A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Yongli Hu, Takeshi Hase, Hui Peng Li, Shyam Prabhakar, Hiroaki Kitano, See Kiong Ng, Samik Ghosh, Lawrence Jin Kiat Wee

ABSTRACT

BACKGROUND: The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). RESULTS: Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. CONCLUSION: This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour. More... »

PAGES

1025

References to SciGraph publications

  • 2014-10. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex in NATURE BIOTECHNOLOGY
  • 2010-12. SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction in BMC GENOMICS
  • 2015-12. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells in GENOME BIOLOGY
  • 2007. Information-Theoretic Inference of Large Transcriptional Regulatory Networks in EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY
  • 2010-12. Inferring the conservative causal core of gene regulatory networks in BMC SYSTEMS BIOLOGY
  • 2002-01. Gene Selection for Cancer Classification using Support Vector Machines in MACHINE LEARNING
  • 2008-07. Stem cell transcriptome profiling via massive-scale mRNA sequencing in NATURE METHODS
  • 1998-06. A Tutorial on Support Vector Machines for Pattern Recognition in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2013-04. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2011-12. Identifying cancer biomarkers by network-constrained support vector machines in BMC SYSTEMS BIOLOGY
  • 2008-12. minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information in BMC BIOINFORMATICS
  • 2008-07. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2013-12. GSVA: gene set variation analysis for microarray and RNA-Seq data in BMC BIOINFORMATICS
  • 2006-03. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context in BMC BIOINFORMATICS
  • 2012-12. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection in BMC SYSTEMS BIOLOGY
  • 2015-12. Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment in GENOME BIOLOGY
  • 2010-05. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation in NATURE BIOTECHNOLOGY
  • 1996-08. Bagging predictors in MACHINE LEARNING
  • 2012-08. Wisdom of crowds for robust gene network inference in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-016-3317-7

    DOI

    http://dx.doi.org/10.1186/s12864-016-3317-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033219559

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28155657


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Single-Cell Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Support Vector Machine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Agency for Science, Technology and Research", 
              "id": "https://www.grid.ac/institutes/grid.185448.4", 
              "name": [
                "Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, Singapore", 
                "The Systems Biology Institute, Singapore Node hosted at the Institute for Infocomm Research, A*STAR, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Yongli", 
            "id": "sg:person.0744775073.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744775073.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Systems Biology Institute", 
              "id": "https://www.grid.ac/institutes/grid.452864.9", 
              "name": [
                "The Systems Biology Institute, Falcon Building 5\u00a0F, 5-6-9 Shirokanedai, Minato, 108-0071, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hase", 
            "givenName": "Takeshi", 
            "id": "sg:person.01264374657.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264374657.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genome Institute of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.418377.e", 
              "name": [
                "Computational and Systems Biology, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, #02-01, 138672, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Hui Peng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genome Institute of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.418377.e", 
              "name": [
                "Computational and Systems Biology, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, #02-01, 138672, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prabhakar", 
            "givenName": "Shyam", 
            "id": "sg:person.0700340034.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700340034.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Systems Biology Institute", 
              "id": "https://www.grid.ac/institutes/grid.452864.9", 
              "name": [
                "The Systems Biology Institute, Falcon Building 5\u00a0F, 5-6-9 Shirokanedai, Minato, 108-0071, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitano", 
            "givenName": "Hiroaki", 
            "id": "sg:person.01355755204.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Infocomm Research", 
              "id": "https://www.grid.ac/institutes/grid.418705.f", 
              "name": [
                "Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ng", 
            "givenName": "See Kiong", 
            "id": "sg:person.0735163472.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735163472.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Systems Biology Institute", 
              "id": "https://www.grid.ac/institutes/grid.452864.9", 
              "name": [
                "The Systems Biology Institute, Falcon Building 5\u00a0F, 5-6-9 Shirokanedai, Minato, 108-0071, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghosh", 
            "givenName": "Samik", 
