Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01-11

AUTHORS

Martin C. Fischer, Christian Rellstab, Marianne Leuzinger, Marie Roumet, Felix Gugerli, Kentaro K. Shimizu, Rolf Holderegger, Alex Widmer

ABSTRACT

BACKGROUND: Microsatellite markers are widely used for estimating genetic diversity within and differentiation among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20 microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers) and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a pooled whole-genome re-sequencing approach (Pool-Seq). RESULTS: Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-H e) was not significantly correlated with genome-wide SNP diversity estimates (SNP-H e and θ Watterson) in A. halleri. Instead, microsatellite allelic richness (A r) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation among populations (F ST) based on both marker types were correlated, but microsatellite-based estimates were significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably estimate genome-wide diversity and to distinguish among populations differing in genetic variation. CONCLUSIONS: We recommend that future analyses of genetic diversity within and differentiation among populations use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal. More... »

PAGES

69

References to SciGraph publications

  • 2009-12-08. Sequencing technologies — the next generation in NATURE REVIEWS GENETICS
  • 2016-01-05. Harnessing the power of RADseq for ecological and evolutionary genomics in NATURE REVIEWS GENETICS
  • 2014-02-26. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data in BMC GENOMICS
  • 2010-01-24. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils in NATURE GENETICS
  • 2013-02-05. QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity in NATURE REVIEWS GENETICS
  • 2004-06. Microsatellites: simple sequences with complex evolution in NATURE REVIEWS GENETICS
  • 2011-03-01. Genome structural variation discovery and genotyping in NATURE REVIEWS GENETICS
  • 2014-09-23. Sequencing pools of individuals — mining genome-wide polymorphism data without big funding in NATURE REVIEWS GENETICS
  • 2016-05-31. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes in NATURE COMMUNICATIONS
  • 2013-10-23. Estimating genome-wide heterozygosity: effects of demographic history and marker type in HEREDITY
  • 2010-03-24. Multi-locus inference of population structure: a comparison between single nucleotide polymorphisms and microsatellites in HEREDITY
  • 2005-12-30. Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure in BMC GENETICS
  • 2010-01-06. A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment in BMC GENETICS
  • 2006-08. Adaptive vs. neutral genetic diversity: implications for landscape genetics in LANDSCAPE ECOLOGY
  • 2012-06-22. Uninformative polymorphisms bias genome scans for signatures of selection in BMC EVOLUTIONARY BIOLOGY
  • 2009-12-12. Mutational Dynamics of Microsatellites in MOLECULAR BIOTECHNOLOGY
  • 2010-09-17. Genomics and the future of conservation genetics in NATURE REVIEWS GENETICS
  • 2014-01-02. A genome-wide association study of seed protein and oil content in soybean in BMC GENOMICS
  • 1999-02-01. Indirect measures of gene flow and migration: FST≠1/(4Nm+1) in HEREDITY
  • 2000-12. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana in NATURE
  • 2011-06-17. Genome-wide genetic marker discovery and genotyping using next-generation sequencing in NATURE REVIEWS GENETICS
  • 2014-01-03. New mini- zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily in BMC BIOINFORMATICS
  • 2010-03-11. Development of single nucleotide polymorphism markers in Theobroma cacao and comparison to simple sequence repeat markers for genotyping of Cameroon clones in MOLECULAR BREEDING
  • 2014-11-25. ANGSD: Analysis of Next Generation Sequencing Data in BMC BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-016-3459-7

    DOI

    http://dx.doi.org/10.1186/s12864-016-3459-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051740909

