Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-28

AUTHORS

Klaus Neuhaus, Richard Landstorfer, Svenja Simon, Steffen Schober, Patrick R. Wright, Cameron Smith, Rolf Backofen, Romy Wecko, Daniel A. Keim, Siegfried Scherer

ABSTRACT

BackgroundWhile NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA.ResultsBased on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition.ConclusionDetermination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well. More... »

PAGES

216

References to SciGraph publications

  • 2011-01-03. MTML-msBayes: Approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity in BMC BIOINFORMATICS
  • 2011-01-03. Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes in BMC GENOMICS
  • 2011-07-06. The ribosome uses two active mechanisms to unwind messenger RNA during translation in NATURE
  • 2014-05-09. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces in BMC GENOMICS
  • 2011-07-12. Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes in BMC GENOMICS
  • 2011-01-31. nocoRNAc: Characterization of non-coding RNAs in prokaryotes in BMC BIOINFORMATICS
  • 2011-06-28. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation in BMC GENOMICS
  • 2012-12-27. How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? in BMC GENOMICS
  • 2001-01. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 in NATURE
  • 2014-01-28. Ribosome profiling: new views of translation, from single codons to genome scale in NATURE REVIEWS GENETICS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2012-11-18. Peptidomic discovery of short open reading frame–encoded peptides in human cells in NATURE CHEMICAL BIOLOGY
  • 1969-12. Polypeptide Chain Initiation: Nucleotide Sequences of the Three Ribosomal Binding Sites in Bacteriophage R17 RNA in NATURE
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2004-09-15. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2010-08-25. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences in GENOME BIOLOGY
  • 2008-06-05. Improved northern blot method for enhanced detection of small RNA in NATURE PROTOCOLS
  • 2016-02-24. Translatomics combined with transcriptomics and proteomics reveals novel functional, recently evolved orphan genes in Escherichia coli O157:H7 (EHEC) in BMC GENOMICS
  • 2014-01-07. Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes in GENOME BIOLOGY
  • 2013-01-17. Discovery of Posttranscriptional Regulatory RNAs Using Next Generation Sequencing Technologies in SYSTEMS METABOLIC ENGINEERING
  • 2014-12-16. Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo in BMC GENOMICS
  • 2011-04-27. Detection of small RNAs in Bordetella pertussis and identification of a novel repeated genetic element in BMC GENOMICS
  • 2012-03-28. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria in NATURE
  • 2012. Gentechnische Methoden, Eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-017-3586-9

    DOI

    http://dx.doi.org/10.1186/s12864-017-3586-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084250057