            "id": "sg:person.01245175236.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245175236.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agency for Science, Technology and Research", 
              "id": "https://www.grid.ac/institutes/grid.185448.4", 
              "name": [
                "Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, Singapore", 
                "The Systems Biology Institute, Singapore Node hosted at the Institute for Infocomm Research, A*STAR, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wee", 
            "givenName": "Lawrence Jin Kiat", 
            "id": "sg:person.013532567214.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532567214.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/0471142727.mb0411s89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000588898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142727.mb0411s89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000588898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001987369", 
              "https://doi.org/10.1038/nbt.2967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2011.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005175342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005335941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-4-132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006655624", 
              "https://doi.org/10.1186/1752-0509-4-132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2015.07.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014847570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016098431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0012776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016959201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0692-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017242507", 
              "https://doi.org/10.1186/s13059-015-0692-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0692-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017242507", 
              "https://doi.org/10.1186/s13059-015-0692-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0692-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017242507", 
              "https://doi.org/10.1186/s13059-015-0692-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0050008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020383666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021694497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022196002", 
              "https://doi.org/10.1186/1471-2105-14-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022196002", 
              "https://doi.org/10.1186/1471-2105-14-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-6-145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022589506", 
              "https://doi.org/10.1186/1752-0509-6-145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023029250", 
              "https://doi.org/10.1038/nmeth.2016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023219765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.11.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029021361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0032690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029274824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0033624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030187788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0636-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030268720", 
              "https://doi.org/10.1186/s13059-015-0636-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0636-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030268720", 
              "https://doi.org/10.1186/s13059-015-0636-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0636-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030268720", 
              "https://doi.org/10.1186/s13059-015-0636-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035095", 
              "https://doi.org/10.1038/nbt.1621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2011.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034466938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-5-161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036111814", 
              "https://doi.org/10.1186/1752-0509-5-161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2007/79879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037497681", 
              "https://doi.org/10.1155/2007/79879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-s4-s21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038447274", 
              "https://doi.org/10.1186/1471-2164-11-s4-s21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0138213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038985324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039122218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040779948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041931207", 
              "https://doi.org/10.1186/1471-2105-9-461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009715923555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042048349", 
              "https://doi.org/10.1023/a:1009715923555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042105629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042105629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcb.21079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043040573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.011262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043045122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043306203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045066552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012487302797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048573168", 