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28077077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microsatellite Repeats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fischer", 
            "givenName": "Martin C.", 
            "id": "sg:person.01372016165.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372016165.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, 8903 Birmensdorf, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.419754.a", 
              "name": [
                "WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, 8903 Birmensdorf, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rellstab", 
            "givenName": "Christian", 
            "id": "sg:person.01244650361.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244650361.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leuzinger", 
            "givenName": "Marianne", 
            "id": "sg:person.015164564573.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164564573.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roumet", 
            "givenName": "Marie", 
            "id": "sg:person.01211256751.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211256751.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, 8903 Birmensdorf, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.419754.a", 
              "name": [
                "WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, 8903 Birmensdorf, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gugerli", 
            "givenName": "Felix", 
            "id": "sg:person.0610705622.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, 8057 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, 8057 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shimizu", 
            "givenName": "Kentaro K.", 
            "id": "sg:person.016101060111.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016101060111.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, 8903 Birmensdorf, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.419754.a", 
              "name": [
                "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland", 
                "WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, 8903 Birmensdorf, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holderegger", 
            "givenName": "Rolf", 
            "id": "sg:person.01014057420.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014057420.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Z\u00fcrich, Institute of Integrative Biology, Universit\u00e4tstrasse 16, 8092 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Widmer", 
            "givenName": "Alex", 
            "id": "sg:person.01345765141.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345765141.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-15-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030123122", 
              "https://doi.org/10.1186/1471-2105-15-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022150201", 
              "https://doi.org/10.1038/nrg3395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-12-94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022711152", 
              "https://doi.org/10.1186/1471-2148-12-94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2015.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049142423", 
              "https://doi.org/10.1038/nrg.2015.28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034214252", 
              "https://doi.org/10.1038/ncomms11693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2013.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016020303", 
              "https://doi.org/10.1038/hdy.2013.99"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35048692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044298669", 
              "https://doi.org/10.1038/35048692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023911485", 
              "https://doi.org/10.1038/nrg2626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005182849", 
              "https://doi.org/10.1038/ng.515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023623483", 
              "https://doi.org/10.1186/1471-2164-15-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12033-009-9230-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043105532", 
              "https://doi.org/10.1007/s12033-009-9230-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034382223", 
              "https://doi.org/10.1038/nrg3012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012004609", 
              "https://doi.org/10.1038/nrg1348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-014-0356-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042585636", 
              "https://doi.org/10.1186/s12859-014-0356-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000653600", 
              "https://doi.org/10.1186/1471-2164-15-162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10980-005-5245-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009847065", 
              "https://doi.org/10.1007/s10980-005-5245-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-6-s1-s26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013292615", 