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28245801


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli O157", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Peptides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Small Untranslated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ribosomes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85354, Freising, Germany", 
                "Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neuhaus", 
            "givenName": "Klaus", 
            "id": "sg:person.0767764126.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767764126.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85354, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85354, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Landstorfer", 
            "givenName": "Richard", 
            "id": "sg:person.0613232776.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613232776.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, D-78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, D-78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Simon", 
            "givenName": "Svenja", 
            "id": "sg:person.01366261267.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366261267.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Nachrichtentechnik, Universit\u00e4t Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institut f\u00fcr Nachrichtentechnik, Universit\u00e4t Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schober", 
            "givenName": "Steffen", 
            "id": "sg:person.01163305730.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163305730.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5963.9", 
              "name": [
                "Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wright", 
            "givenName": "Patrick R.", 
            "id": "sg:person.01143133242.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143133242.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5963.9", 
              "name": [
                "Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Cameron", 
            "id": "sg:person.01245124273.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245124273.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5963.9", 
              "name": [
                "Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Backofen", 
            "givenName": "Rolf", 
            "id": "sg:person.01103444236.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103444236.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85354, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85354, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wecko", 
            "givenName": "Romy", 
            "id": "sg:person.014054626247.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014054626247.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, D-78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Informatik und Informationswissenschaft, Universit\u00e4t Konstanz, D-78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keim", 
            "givenName": "Daniel A.", 
            "id": "sg:person.0635776571.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85354, Freising, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Lehrstuhl f\u00fcr Mikrobielle \u00d6kologie, Wissenschaftszentrum Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Weihenstephaner Berg 3, D-85354, Freising, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scherer", 
            "givenName": "Siegfried", 
            "id": "sg:person.01167132061.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167132061.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-299-5_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041817061", 
              "https://doi.org/10.1007/978-1-62703-299-5_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-8274-2430-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014687231", 
              "https://doi.org/10.1007/978-3-8274-2430-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032287932", 
              "https://doi.org/10.1038/nchembio.1120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034678761", 
              "https://doi.org/10.1186/1471-2164-12-361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/224957a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015663377", 
              "https://doi.org/10.1038/224957a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018646208", 
              "https://doi.org/10.1186/1471-2164-13-734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-1-r6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047079213", 
              "https://doi.org/10.1186/gb-2014-15-1-r6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010984202", 
              "https://doi.org/10.1038/nature10126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034040295", 
              "https://doi.org/10.1186/1471-2164-15-353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020385479", 
              "https://doi.org/10.1038/35054089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025645198", 
              "https://doi.org/10.1038/nature10965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030475776", 
              "https://doi.org/10.1038/nprot.2008.67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042115565", 
              "https://doi.org/10.1186/1471-2105-12-40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035569449", 
              "https://doi.org/10.1186/1471-2164-12-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039435240", 
              "https://doi.org/10.1186/1471-2164-12-207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004527512", 
              "https://doi.org/10.1186/1471-2164-12-332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2456-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039788317", 
              "https://doi.org/10.1186/s12864-016-2456-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016627199", 
              "https://doi.org/10.1038/nrg3645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033831858", 