              "https://doi.org/10.1023/a:1012487302797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048586936", 
              "https://doi.org/10.1038/nmeth.1223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1003361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049160971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1555400.1555408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051141929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-s1-s7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051833905", 
              "https://doi.org/10.1186/1471-2105-7-s1-s7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052586493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2741/4136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070916297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074670449", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078498785", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789814447331_0040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096094020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "BACKGROUND: The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)).\nRESULTS: Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases.\nCONCLUSION: This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-016-3317-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 13", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data", 
        "pagination": "1025", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9e40fcd06bce7110fd9e0d56e4c6368ba5f952f2faa20959f7dd0905599ed059"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28155657"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-016-3317-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033219559"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-016-3317-7", 
          "https://app.dimensions.ai/details/publication/pub.1033219559"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12864-016-3317-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3317-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3317-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3317-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3317-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    353 TRIPLES      21 PREDICATES      94 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-016-3317-7 schema:about N1a818597c9d34176829e7f837282cbe2
    2 N1b120465599b4b1eab98e4635132cd45
    3 N1d7312c5984941cfa35860b3996dfa10
    4 N3e9bca34c3f3484ebed601df6ea317d9
    5 N4d5093d8449244f6886750497e82f480
    6 N56e110ee552149fab0b66d28c37b4de0
    7 N5aafe3e4f5b649858b7d1f704f363931
    8 N6cc106770c144f91a34c1f0dde9f89c6
    9 N9aa718843cf044ae9f2a9d844f230c57
    10 Na0e25c46c472438794f210c961d77ea0
    11 Naf055d97637f49a2a39b7fe8bfba4c41
    12 Nb489e105500a44c4b7722cca0a1d81e3
    13 Nd1ec1dc1cfab4d45b7bf4cf6fedb3968
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Nccfa65e011464bfb96891aa996b6a324
    17 schema:citation sg:pub.10.1007/bf00058655
    18 sg:pub.10.1007/bf00994018
    19 sg:pub.10.1023/a:1009715923555
    20 sg:pub.10.1023/a:1010933404324
    21 sg:pub.10.1023/a:1012487302797
    22 sg:pub.10.1038/nbt.1621
    23 sg:pub.10.1038/nbt.2967
    24 sg:pub.10.1038/nmeth.1223
    25 sg:pub.10.1038/nmeth.1226
    26 sg:pub.10.1038/nmeth.2016
    27 sg:pub.10.1155/2007/79879
    28 sg:pub.10.1186/1471-2105-14-7
    29 sg:pub.10.1186/1471-2105-7-s1-s7
    30 sg:pub.10.1186/1471-2105-9-461
    31 sg:pub.10.1186/1471-2164-11-s4-s21
    32 sg:pub.10.1186/1752-0509-4-132
    33 sg:pub.10.1186/1752-0509-5-161
    34 sg:pub.10.1186/1752-0509-6-145
    35 sg:pub.10.1186/gb-2013-14-4-r36
    36 sg:pub.10.1186/s13059-015-0636-y
    37 sg:pub.10.1186/s13059-015-0692-3
    38 https://app.dimensions.ai/details/publication/pub.1074670449
    39 https://app.dimensions.ai/details/publication/pub.1078498785
    40 https://doi.org/10.1002/0471142727.mb0411s89
    41 https://doi.org/10.1002/jcb.21079
    42 https://doi.org/10.1016/0005-2795(75)90109-9
    43 https://doi.org/10.1016/j.cell.2011.02.016
    44 https://doi.org/10.1016/j.cell.2013.11.040
    45 https://doi.org/10.1016/j.compbiomed.2015.07.029
    46 https://doi.org/10.1016/j.jbi.2011.11.015
    47 https://doi.org/10.1073/pnas.0506580102
    48 https://doi.org/10.1093/bioinformatics/bti525
    49 https://doi.org/10.1093/bioinformatics/btl117
    50 https://doi.org/10.1093/bioinformatics/btq259
    51 https://doi.org/10.1093/bioinformatics/btr157
    52 https://doi.org/10.1093/bioinformatics/bts619
    53 https://doi.org/10.1093/bioinformatics/btv635
    54 https://doi.org/10.1093/nar/gkr854
    55 https://doi.org/10.1093/nar/gkv007
    56 https://doi.org/10.1126/science.1158441
    57 https://doi.org/10.1142/9789814447331_0040
    58 https://doi.org/10.1145/1555400.1555408
    59 https://doi.org/10.1145/1961189.1961199
    60 https://doi.org/10.1242/dev.011262
    61 https://doi.org/10.1371/journal.pbio.0050008
    62 https://doi.org/10.1371/journal.pcbi.1003361
    63 https://doi.org/10.1371/journal.pone.0012776
    64 https://doi.org/10.1371/journal.pone.0032690
    65 https://doi.org/10.1371/journal.pone.0033624
    66 https://doi.org/10.1371/journal.pone.0138213
    67 https://doi.org/10.2741/4136
    68 https://doi.org/10.7717/peerj.159
    69 schema:datePublished 2016-12
    70 schema:datePublishedReg 2016-12-01
    71 schema:description BACKGROUND: The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). RESULTS: Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. CONCLUSION: This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.