              "https://doi.org/10.1186/1471-2156-6-s1-s26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.hdy.6884960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002523739", 
              "https://doi.org/10.1038/sj.hdy.6884960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045018123", 
              "https://doi.org/10.1038/nrg3803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-11-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036078550", 
              "https://doi.org/10.1186/1471-2156-11-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-010-9416-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027142937", 
              "https://doi.org/10.1007/s11032-010-9416-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005842757", 
              "https://doi.org/10.1038/nrg2844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2010.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047261316", 
              "https://doi.org/10.1038/hdy.2010.21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004346662", 
              "https://doi.org/10.1038/nrg2958"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01-11", 
        "datePublishedReg": "2017-01-11", 
        "description": "BACKGROUND: Microsatellite markers are widely used for estimating genetic diversity within and differentiation among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20 microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers) and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a pooled whole-genome re-sequencing approach (Pool-Seq).\nRESULTS: Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-H e) was not significantly correlated with genome-wide SNP diversity estimates (SNP-H e and \u03b8 Watterson) in A. halleri. Instead, microsatellite allelic richness (A r) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation among populations (F ST) based on both marker types were correlated, but microsatellite-based estimates were significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably estimate genome-wide diversity and to distinguish among populations differing in genetic variation.\nCONCLUSIONS: We recommend that future analyses of genetic diversity within and differentiation among populations use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12864-016-3459-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "genetic diversity", 
          "single nucleotide polymorphisms", 
          "microsatellite markers", 
          "genome-wide single nucleotide polymorphisms", 
          "SNP data", 
          "genome-wide SNP data", 
          "microsatellite allelic richness", 
          "genome-wide diversity", 
          "genome-wide patterns", 
          "species-specific microsatellites", 
          "random single-nucleotide polymorphisms", 
          "re-sequencing approach", 
          "genetic differentiation", 
          "allelic richness", 
          "population differentiation", 
          "Arabidopsis thaliana", 
          "SNP diversity", 
          "microsatellite variation", 
          "diversity estimates", 
          "diversity patterns", 
          "microsatellite heterozygosity", 
          "genomic diversity", 
          "genetic variation", 
          "SNP variation", 
          "marker types", 
          "halleri", 
          "microsatellites", 
          "nucleotide polymorphisms", 
          "diversity", 
          "genome", 
          "differentiation", 
          "ascertainment bias", 
          "Arabidopsis", 
          "thaliana", 
          "high variance", 
          "markers", 
          "richness", 
          "useful proxy", 
          "heterozygosity", 
          "population", 
          "species", 
          "future analyses", 
          "good proxy", 
          "variation", 
          "polymorphism", 
          "limited number", 
          "future studies", 
          "patterns", 
          "proxy", 
          "analysis", 
          "contrast", 
          "such estimates", 
          "possible causes", 
          "unbiased estimates", 
          "individuals", 
          "data", 
          "types", 
          "number", 
          "estimates", 
          "study", 
          "variance", 
          "comparison", 
          "biases", 
          "cause", 
          "approach", 
          "conclusion", 
          "derive recommendations", 
          "bias", 
          "goal", 
          "empirical comparison", 
          "recommendations", 
          "potential marker-specific biases", 
          "marker-specific biases", 
          "Arabidopsis halleri individuals", 
          "halleri individuals", 
          "pooled whole-genome re-sequencing approach", 
          "whole-genome re-sequencing approach", 
          "genome-wide SNP diversity estimates", 
          "SNP diversity estimates", 
          "genome-wide SNP diversity", 
          "marker ascertainment bias", 
          "microsatellite-derived estimates", 
          "exome-wide SNPs", 
          "high-throughput sequencing-based SNP data", 
          "sequencing-based SNP data", 
          "genome-wide diversity patterns"
        ], 
        "name": "Estimating genomic diversity and population differentiation \u2013 an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri", 
