Core-genome scaffold comparison reveals the prevalence that inversion events are associated with pairs of inverted repeats View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Dan Wang, Shuaicheng Li, Fei Guo, Kang Ning, Lusheng Wang

ABSTRACT

BACKGROUND: Genome rearrangement describes gross changes of chromosomal regions, plays an important role in evolutionary biology and has profound impacts on phenotype in organisms ranging from microbes to humans. With more and more complete genomes accomplished, lots of genomic comparisons have been conducted in order to find genome rearrangements and the mechanisms which underlie the rearrangement events. In our opinion, genomic comparison of different individuals/strains within the same species (pan-genome) is more helpful to reveal the mechanisms for genome rearrangements since genomes of the same species are much closer to each other. RESULTS: We study the mechanism for inversion events via core-genome scaffold comparison of different strains within the same species. We focus on two kinds of bacteria, Pseudomonas aeruginosa and Escherichia coli, and investigate the inversion events among different strains of the same species. We find an interesting phenomenon that long (larger than 10,000 bp) inversion regions are flanked by a pair of Inverted Repeats (IRs). This mechanism can also explain why the breakpoint reuses for inversion events happen. We study the prevalence of the phenomenon and find that it is a major mechanism for inversions. The other observation is that for different rearrangement events such as transposition and inverted block interchange, the two ends of the swapped regions are also associated with repeats so that after the rearrangement operations the two ends of the swapped regions remain unchanged. To our knowledge, this is the first time such a phenomenon is reported for transposition event. CONCLUSIONS: In both Pseudomonas aeruginosa and Escherichia coli strains, IRs were found at the two ends of long sequence inversions. The two ends of the inversion remained unchanged before and after the inversion event. The existence of IRs can explain the breakpoint reuse phenomenon. We also observed that other rearrangement operations such as transposition, inverted transposition, and inverted block interchange, had repeats (not necessarily inverted) at the ends of each segment, where the ends remained unchanged before and after the rearrangement operations. This suggests that the conservation of ends could possibly be a popular phenomenon in many types of chromosome rearrangement events. More... »

PAGES

268

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-017-3655-0

DOI

http://dx.doi.org/10.1186/s12864-017-3655-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084250113