    72 schema:genre research_article
    73 schema:inLanguage en
    74 schema:isAccessibleForFree true
    75 schema:isPartOf N354de2075ba74d59914078b917e66e2c
    76 N7d5b6cd73d814b1f8a7222ecd7cb16bc
    77 sg:journal.1023790
    78 schema:name A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data
    79 schema:pagination 1025
    80 schema:productId N09813d45af6840a8834aa770ae9fef92
    81 N160b608f725546aeb6d41d4efeb107aa
    82 N23d97bc8acaa456386f2cc7dde86636e
    83 N7a674a35088a4fd296e5c308fe4da484
    84 Ne84d989085874fe094bd28f4810ac5cd
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033219559
    86 https://doi.org/10.1186/s12864-016-3317-7
    87 schema:sdDatePublished 2019-04-11T10:28
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N4cf8d034888444ffba7a4d44ec263c18
    90 schema:url https://link.springer.com/10.1186%2Fs12864-016-3317-7
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N09813d45af6840a8834aa770ae9fef92 schema:name pubmed_id
    95 schema:value 28155657
    96 rdf:type schema:PropertyValue
    97 N160b608f725546aeb6d41d4efeb107aa schema:name doi
    98 schema:value 10.1186/s12864-016-3317-7
    99 rdf:type schema:PropertyValue
    100 N1a818597c9d34176829e7f837282cbe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Models, Statistical
    102 rdf:type schema:DefinedTerm
    103 N1b120465599b4b1eab98e4635132cd45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Reproducibility of Results
    105 rdf:type schema:DefinedTerm
    106 N1d7312c5984941cfa35860b3996dfa10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Transcriptome
    108 rdf:type schema:DefinedTerm
    109 N23d97bc8acaa456386f2cc7dde86636e schema:name nlm_unique_id
    110 schema:value 100965258
    111 rdf:type schema:PropertyValue
    112 N249c957e602a47fb983b35030262f8eb rdf:first sg:person.013532567214.24
    113 rdf:rest rdf:nil
    114 N354de2075ba74d59914078b917e66e2c schema:volumeNumber 17
    115 rdf:type schema:PublicationVolume
    116 N3c027357924f42cd8438cb16fc29a35a rdf:first Na334268d5f564b5da49fd04195d3dce6
    117 rdf:rest Nb845a512d74846eda782521e3cca3522
    118 N3e9bca34c3f3484ebed601df6ea317d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Gene Expression Profiling
    120 rdf:type schema:DefinedTerm
    121 N4cf8d034888444ffba7a4d44ec263c18 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N4d5093d8449244f6886750497e82f480 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Neurogenesis
    125 rdf:type schema:DefinedTerm
    126 N56e110ee552149fab0b66d28c37b4de0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Brain
    128 rdf:type schema:DefinedTerm
    129 N5a0616e4a99b493085eb122b8c512823 rdf:first sg:person.01355755204.11
    130 rdf:rest Nfa0b6feff45446dfae073eb8c3e287a3
    131 N5aafe3e4f5b649858b7d1f704f363931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Machine Learning
    133 rdf:type schema:DefinedTerm
    134 N6cc106770c144f91a34c1f0dde9f89c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Single-Cell Analysis
    136 rdf:type schema:DefinedTerm
    137 N7a674a35088a4fd296e5c308fe4da484 schema:name dimensions_id
    138 schema:value pub.1033219559
    139 rdf:type schema:PropertyValue
    140 N7d5b6cd73d814b1f8a7222ecd7cb16bc schema:issueNumber Suppl 13
    141 rdf:type schema:PublicationIssue
    142 N9aa718843cf044ae9f2a9d844f230c57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Support Vector Machine
    144 rdf:type schema:DefinedTerm
    145 Na0e25c46c472438794f210c961d77ea0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Organ Specificity
    147 rdf:type schema:DefinedTerm
    148 Na334268d5f564b5da49fd04195d3dce6 schema:affiliation https://www.grid.ac/institutes/grid.418377.e
    149 schema:familyName Li
    150 schema:givenName Hui Peng
    151 rdf:type schema:Person
    152 Naf055d97637f49a2a39b7fe8bfba4c41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Organogenesis
    154 rdf:type schema:DefinedTerm
    155 Nb489e105500a44c4b7722cca0a1d81e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Biomarkers
    157 rdf:type schema:DefinedTerm
    158 Nb845a512d74846eda782521e3cca3522 rdf:first sg:person.0700340034.34
    159 rdf:rest N5a0616e4a99b493085eb122b8c512823
    160 Nccf22e59101344edbe43e254876075ba rdf:first sg:person.01264374657.26
    161 rdf:rest N3c027357924f42cd8438cb16fc29a35a
    162 Nccfa65e011464bfb96891aa996b6a324 rdf:first sg:person.0744775073.05
    163 rdf:rest Nccf22e59101344edbe43e254876075ba
    164 Nd173132e3a21492d89e7c5e07b0ff831 rdf:first sg:person.01245175236.29
    165 rdf:rest N249c957e602a47fb983b35030262f8eb
    166 Nd1ec1dc1cfab4d45b7bf4cf6fedb3968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Algorithms
    168 rdf:type schema:DefinedTerm
    169 Ne84d989085874fe094bd28f4810ac5cd schema:name readcube_id
    170 schema:value 9e40fcd06bce7110fd9e0d56e4c6368ba5f952f2faa20959f7dd0905599ed059
    171 rdf:type schema:PropertyValue
    172 Nfa0b6feff45446dfae073eb8c3e287a3 rdf:first sg:person.0735163472.19
    173 rdf:rest Nd173132e3a21492d89e7c5e07b0ff831
    174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Biological Sciences