        "pagination": "69", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051740909"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-016-3459-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28077077"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-016-3459-7", 
          "https://app.dimensions.ai/details/publication/pub.1051740909"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_728.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12864-016-3459-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3459-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3459-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3459-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3459-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    319 TRIPLES      22 PREDICATES      141 URIs      109 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-016-3459-7 schema:about N096bb88073a3493a8605b017ce812565
    2 N33dc6dac8592492da29ecbd24e06e748
    3 N3f1cda9c35694f769bc24276f9c96975
    4 N51407b9cff9a44efb8bbe54a81ba9f3e
    5 N8a24e768b4164d4f848e44d225a41b4f
    6 anzsrc-for:06
    7 anzsrc-for:0604
    8 schema:author Nc6b4761e70f74e77bcd6f6b3da5f8c7e
    9 schema:citation sg:pub.10.1007/s10980-005-5245-9
    10 sg:pub.10.1007/s11032-010-9416-2
    11 sg:pub.10.1007/s12033-009-9230-4
    12 sg:pub.10.1038/35048692
    13 sg:pub.10.1038/hdy.2010.21
    14 sg:pub.10.1038/hdy.2013.99
    15 sg:pub.10.1038/ncomms11693
    16 sg:pub.10.1038/ng.515
    17 sg:pub.10.1038/nrg.2015.28
    18 sg:pub.10.1038/nrg1348
    19 sg:pub.10.1038/nrg2626
    20 sg:pub.10.1038/nrg2844
    21 sg:pub.10.1038/nrg2958
    22 sg:pub.10.1038/nrg3012
    23 sg:pub.10.1038/nrg3395
    24 sg:pub.10.1038/nrg3803
    25 sg:pub.10.1038/sj.hdy.6884960
    26 sg:pub.10.1186/1471-2105-15-1
    27 sg:pub.10.1186/1471-2148-12-94
    28 sg:pub.10.1186/1471-2156-11-2
    29 sg:pub.10.1186/1471-2156-6-s1-s26
    30 sg:pub.10.1186/1471-2164-15-1
    31 sg:pub.10.1186/1471-2164-15-162
    32 sg:pub.10.1186/s12859-014-0356-4
    33 schema:datePublished 2017-01-11
    34 schema:datePublishedReg 2017-01-11
    35 schema:description BACKGROUND: Microsatellite markers are widely used for estimating genetic diversity within and differentiation among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20 microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers) and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a pooled whole-genome re-sequencing approach (Pool-Seq). RESULTS: Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-H <sub>e</sub>) was not significantly correlated with genome-wide SNP diversity estimates (SNP-H <sub>e</sub> and θ <sub>Watterson</sub>) in A. halleri. Instead, microsatellite allelic richness (A <sub>r</sub>) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation among populations (F <sub>ST</sub>) based on both marker types were correlated, but microsatellite-based estimates were significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably estimate genome-wide diversity and to distinguish among populations differing in genetic variation. CONCLUSIONS: We recommend that future analyses of genetic diversity within and differentiation among populations use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal.
    36 schema:genre article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N5b1c5c0e52a94c0eb308eb8043328220
    40 Ne9079ab70f634b85b9d42b3a1a97a9a4
    41 sg:journal.1023790
    42 schema:keywords Arabidopsis
    43 Arabidopsis halleri individuals
    44 Arabidopsis thaliana
    45 SNP data
    46 SNP diversity
    47 SNP diversity estimates
    48 SNP variation
    49 allelic richness
    50 analysis
    51 approach
    52 ascertainment bias
    53 bias
    54 biases
    55 cause
    56 comparison
    57 conclusion
    58 contrast
    59 data
    60 derive recommendations
    61 differentiation
    62 diversity
    63 diversity estimates
    64 diversity patterns
    65 empirical comparison
    66 estimates
    67 exome-wide SNPs
    68 future analyses
    69 future studies
    70 genetic differentiation
    71 genetic diversity
    72 genetic variation
    73 genome
    74 genome-wide SNP data
    75 genome-wide SNP diversity
    76 genome-wide SNP diversity estimates
    77 genome-wide diversity
    78 genome-wide diversity patterns
    79 genome-wide patterns
    80 genome-wide single nucleotide polymorphisms
    81 genomic diversity
    82 goal
    83 good proxy
    84 halleri
    85 halleri individuals
    86 heterozygosity
    87 high variance
    88 high-throughput sequencing-based SNP data
    89 individuals
    90 limited number
    91 marker ascertainment bias
    92 marker types
    93 marker-specific biases
    94 markers
    95 microsatellite allelic richness
    96 microsatellite heterozygosity
    97 microsatellite markers
    98 microsatellite variation
    99 microsatellite-derived estimates
    100 microsatellites
    101 nucleotide polymorphisms
    102 number
    103 patterns
    104 polymorphism
    105 pooled whole-genome re-sequencing approach
    106 population
    107 population differentiation
    108 possible causes
    109 potential marker-specific biases
    110 proxy
    111 random single-nucleotide polymorphisms
    112 re-sequencing approach
    113 recommendations
    114 richness
    115 sequencing-based SNP data