              "https://doi.org/10.1186/1471-2105-12-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-1115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027594666", 
              "https://doi.org/10.1186/1471-2164-15-1115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-8-r86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046347776", 
              "https://doi.org/10.1186/gb-2010-11-8-r86"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-28", 
        "datePublishedReg": "2017-02-28", 
        "description": "BackgroundWhile NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA.ResultsBased on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition.ConclusionDetermination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12864-017-3586-9", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7991103", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "intergenic transcripts", 
          "smaller mRNA", 
          "protein-coding genes", 
          "non-translated RNA", 
          "Shine-Dalgarno sequence", 
          "iron-limiting conditions", 
          "E. coli MG1655", 
          "highest differential expression", 
          "bacterial ncRNAs", 
          "putative ncRNAs", 
          "novel ncRNA", 
          "such ncRNAs", 
          "different growth media", 
          "bioinformatics analysis", 
          "ncRNAs", 
          "shorter mRNA", 
          "coli MG1655", 
          "ribosomal footprints", 
          "small proteins", 
          "differential expression", 
          "transcripts", 
          "growth medium", 
          "RyhB", 
          "RNA", 
          "ncRNA", 
          "mRNA", 
          "genes", 
          "protein", 
          "differentiation", 
          "Escherichia coli O157", 
          "global detection", 
          "regulon", 
          "homolog", 
          "improved protocol", 
          "ORF", 
          "MG1655", 
          "RNAseq", 
          "footprinting", 
          "peptides", 
          "coli O157", 
          "phenotype", 
          "sequence", 
          "NGS", 
          "expression", 
          "EHEC", 
          "useful approach", 
          "translation", 
          "H7", 
          "high ratio", 
          "O157", 
          "Enterobacteriaceae", 
          "analysis", 
          "patterns", 
          "signals", 
          "medium", 
          "conditions", 
          "RCV", 
          "footprint", 
          "experimental analysis", 
          "protocol", 
          "detection", 
          "approach", 
          "ratio", 
          "ConclusionDetermination"
        ], 
        "name": "Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq \u2013 ryhB encodes the regulatory RNA RyhB and a peptide, RyhP", 
        "pagination": "216", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084250057"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-017-3586-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28245801"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-017-3586-9", 
          "https://app.dimensions.ai/details/publication/pub.1084250057"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_739.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12864-017-3586-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3586-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3586-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3586-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-017-3586-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    332 TRIPLES      21 PREDICATES      122 URIs      89 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-017-3586-9 schema:about N0766c5d6c23845caa6f175d9113ad9cc
    2 N23304f69a3624a48be54f9e13f63272f
    3 N77bc9ef875df4c64906636bdf665dfb9
    4 N95041658e3634ae0acffa18f27815fb5
    5 Nb117f0cbe00a4bf3a0ab5a9ec9d1e507
    6 Nb493b72e6bdd483aac75f1f1e73854ab
    7 Nbc5e00ae83824fc7ad1c66572131ff6e
    8 Ned7b3d27db364dd3a59871e39e067206
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N969feb728ba5451ca045164ee56286c5
    12 schema:citation sg:pub.10.1007/978-1-62703-299-5_14
    13 sg:pub.10.1007/978-3-8274-2430-3
    14 sg:pub.10.1038/224957a0
    15 sg:pub.10.1038/35054089
    16 sg:pub.10.1038/nature10126
    17 sg:pub.10.1038/nature10965
    18 sg:pub.10.1038/nchembio.1120
    19 sg:pub.10.1038/nmeth.1226
    20 sg:pub.10.1038/nmeth.1923
    21 sg:pub.10.1038/nprot.2008.67
    22 sg:pub.10.1038/nrg3645
    23 sg:pub.10.1186/1471-2105-11-119
    24 sg:pub.10.1186/1471-2105-12-1
    25 sg:pub.10.1186/1471-2105-12-40
    26 sg:pub.10.1186/1471-2164-12-1
    27 sg:pub.10.1186/1471-2164-12-207
    28 sg:pub.10.1186/1471-2164-12-332
    29 sg:pub.10.1186/1471-2164-12-361
    30 sg:pub.10.1186/1471-2164-13-734
    31 sg:pub.10.1186/1471-2164-15-1115
    32 sg:pub.10.1186/1471-2164-15-353
    33 sg:pub.10.1186/gb-2004-5-10-r80
    34 sg:pub.10.1186/gb-2010-11-8-r86
    35 sg:pub.10.1186/gb-2014-15-1-r6
    36 sg:pub.10.1186/s12864-016-2456-1
    37 schema:datePublished 2017-02-28
    38 schema:datePublishedReg 2017-02-28
    39 schema:description BackgroundWhile NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA.ResultsBased on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition.ConclusionDetermination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well.
    40 schema:genre article
    41 schema:isAccessibleForFree true
    42 schema:isPartOf N16fc772291f74a80ae910f82c0ee2d6c
    43 N836fb02a997c4066ab1284dbf0d7f5a1
    44 sg:journal.1023790
    45 schema:keywords ConclusionDetermination
    46 E. coli MG1655
    47 EHEC
    48 Enterobacteriaceae
    49 Escherichia coli O157
    50 H7
    51 MG1655
    52 NGS
    53 O157
    54 ORF
    55 RCV
    56 RNA
    57 RNAseq
    58 RyhB
    59 Shine-Dalgarno sequence
    60 analysis
    61 approach
    62 bacterial ncRNAs
    63 bioinformatics analysis
    64 coli MG1655
    65 coli O157
    66 conditions
    67 detection
    68 different growth media
    69 differential expression
    70 differentiation
    71 experimental analysis
    72 expression
    73 footprint
    74 footprinting
    75 genes
    76 global detection
    77 growth medium
    78 high ratio