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Genetics
    179 rdf:type schema:DefinedTerm
    180 sg:journal.1023790 schema:issn 1471-2164
    181 schema:name BMC Genomics
    182 rdf:type schema:Periodical
    183 sg:person.01245175236.29 schema:affiliation https://www.grid.ac/institutes/grid.452864.9
    184 schema:familyName Ghosh
    185 schema:givenName Samik
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245175236.29
    187 rdf:type schema:Person
    188 sg:person.01264374657.26 schema:affiliation https://www.grid.ac/institutes/grid.452864.9
    189 schema:familyName Hase
    190 schema:givenName Takeshi
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264374657.26
    192 rdf:type schema:Person
    193 sg:person.013532567214.24 schema:affiliation https://www.grid.ac/institutes/grid.185448.4
    194 schema:familyName Wee
    195 schema:givenName Lawrence Jin Kiat
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532567214.24
    197 rdf:type schema:Person
    198 sg:person.01355755204.11 schema:affiliation https://www.grid.ac/institutes/grid.452864.9
    199 schema:familyName Kitano
    200 schema:givenName Hiroaki
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11
    202 rdf:type schema:Person
    203 sg:person.0700340034.34 schema:affiliation https://www.grid.ac/institutes/grid.418377.e
    204 schema:familyName Prabhakar
    205 schema:givenName Shyam
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700340034.34
    207 rdf:type schema:Person
    208 sg:person.0735163472.19 schema:affiliation https://www.grid.ac/institutes/grid.418705.f
    209 schema:familyName Ng
    210 schema:givenName See Kiong
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735163472.19
    212 rdf:type schema:Person
    213 sg:person.0744775073.05 schema:affiliation https://www.grid.ac/institutes/grid.185448.4
    214 schema:familyName Hu
    215 schema:givenName Yongli
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744775073.05
    217 rdf:type schema:Person
    218 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    219 https://doi.org/10.1007/bf00058655
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    222 https://doi.org/10.1007/bf00994018
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1023/a:1009715923555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042048349
    225 https://doi.org/10.1023/a:1009715923555
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    228 https://doi.org/10.1023/a:1010933404324
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
    231 https://doi.org/10.1023/a:1012487302797
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
    234 https://doi.org/10.1038/nbt.1621
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nbt.2967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001987369
    237 https://doi.org/10.1038/nbt.2967
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nmeth.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586936
    240 https://doi.org/10.1038/nmeth.1223
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    243 https://doi.org/10.1038/nmeth.1226
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nmeth.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023029250
    246 https://doi.org/10.1038/nmeth.2016
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1155/2007/79879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037497681
    249 https://doi.org/10.1155/2007/79879
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/1471-2105-14-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022196002
    252 https://doi.org/10.1186/1471-2105-14-7
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/1471-2105-7-s1-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051833905
    255 https://doi.org/10.1186/1471-2105-7-s1-s7
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1471-2105-9-461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041931207
    258 https://doi.org/10.1186/1471-2105-9-461
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/1471-2164-11-s4-s21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038447274
    261 https://doi.org/10.1186/1471-2164-11-s4-s21
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/1752-0509-4-132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006655624
    264 https://doi.org/10.1186/1752-0509-4-132
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/1752-0509-5-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036111814
    267 https://doi.org/10.1186/1752-0509-5-161
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/1752-0509-6-145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022589506
    270 https://doi.org/10.1186/1752-0509-6-145
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    273 https://doi.org/10.1186/gb-2013-14-4-r36
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/s13059-015-0636-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030268720
    276 https://doi.org/10.1186/s13059-015-0636-y
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/s13059-015-0692-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017242507