    116 single nucleotide polymorphisms
    117 species
    118 species-specific microsatellites
    119 study
    120 such estimates
    121 thaliana
    122 types
    123 unbiased estimates
    124 useful proxy
    125 variance
    126 variation
    127 whole-genome re-sequencing approach
    128 schema:name Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri
    129 schema:pagination 69
    130 schema:productId N432ab9d2f92943da831a87af1dd7dfae
    131 Nb3e04676606144188f50929b7cc00e14
    132 Ne21e6efdb098432582bace024b1d712a
    133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740909
    134 https://doi.org/10.1186/s12864-016-3459-7
    135 schema:sdDatePublished 2022-01-01T18:41
    136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    137 schema:sdPublisher Nd7ed04714cf747d4b8463d188ce55a92
    138 schema:url https://doi.org/10.1186/s12864-016-3459-7
    139 sgo:license sg:explorer/license/
    140 sgo:sdDataset articles
    141 rdf:type schema:ScholarlyArticle
    142 N00c63dcdbe334cdba940300dc7909e56 rdf:first sg:person.01014057420.44
    143 rdf:rest N01b5dcbf3eaa4b0591608fc94fb8e32e
    144 N01b5dcbf3eaa4b0591608fc94fb8e32e rdf:first sg:person.01345765141.18
    145 rdf:rest rdf:nil
    146 N096bb88073a3493a8605b017ce812565 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Polymorphism, Single Nucleotide
    148 rdf:type schema:DefinedTerm
    149 N1428285207fb4e78802cb26b27d27c36 rdf:first sg:person.0610705622.24
    150 rdf:rest Ndab1a713de70475a90cae159852adbe8
    151 N33dc6dac8592492da29ecbd24e06e748 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Microsatellite Repeats
    153 rdf:type schema:DefinedTerm
    154 N3f1cda9c35694f769bc24276f9c96975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Genome, Plant
    156 rdf:type schema:DefinedTerm
    157 N432ab9d2f92943da831a87af1dd7dfae schema:name doi
    158 schema:value 10.1186/s12864-016-3459-7
    159 rdf:type schema:PropertyValue
    160 N51407b9cff9a44efb8bbe54a81ba9f3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Arabidopsis
    162 rdf:type schema:DefinedTerm
    163 N5b1c5c0e52a94c0eb308eb8043328220 schema:issueNumber 1
    164 rdf:type schema:PublicationIssue
    165 N7afb042ca3b24d248ff2115fc41592f3 rdf:first sg:person.01211256751.08
    166 rdf:rest N1428285207fb4e78802cb26b27d27c36
    167 N8a24e768b4164d4f848e44d225a41b4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Genomics
    169 rdf:type schema:DefinedTerm
    170 N98a0a3ada29442038aa7c91b11fce9cf rdf:first sg:person.015164564573.99
    171 rdf:rest N7afb042ca3b24d248ff2115fc41592f3
    172 Nb3e04676606144188f50929b7cc00e14 schema:name dimensions_id
    173 schema:value pub.1051740909
    174 rdf:type schema:PropertyValue
    175 Nc6b4761e70f74e77bcd6f6b3da5f8c7e rdf:first sg:person.01372016165.32
    176 rdf:rest Nfcfe81b6471c4752afae64231366fb7f
    177 Nd7ed04714cf747d4b8463d188ce55a92 schema:name Springer Nature - SN SciGraph project
    178 rdf:type schema:Organization
    179 Ndab1a713de70475a90cae159852adbe8 rdf:first sg:person.016101060111.70
    180 rdf:rest N00c63dcdbe334cdba940300dc7909e56
    181 Ne21e6efdb098432582bace024b1d712a schema:name pubmed_id
    182 schema:value 28077077
    183 rdf:type schema:PropertyValue
    184 Ne9079ab70f634b85b9d42b3a1a97a9a4 schema:volumeNumber 18
    185 rdf:type schema:PublicationVolume
    186 Nfcfe81b6471c4752afae64231366fb7f rdf:first sg:person.01244650361.33
    187 rdf:rest N98a0a3ada29442038aa7c91b11fce9cf
    188 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Biological Sciences
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Genetics
    193 rdf:type schema:DefinedTerm
    194 sg:journal.1023790 schema:issn 1471-2164
    195 schema:name BMC Genomics
    196 schema:publisher Springer Nature
    197 rdf:type schema:Periodical
    198 sg:person.01014057420.44 schema:affiliation grid-institutes:grid.419754.a
    199 schema:familyName Holderegger
    200 schema:givenName Rolf
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014057420.44
    202 rdf:type schema:Person
    203 sg:person.01211256751.08 schema:affiliation grid-institutes:grid.5801.c
    204 schema:familyName Roumet
    205 schema:givenName Marie
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211256751.08
    207 rdf:type schema:Person
    208 sg:person.01244650361.33 schema:affiliation grid-institutes:grid.419754.a
    209 schema:familyName Rellstab
    210 schema:givenName Christian
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244650361.33
    212 rdf:type schema:Person
    213 sg:person.01345765141.18 schema:affiliation grid-institutes:grid.5801.c
    214 schema:familyName Widmer
    215 schema:givenName Alex
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345765141.18
    217 rdf:type schema:Person
    218 sg:person.01372016165.32 schema:affiliation grid-institutes:grid.5801.c
    219 schema:familyName Fischer
    220 schema:givenName Martin C.
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372016165.32
    222 rdf:type schema:Person
    223 sg:person.015164564573.99 schema:affiliation grid-institutes:grid.5801.c
    224 schema:familyName Leuzinger
    225 schema:givenName Marianne
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164564573.99
    227 rdf:type schema:Person