    79 highest differential expression
    80 homolog
    81 improved protocol
    82 intergenic transcripts
    83 iron-limiting conditions
    84 mRNA
    85 medium
    86 ncRNA
    87 ncRNAs
    88 non-translated RNA
    89 novel ncRNA
    90 patterns
    91 peptides
    92 phenotype
    93 protein
    94 protein-coding genes
    95 protocol
    96 putative ncRNAs
    97 ratio
    98 regulon
    99 ribosomal footprints
    100 sequence
    101 shorter mRNA
    102 signals
    103 small proteins
    104 smaller mRNA
    105 such ncRNAs
    106 transcripts
    107 translation
    108 useful approach
    109 schema:name Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP
    110 schema:pagination 216
    111 schema:productId N2fcaec93f94743f8a1c53ea497bbe675
    112 Nc5cbf05c147c43509146cd2f1afc1c9b
    113 Nd2f66510cc8d4e7c818c02db81a6ced5
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084250057
    115 https://doi.org/10.1186/s12864-017-3586-9
    116 schema:sdDatePublished 2022-11-24T21:02
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N49b128c109a14e2a84f980586e97ecd1
    119 schema:url https://doi.org/10.1186/s12864-017-3586-9
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N0766c5d6c23845caa6f175d9113ad9cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Ribosomes
    125 rdf:type schema:DefinedTerm
    126 N0b8410ce2de64a169659c655ffa6535f rdf:first sg:person.01163305730.73
    127 rdf:rest Nc99543ceaefb41a39abe10b3ab99ff1c
    128 N0d43d83b27d74e9a9d745949d5bbbd69 rdf:first sg:person.01103444236.12
    129 rdf:rest N4a2ad3052e99426099ff89742db05b2c
    130 N146c1663207f4dd5991933ae55d25016 rdf:first sg:person.01366261267.48
    131 rdf:rest N0b8410ce2de64a169659c655ffa6535f
    132 N16fc772291f74a80ae910f82c0ee2d6c schema:issueNumber 1
    133 rdf:type schema:PublicationIssue
    134 N23304f69a3624a48be54f9e13f63272f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Peptides
    136 rdf:type schema:DefinedTerm
    137 N2fcaec93f94743f8a1c53ea497bbe675 schema:name doi
    138 schema:value 10.1186/s12864-017-3586-9
    139 rdf:type schema:PropertyValue
    140 N49b128c109a14e2a84f980586e97ecd1 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 N4a2ad3052e99426099ff89742db05b2c rdf:first sg:person.014054626247.20
    143 rdf:rest N7abf4822213648d886531ad95da9bb00
    144 N5e636eaeed154c969cbce949993d39cc rdf:first sg:person.01245124273.13
    145 rdf:rest N0d43d83b27d74e9a9d745949d5bbbd69
    146 N77bc9ef875df4c64906636bdf665dfb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name RNA, Small Untranslated
    148 rdf:type schema:DefinedTerm
    149 N7abf4822213648d886531ad95da9bb00 rdf:first sg:person.0635776571.01
    150 rdf:rest N820c8a51843f4058b1c39caf531b32d1
    151 N820c8a51843f4058b1c39caf531b32d1 rdf:first sg:person.01167132061.21
    152 rdf:rest rdf:nil
    153 N836fb02a997c4066ab1284dbf0d7f5a1 schema:volumeNumber 18
    154 rdf:type schema:PublicationVolume
    155 N95041658e3634ae0acffa18f27815fb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Phenotype
    157 rdf:type schema:DefinedTerm
    158 N969feb728ba5451ca045164ee56286c5 rdf:first sg:person.0767764126.02
    159 rdf:rest Nb12bbcf6c47a40de9e4bd856a3359364
    160 Nb117f0cbe00a4bf3a0ab5a9ec9d1e507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Gene Expression Profiling
    162 rdf:type schema:DefinedTerm
    163 Nb12bbcf6c47a40de9e4bd856a3359364 rdf:first sg:person.0613232776.75
    164 rdf:rest N146c1663207f4dd5991933ae55d25016
    165 Nb493b72e6bdd483aac75f1f1e73854ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Escherichia coli O157
    167 rdf:type schema:DefinedTerm
    168 Nbc5e00ae83824fc7ad1c66572131ff6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Sequence Analysis, RNA
    170 rdf:type schema:DefinedTerm
    171 Nc5cbf05c147c43509146cd2f1afc1c9b schema:name dimensions_id
    172 schema:value pub.1084250057
    173 rdf:type schema:PropertyValue
    174 Nc99543ceaefb41a39abe10b3ab99ff1c rdf:first sg:person.01143133242.37
    175 rdf:rest N5e636eaeed154c969cbce949993d39cc
    176 Nd2f66510cc8d4e7c818c02db81a6ced5 schema:name pubmed_id
    177 schema:value 28245801
    178 rdf:type schema:PropertyValue
    179 Ned7b3d27db364dd3a59871e39e067206 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Base Sequence
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Biological Sciences
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Genetics
    187 rdf:type schema:DefinedTerm
    188 sg:grant.7991103 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-017-3586-9
    189 rdf:type schema:MonetaryGrant
    190 sg:journal.1023790 schema:issn 1471-2164
    191 schema:name BMC Genomics
    192 schema:publisher Springer Nature
    193 rdf:type schema:Periodical
    194 sg:person.01103444236.12 schema:affiliation grid-institutes:grid.5963.9
    195 schema:familyName Backofen
    196 schema:givenName Rolf
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103444236.12
    198 rdf:type schema:Person
    199 sg:person.01143133242.37 schema:affiliation grid-institutes:grid.5963.9
    200 schema:familyName Wright
    201 schema:givenName Patrick R.
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143133242.37
    203 rdf:type schema:Person
    204 sg:person.01163305730.73 schema:affiliation grid-institutes:grid.6582.9
    205 schema:familyName Schober
    206 schema:givenName Steffen
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163305730.73
    208 rdf:type schema:Person
    209 sg:person.01167132061.21 schema:affiliation grid-institutes:grid.6936.a
    210 schema:familyName Scherer
    211 schema:givenName Siegfried
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167132061.21
    213 rdf:type schema:Person
    214 sg:person.01245124273.13 schema:affiliation grid-institutes:grid.5963.9
    215 schema:familyName Smith
    216 schema:givenName Cameron
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245124273.13
    218 rdf:type schema:Person
    219 sg:person.01366261267.48 schema:affiliation grid-institutes:grid.9811.1
    220 schema:familyName Simon
    221 schema:givenName Svenja
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366261267.48