    279 https://doi.org/10.1186/s13059-015-0692-3
    280 rdf:type schema:CreativeWork
    281 https://app.dimensions.ai/details/publication/pub.1074670449 schema:CreativeWork
    282 https://app.dimensions.ai/details/publication/pub.1078498785 schema:CreativeWork
    283 https://doi.org/10.1002/0471142727.mb0411s89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000588898
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1002/jcb.21079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043040573
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1016/0005-2795(75)90109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042105629
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1016/j.cell.2011.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034466938
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1016/j.cell.2013.11.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029021361
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1016/j.compbiomed.2015.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014847570
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1016/j.jbi.2011.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005175342
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/bioinformatics/bti525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045066552
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/bioinformatics/btl117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040779948
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1093/bioinformatics/btq259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052586493
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1093/bioinformatics/btr157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005335941
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1093/bioinformatics/bts619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021694497
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1093/bioinformatics/btv635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039122218
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1093/nar/gkr854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023219765
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1093/nar/gkv007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016098431
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1126/science.1158441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457766
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1142/9789814447331_0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096094020
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1145/1555400.1555408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051141929
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1242/dev.011262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043045122
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1371/journal.pbio.0050008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020383666
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1371/journal.pcbi.1003361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049160971
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1371/journal.pone.0012776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016959201
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1371/journal.pone.0032690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029274824
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1371/journal.pone.0033624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030187788
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1371/journal.pone.0138213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038985324
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.2741/4136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070916297
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.7717/peerj.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043306203
    340 rdf:type schema:CreativeWork
    341 https://www.grid.ac/institutes/grid.185448.4 schema:alternateName Agency for Science, Technology and Research
    342 schema:name Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, Singapore
    343 The Systems Biology Institute, Singapore Node hosted at the Institute for Infocomm Research, A*STAR, Singapore, Singapore
    344 rdf:type schema:Organization
    345 https://www.grid.ac/institutes/grid.418377.e schema:alternateName Genome Institute of Singapore
    346 schema:name Computational and Systems Biology, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, #02-01, 138672, Singapore, Singapore
    347 rdf:type schema:Organization
    348 https://www.grid.ac/institutes/grid.418705.f schema:alternateName Institute for Infocomm Research
    349 schema:name Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, Singapore
    350 rdf:type schema:Organization
    351 https://www.grid.ac/institutes/grid.452864.9 schema:alternateName Systems Biology Institute
    352 schema:name The Systems Biology Institute, Falcon Building 5 F, 5-6-9 Shirokanedai, Minato, 108-0071, Tokyo, Japan
    353 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...