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28356070


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Comparative Genomic Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Rearrangement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pseudomonas aeruginosa", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Inversion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Dan", 
        "id": "sg:person.011747627223.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747627223.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuaicheng", 
        "id": "sg:person.01337156155.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337156155.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Computer Science and Technology, Tianjin University, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Fei", 
        "id": "sg:person.0776100512.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776100512.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ning", 
        "givenName": "Kang", 
        "id": "sg:person.01336611506.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336611506.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People\u2019s Republic of China", 
            "University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lusheng", 
        "id": "sg:person.01105113721.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002444689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0092203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006746005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008302356", 
          "https://doi.org/10.1038/nrg705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008302356", 
          "https://doi.org/10.1038/nrg705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008428900", 
          "https://doi.org/10.1186/1471-2164-10-334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2015.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008753022", 
          "https://doi.org/10.1038/hdy.2015.4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msu177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013670026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.757503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017976311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019433899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019972839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020073386", 
          "https://doi.org/10.1186/jbiol162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/974614.974619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020514149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/974614.974619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020514149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-s9-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020699559", 
          "https://doi.org/10.1186/1471-2105-12-s9-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020989011", 
          "https://doi.org/10.1186/1471-2164-10-335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023623483", 
          "https://doi.org/10.1186/1471-2164-15-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1995.tb02217.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024162141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-4-r23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025231468", 
          "https://doi.org/10.1186/gb-2004-5-4-r23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-s9-s20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025261840", 
          "https://doi.org/10.1186/1471-2105-12-s9-s20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506758102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506758102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1000922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033419151", 
          "https://doi.org/10.1186/1471-2105-12-272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/640075.640108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034864075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-011-9880-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038842190", 
          "https://doi.org/10.1007/s00248-011-9880-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.00035-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040831878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0000(02)00011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041989169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0000(02)00011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041989169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045528674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046723766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1330369100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047629923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048718343", 
          "https://doi.org/10.1186/1471-2164-15-737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02411-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049815913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.02422-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052591999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2005.855522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797866"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: Genome rearrangement describes gross changes of chromosomal regions, plays an important role in evolutionary biology and has profound impacts on phenotype in organisms ranging from microbes to humans. With more and more complete genomes accomplished, lots of genomic comparisons have been conducted in order to find genome rearrangements and the mechanisms which underlie the rearrangement events. In our opinion, genomic comparison of different individuals/strains within the same species (pan-genome) is more helpful to reveal the mechanisms for genome rearrangements since genomes of the same species are much closer to each other.\nRESULTS: We study the mechanism for inversion events via core-genome scaffold comparison of different strains within the same species. We focus on two kinds of bacteria, Pseudomonas aeruginosa and Escherichia coli, and investigate the inversion events among different strains of the same species. We find an interesting phenomenon that long (larger than 10,000 bp) inversion regions are flanked by a pair of Inverted Repeats (IRs). This mechanism can also explain why the breakpoint reuses for inversion events happen. We study the prevalence of the phenomenon and find that it is a major mechanism for inversions. The other observation is that for different rearrangement events such as transposition and inverted block interchange, the two ends of the swapped regions are also associated with repeats so that after the rearrangement operations the two ends of the swapped regions remain unchanged. To our knowledge, this is the first time such a phenomenon is reported for transposition event.\nCONCLUSIONS: In both Pseudomonas aeruginosa and Escherichia coli strains, IRs were found at the two ends of long sequence inversions. The two ends of the inversion remained unchanged before and after the inversion event. The existence of IRs can explain the breakpoint reuse phenomenon. We also observed that other rearrangement operations such as transposition, inverted transposition, and inverted block interchange, had repeats (not necessarily inverted) at the ends of each segment, where the ends remained unchanged before and after the rearrangement operations. This suggests that the conservation of ends could possibly be a popular phenomenon in many types of chromosome rearrangement events.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-017-3655-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7427168", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7427689", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7426977", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Core-genome scaffold comparison reveals the prevalence that inversion events are associated with pairs of inverted repeats", 