    223 rdf:type schema:Person
    224 sg:person.014054626247.20 schema:affiliation grid-institutes:grid.6936.a
    225 schema:familyName Wecko
    226 schema:givenName Romy
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014054626247.20
    228 rdf:type schema:Person
    229 sg:person.0613232776.75 schema:affiliation grid-institutes:grid.6936.a
    230 schema:familyName Landstorfer
    231 schema:givenName Richard
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613232776.75
    233 rdf:type schema:Person
    234 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
    235 schema:familyName Keim
    236 schema:givenName Daniel A.
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
    238 rdf:type schema:Person
    239 sg:person.0767764126.02 schema:affiliation grid-institutes:grid.6936.a
    240 schema:familyName Neuhaus
    241 schema:givenName Klaus
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767764126.02
    243 rdf:type schema:Person
    244 sg:pub.10.1007/978-1-62703-299-5_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041817061
    245 https://doi.org/10.1007/978-1-62703-299-5_14
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/978-3-8274-2430-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014687231
    248 https://doi.org/10.1007/978-3-8274-2430-3
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/224957a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015663377
    251 https://doi.org/10.1038/224957a0
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/35054089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020385479
    254 https://doi.org/10.1038/35054089
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature10126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010984202
    257 https://doi.org/10.1038/nature10126
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature10965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025645198
    260 https://doi.org/10.1038/nature10965
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nchembio.1120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032287932
    263 https://doi.org/10.1038/nchembio.1120
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    266 https://doi.org/10.1038/nmeth.1226
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    269 https://doi.org/10.1038/nmeth.1923
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nprot.2008.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030475776
    272 https://doi.org/10.1038/nprot.2008.67
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nrg3645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016627199
    275 https://doi.org/10.1038/nrg3645
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    278 https://doi.org/10.1186/1471-2105-11-119
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/1471-2105-12-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033831858
    281 https://doi.org/10.1186/1471-2105-12-1
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/1471-2105-12-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042115565
    284 https://doi.org/10.1186/1471-2105-12-40
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/1471-2164-12-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035569449
    287 https://doi.org/10.1186/1471-2164-12-1
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1186/1471-2164-12-207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039435240
    290 https://doi.org/10.1186/1471-2164-12-207
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1186/1471-2164-12-332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004527512
    293 https://doi.org/10.1186/1471-2164-12-332
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/1471-2164-12-361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034678761
    296 https://doi.org/10.1186/1471-2164-12-361
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/1471-2164-13-734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018646208
    299 https://doi.org/10.1186/1471-2164-13-734
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1186/1471-2164-15-1115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027594666
    302 https://doi.org/10.1186/1471-2164-15-1115
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1186/1471-2164-15-353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034040295
    305 https://doi.org/10.1186/1471-2164-15-353
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    308 https://doi.org/10.1186/gb-2004-5-10-r80
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/gb-2010-11-8-r86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046347776
    311 https://doi.org/10.1186/gb-2010-11-8-r86
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1186/gb-2014-15-1-r6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047079213
    314 https://doi.org/10.1186/gb-2014-15-1-r6
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/s12864-016-2456-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039788317
    317 https://doi.org/10.1186/s12864-016-2456-1
    318 rdf:type schema:CreativeWork
    319 grid-institutes:grid.5963.9 schema:alternateName Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
    320 schema:name Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
    321 rdf:type schema:Organization
    322 grid-institutes:grid.6582.9 schema:alternateName Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
    323 schema:name Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
    324 rdf:type schema:Organization
    325 grid-institutes:grid.6936.a schema:alternateName Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany
    326 Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
    327 schema:name Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany
    328 Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
    329 rdf:type schema:Organization
    330 grid-institutes:grid.9811.1 schema:alternateName Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
    331 schema:name Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
    332 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...