nfe699b2e2afd4e1f9fad0324dd72d4e6
119 Nda658f4fcd69412687f4b9ad858f4533 schema:name doi
120 schema:value 10.1186/s12864-017-3887-z
121 rdf:type schema:PropertyValue
122 Nfcc0ecf3dedb4665a82678e46d04b48e schema:volumeNumber 18
123 rdf:type schema:PublicationVolume
124 Nfe699b2e2afd4e1f9fad0324dd72d4e6 rdf:first sg:person.01151654156.02
125 rdf:rest N1845838db0e94f84868b9d6cfae69d03
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
130 schema:name Genetics
131 rdf:type schema:DefinedTerm
132 sg:journal.1023790 schema:issn 1471-2164
133 schema:name BMC Genomics
134 rdf:type schema:Periodical
135 sg:person.01002307001.48 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
136 schema:familyName Sperling
137 schema:givenName Linda
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002307001.48
139 rdf:type schema:Person
140 sg:person.01060070633.62 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
141 schema:familyName Duharcourt
142 schema:givenName Sandra
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060070633.62
144 rdf:type schema:Person
145 sg:person.01135344141.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
146 schema:familyName de Vanssay
147 schema:givenName Augustin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135344141.47
149 rdf:type schema:Person
150 sg:person.01151654156.02 schema:affiliation https://www.grid.ac/institutes/grid.462754.6
151 schema:familyName Sallet
152 schema:givenName Erika
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151654156.02
154 rdf:type schema:Person
155 sg:person.01152465211.52 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
156 schema:familyName Van Dijk
157 schema:givenName Erwin
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152465211.52
159 rdf:type schema:Person
160 sg:person.0607163010.11 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
161 schema:familyName Bétermier
162 schema:givenName Mireille
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607163010.11
164 rdf:type schema:Person
165 sg:person.0646076215.33 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
166 schema:familyName Lhuillier-Akakpo
167 schema:givenName Maoussi
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646076215.33
169 rdf:type schema:Person
170 sg:person.0653227004.71 schema:affiliation https://www.grid.ac/institutes/grid.462754.6
171 schema:familyName Gouzy
172 schema:givenName Jérôme
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653227004.71
174 rdf:type schema:Person
175 sg:person.0764147333.17 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
176 schema:familyName Arnaiz
177 schema:givenName Olivier
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764147333.17
179 rdf:type schema:Person
180 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
181 https://doi.org/10.1038/75556
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature05230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033286768
184 https://doi.org/10.1038/nature05230
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature06495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037799870
187 https://doi.org/10.1038/nature06495
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
190 https://doi.org/10.1038/nbt.1621
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nmeth.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019899367
193 https://doi.org/10.1038/nmeth.1491
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/1471-2164-11-547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044233298
196 https://doi.org/10.1186/1471-2164-11-547
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/gb-2008-9-12-r175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016469219
199 https://doi.org/10.1186/gb-2008-9-12-r175
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
202 https://doi.org/10.1186/s13059-014-0550-8
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/0014-4827(86)90492-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016989243
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.cub.2005.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004620188
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.cub.2016.12.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083759117
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.molcel.2013.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027158184
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0378-1119(01)00674-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026283045
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1073/pnas.23.7.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037021315
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/btg1080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008613513
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/molbev/msv095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020813662
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/gkn1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004635314
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/gkq918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036995523
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gku223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033933
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkw1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018230704
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1101/cshperspect.a017764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020543915
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1101/gad.473008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025371857
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1101/gr.173740.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025751562
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1111/j.1550-7408.2005.3327r.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050464534
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1128/9781555819217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109532691
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1146/annurev-genet-111212-133424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462987
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1146/annurev.ge.21.120187.000403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033471859
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1261/rna.1306009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004300039
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1371/journal.pbio.0040286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052559833
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1371/journal.pcbi.1002150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001668310
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pcbi.1005457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085443618
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1371/journal.pgen.1000944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142649
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pgen.1002049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027876658
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pgen.1002984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028302393
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pgen.1004552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023987381
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pgen.1005383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047073835
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1534/genetics.114.163287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016879146
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2174/157489308784340702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069217447
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
265 schema:name Current address: IRCM, CEA, INSERM UMR 967, Université Paris Diderot, Université Paris-Saclay, 92265, Fontenay-aux-Roses CEDEX, France
266 Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
267 Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.462754.6 schema:alternateName Laboratoire des Interactions Plantes Micro-organismes
270 schema:name LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...