    "pagination": "268", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a873dd0b346b243345aa4805bd6d99a5754019358851837223210a10846acb7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28356070"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-017-3655-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084250113"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-017-3655-0", 
      "https://app.dimensions.ai/details/publication/pub.1084250113"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-017-3655-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3655-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3655-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3655-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3655-0'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      67 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-017-3655-0 schema:about N1e68e66f1a794f5a8f0150a9d8e3ef9a
2 N247a6b93634c44e59d549c7e3b25ffbf
3 N606730fb6e5a414eb6839e2b586d2ea7
4 N74cbdf82bcbf43d888dec6dff37dc256
5 N8362f575d5534f2f98edea123c7f6ac1
6 Nf305395a58a54780b922e2b568823132
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author Nb634ecdbe92345049db0e9d9dbcd41bd
10 schema:citation sg:pub.10.1007/s00248-011-9880-1
11 sg:pub.10.1038/hdy.2015.4
12 sg:pub.10.1038/nrg705
13 sg:pub.10.1186/1471-2105-12-272
14 sg:pub.10.1186/1471-2105-12-s9-s1
15 sg:pub.10.1186/1471-2105-12-s9-s20
16 sg:pub.10.1186/1471-2164-10-334
17 sg:pub.10.1186/1471-2164-10-335
18 sg:pub.10.1186/1471-2164-15-1
19 sg:pub.10.1186/1471-2164-15-737
20 sg:pub.10.1186/gb-2004-5-4-r23
21 sg:pub.10.1186/jbiol162
22 https://doi.org/10.1016/s0022-0000(02)00011-9
23 https://doi.org/10.1073/pnas.0506758102
24 https://doi.org/10.1073/pnas.1330369100
25 https://doi.org/10.1093/bioinformatics/18.3.492
26 https://doi.org/10.1093/bioinformatics/btg1025
27 https://doi.org/10.1093/bioinformatics/btq665
28 https://doi.org/10.1093/bioinformatics/btt527
29 https://doi.org/10.1093/hmg/ddg223
30 https://doi.org/10.1093/molbev/msu177
31 https://doi.org/10.1101/gr.757503
32 https://doi.org/10.1109/tsmcc.2005.855522
33 https://doi.org/10.1111/j.1365-2958.1995.tb02217.x
34 https://doi.org/10.1128/aem.02411-13
35 https://doi.org/10.1128/jcm.02422-06
36 https://doi.org/10.1128/mmbr.00035-13
37 https://doi.org/10.1145/640075.640108
38 https://doi.org/10.1145/974614.974619
39 https://doi.org/10.1371/journal.pbio.0050152
40 https://doi.org/10.1371/journal.pone.0092203
41 https://doi.org/10.1371/journal.ppat.1000922
42 schema:datePublished 2017-12
43 schema:datePublishedReg 2017-12-01
44 schema:description BACKGROUND: Genome rearrangement describes gross changes of chromosomal regions, plays an important role in evolutionary biology and has profound impacts on phenotype in organisms ranging from microbes to humans. With more and more complete genomes accomplished, lots of genomic comparisons have been conducted in order to find genome rearrangements and the mechanisms which underlie the rearrangement events. In our opinion, genomic comparison of different individuals/strains within the same species (pan-genome) is more helpful to reveal the mechanisms for genome rearrangements since genomes of the same species are much closer to each other. RESULTS: We study the mechanism for inversion events via core-genome scaffold comparison of different strains within the same species. We focus on two kinds of bacteria, Pseudomonas aeruginosa and Escherichia coli, and investigate the inversion events among different strains of the same species. We find an interesting phenomenon that long (larger than 10,000 bp) inversion regions are flanked by a pair of Inverted Repeats (IRs). This mechanism can also explain why the breakpoint reuses for inversion events happen. We study the prevalence of the phenomenon and find that it is a major mechanism for inversions. The other observation is that for different rearrangement events such as transposition and inverted block interchange, the two ends of the swapped regions are also associated with repeats so that after the rearrangement operations the two ends of the swapped regions remain unchanged. To our knowledge, this is the first time such a phenomenon is reported for transposition event. CONCLUSIONS: In both Pseudomonas aeruginosa and Escherichia coli strains, IRs were found at the two ends of long sequence inversions. The two ends of the inversion remained unchanged before and after the inversion event. The existence of IRs can explain the breakpoint reuse phenomenon. We also observed that other rearrangement operations such as transposition, inverted transposition, and inverted block interchange, had repeats (not necessarily inverted) at the ends of each segment, where the ends remained unchanged before and after the rearrangement operations. This suggests that the conservation of ends could possibly be a popular phenomenon in many types of chromosome rearrangement events.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N2260b2d74e384bcda68c1da486bf945b
49 N92fea53847304246a709085fdf2d4937
50 sg:journal.1023790
51 schema:name Core-genome scaffold comparison reveals the prevalence that inversion events are associated with pairs of inverted repeats
52 schema:pagination 268
53 schema:productId N1f3ced954d5a4851974f1e11a8f4d5a5
54 N3626da8b58cb49709a66c9d9157ad0b8
55 N5a6ccdfaef05445284b7e08b5a0862a4
56 N8f259633b4a84a55a75c52621c66abe5
57 Nd5ce23e23f21416c81896b166194f1cd
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084250113
59 https://doi.org/10.1186/s12864-017-3655-0
60 schema:sdDatePublished 2019-04-11T10:01
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N0df7995a9dd6434693d211d672c9b3dd
63 schema:url https://link.springer.com/10.1186%2Fs12864-017-3655-0
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0df7995a9dd6434693d211d672c9b3dd schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N1e68e66f1a794f5a8f0150a9d8e3ef9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Genome, Bacterial
71 rdf:type schema:DefinedTerm
72 N1f3ced954d5a4851974f1e11a8f4d5a5 schema:name dimensions_id
73 schema:value pub.1084250113
74 rdf:type schema:PropertyValue
75 N2260b2d74e384bcda68c1da486bf945b schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N247a6b93634c44e59d549c7e3b25ffbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Gene Rearrangement
79 rdf:type schema:DefinedTerm
80 N2e256b65ef03460a8479150bc10ce8a0 rdf:first sg:person.01336611506.70
81 rdf:rest Nda6aaa2b81ae467bb618c4d0a02a5690
82 N3626da8b58cb49709a66c9d9157ad0b8 schema:name nlm_unique_id
83 schema:value 100965258
84 rdf:type schema:PropertyValue
85 N568c7ec6886a4a0aa8febc9ac49a312d rdf:first sg:person.01337156155.38
86 rdf:rest Ncff90fb4246d478bbc6845a702998894
87 N5a6ccdfaef05445284b7e08b5a0862a4 schema:name doi
88 schema:value 10.1186/s12864-017-3655-0
89 rdf:type schema:PropertyValue
90 N606730fb6e5a414eb6839e2b586d2ea7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Sequence Inversion
92 rdf:type schema:DefinedTerm
93 N74cbdf82bcbf43d888dec6dff37dc256 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Escherichia coli
95 rdf:type schema:DefinedTerm
96 N8362f575d5534f2f98edea123c7f6ac1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Pseudomonas aeruginosa
98 rdf:type schema:DefinedTerm
99 N8f259633b4a84a55a75c52621c66abe5 schema:name pubmed_id
100 schema:value 28356070
101 rdf:type schema:PropertyValue
102 N92fea53847304246a709085fdf2d4937 schema:volumeNumber 18
103 rdf:type schema:PublicationVolume