    228 sg:person.016101060111.70 schema:affiliation grid-institutes:grid.7400.3
    229 schema:familyName Shimizu
    230 schema:givenName Kentaro K.
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016101060111.70
    232 rdf:type schema:Person
    233 sg:person.0610705622.24 schema:affiliation grid-institutes:grid.419754.a
    234 schema:familyName Gugerli
    235 schema:givenName Felix
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24
    237 rdf:type schema:Person
    238 sg:pub.10.1007/s10980-005-5245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009847065
    239 https://doi.org/10.1007/s10980-005-5245-9
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s11032-010-9416-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027142937
    242 https://doi.org/10.1007/s11032-010-9416-2
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s12033-009-9230-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043105532
    245 https://doi.org/10.1007/s12033-009-9230-4
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/35048692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298669
    248 https://doi.org/10.1038/35048692
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/hdy.2010.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047261316
    251 https://doi.org/10.1038/hdy.2010.21
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/hdy.2013.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016020303
    254 https://doi.org/10.1038/hdy.2013.99
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/ncomms11693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034214252
    257 https://doi.org/10.1038/ncomms11693
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/ng.515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005182849
    260 https://doi.org/10.1038/ng.515
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nrg.2015.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049142423
    263 https://doi.org/10.1038/nrg.2015.28
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nrg1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012004609
    266 https://doi.org/10.1038/nrg1348
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
    269 https://doi.org/10.1038/nrg2626
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrg2844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005842757
    272 https://doi.org/10.1038/nrg2844
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nrg2958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004346662
    275 https://doi.org/10.1038/nrg2958
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nrg3012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382223
    278 https://doi.org/10.1038/nrg3012
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nrg3395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022150201
    281 https://doi.org/10.1038/nrg3395
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nrg3803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045018123
    284 https://doi.org/10.1038/nrg3803
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/sj.hdy.6884960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002523739
    287 https://doi.org/10.1038/sj.hdy.6884960
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1186/1471-2105-15-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030123122
    290 https://doi.org/10.1186/1471-2105-15-1
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1186/1471-2148-12-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022711152
    293 https://doi.org/10.1186/1471-2148-12-94
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/1471-2156-11-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036078550
    296 https://doi.org/10.1186/1471-2156-11-2
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/1471-2156-6-s1-s26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013292615
    299 https://doi.org/10.1186/1471-2156-6-s1-s26
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1186/1471-2164-15-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023623483
    302 https://doi.org/10.1186/1471-2164-15-1
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1186/1471-2164-15-162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000653600
    305 https://doi.org/10.1186/1471-2164-15-162
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1186/s12859-014-0356-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042585636
    308 https://doi.org/10.1186/s12859-014-0356-4
    309 rdf:type schema:CreativeWork
    310 grid-institutes:grid.419754.a schema:alternateName WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
    311 schema:name ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
    312 WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
    313 rdf:type schema:Organization
    314 grid-institutes:grid.5801.c schema:alternateName ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
    315 schema:name ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
    316 rdf:type schema:Organization
    317 grid-institutes:grid.7400.3 schema:alternateName Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
    318 schema:name Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
    319 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...