104 Nb634ecdbe92345049db0e9d9dbcd41bd rdf:first sg:person.011747627223.07
105 rdf:rest N568c7ec6886a4a0aa8febc9ac49a312d
106 Ncff90fb4246d478bbc6845a702998894 rdf:first sg:person.0776100512.16
107 rdf:rest N2e256b65ef03460a8479150bc10ce8a0
108 Nd5ce23e23f21416c81896b166194f1cd schema:name readcube_id
109 schema:value 6a873dd0b346b243345aa4805bd6d99a5754019358851837223210a10846acb7
110 rdf:type schema:PropertyValue
111 Nda6aaa2b81ae467bb618c4d0a02a5690 rdf:first sg:person.01105113721.52
112 rdf:rest rdf:nil
113 Nf305395a58a54780b922e2b568823132 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Comparative Genomic Hybridization
115 rdf:type schema:DefinedTerm
116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biological Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
120 schema:name Genetics
121 rdf:type schema:DefinedTerm
122 sg:grant.7426977 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-017-3655-0
123 rdf:type schema:MonetaryGrant
124 sg:grant.7427168 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-017-3655-0
125 rdf:type schema:MonetaryGrant
126 sg:grant.7427689 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-017-3655-0
127 rdf:type schema:MonetaryGrant
128 sg:journal.1023790 schema:issn 1471-2164
129 schema:name BMC Genomics
130 rdf:type schema:Periodical
131 sg:person.01105113721.52 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
132 schema:familyName Wang
133 schema:givenName Lusheng
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52
135 rdf:type schema:Person
136 sg:person.011747627223.07 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
137 schema:familyName Wang
138 schema:givenName Dan
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747627223.07
140 rdf:type schema:Person
141 sg:person.01336611506.70 schema:affiliation https://www.grid.ac/institutes/grid.33199.31
142 schema:familyName Ning
143 schema:givenName Kang
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336611506.70
145 rdf:type schema:Person
146 sg:person.01337156155.38 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
147 schema:familyName Li
148 schema:givenName Shuaicheng
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337156155.38
150 rdf:type schema:Person
151 sg:person.0776100512.16 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
152 schema:familyName Guo
153 schema:givenName Fei
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776100512.16
155 rdf:type schema:Person
156 sg:pub.10.1007/s00248-011-9880-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038842190
157 https://doi.org/10.1007/s00248-011-9880-1
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/hdy.2015.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008753022
160 https://doi.org/10.1038/hdy.2015.4
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nrg705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008302356
163 https://doi.org/10.1038/nrg705
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/1471-2105-12-272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033419151
166 https://doi.org/10.1186/1471-2105-12-272
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/1471-2105-12-s9-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020699559
169 https://doi.org/10.1186/1471-2105-12-s9-s1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-12-s9-s20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025261840
172 https://doi.org/10.1186/1471-2105-12-s9-s20
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2164-10-334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008428900
175 https://doi.org/10.1186/1471-2164-10-334
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2164-10-335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020989011
178 https://doi.org/10.1186/1471-2164-10-335
179 rdf:type schema:CreativeWork
180 sg:pub.10.1186/1471-2164-15-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023623483
181 https://doi.org/10.1186/1471-2164-15-1
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/1471-2164-15-737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048718343
184 https://doi.org/10.1186/1471-2164-15-737
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/gb-2004-5-4-r23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025231468
187 https://doi.org/10.1186/gb-2004-5-4-r23
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/jbiol162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020073386
190 https://doi.org/10.1186/jbiol162
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0022-0000(02)00011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041989169
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.0506758102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026870052
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.1330369100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047629923
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/18.3.492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019433899
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/btg1025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019972839
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btq665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002444689
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/btt527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022587872
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/hmg/ddg223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045528674
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/molbev/msu177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013670026
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1101/gr.757503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017976311
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/tsmcc.2005.855522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797866
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1365-2958.1995.tb02217.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024162141
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/aem.02411-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049815913
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1128/jcm.02422-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052591999
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1128/mmbr.00035-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040831878
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1145/640075.640108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034864075
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1145/974614.974619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020514149
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pbio.0050152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046723766
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pone.0092203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006746005
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1371/journal.ppat.1000922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029417220
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
233 schema:name Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People’s Republic of China
234 University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, People’s Republic of China
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.33199.31 schema:alternateName Huazhong University of Science and Technology
237 schema:name School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
240 schema:name School of Computer Science and Technology, Tianjin University, Tianjin, People’s Republic of China
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
243 schema:name Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People’s Republic of China
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...