Predicting disease-related genes using integrated biomedical networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Jiajie Peng, Kun Bai, Xuequn Shang, Guohua Wang, Hansheng Xue, Shuilin Jin, Liang Cheng, Yadong Wang, Jin Chen

ABSTRACT

BACKGROUND: Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. However, none of the existing computational approaches is able to integrate the huge amount of omics data into a weighted integrated network and utilize it to enhance disease related gene discovery. RESULTS: We propose a new network-based disease gene prediction method called SLN-SRW (Simplified Laplacian Normalization-Supervised Random Walk) to generate and model the edge weights of a new biomedical network that integrates biomedical data from heterogeneous sources, thus far enhancing the disease related gene discovery. CONCLUSIONS: The experiment results show that SLN-SRW significantly improves the performance of disease gene prediction on both the real and the synthetic data sets. More... »

PAGES

1043

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-016-3263-4

DOI

http://dx.doi.org/10.1186/s12864-016-3263-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1074236735

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28198675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Ontology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Workflow", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Computer Science, Northwestern Polytechnical University, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Jiajie", 
        "id": "sg:person.01067474314.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067474314.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China", 
            "Current address: Tencent, Inc., Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Computer Science, Northwestern Polytechnical University, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shang", 
        "givenName": "Xuequn", 
        "id": "sg:person.01136774561.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136774561.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Guohua", 
        "id": "sg:person.01040073534.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040073534.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Hansheng", 
        "id": "sg:person.010000607137.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010000607137.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Shuilin", 
        "id": "sg:person.0774535104.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774535104.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410736.7", 
          "name": [
            "College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Liang", 
        "id": "sg:person.01207761463.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207761463.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yadong", 
        "id": "sg:person.01037364767.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037364767.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Institue of Biomedical Informatics, College of Medicine, University of Kentucky, 40536, Lexington, KY, USA", 
            "Department of Energy Plant Research Lab, Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jin", 
        "id": "sg:person.011741530235.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741530235.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gku1205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001175538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1mb05340j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001229802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-8-s3-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002017959", 
          "https://doi.org/10.1186/1752-0509-8-s3-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-8-s3-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002335331", 
          "https://doi.org/10.1186/1755-8794-8-s3-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.10012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002374545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/2395341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002459420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003632168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003632168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-8-s5-s8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004203273", 
          "https://doi.org/10.1186/1752-0509-8-s5-s8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0040001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004787580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004916975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02008-7_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005288938", 
          "https://doi.org/10.1007/978-3-642-02008-7_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02008-7_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005288938", 
          "https://doi.org/10.1007/978-3-642-02008-7_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006420012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783083", 
          "https://doi.org/10.1038/nrg3253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009025044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009629440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009770106", 
          "https://doi.org/10.1186/1471-2105-13-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012078987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014600221", 
          "https://doi.org/10.1038/nmeth.2810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1935826.1935914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014977753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017300707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017777932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019077511", 
          "https://doi.org/10.1186/1752-0509-5-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bfgp/elr024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019254294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020214306", 
          "https://doi.org/10.1038/srep30024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021371713", 
          "https://doi.org/10.1038/nrg2918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021371713", 
          "https://doi.org/10.1038/nrg2918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-4-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021942884", 
          "https://doi.org/10.1186/1752-0509-4-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.a.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023132142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024032576", 
          "https://doi.org/10.1186/1471-2105-13-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2011-12-6-r57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024642813", 
          "https://doi.org/10.1186/gb-2011-12-6-r57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343689", 
          "https://doi.org/10.1038/nbt1203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343689", 
          "https://doi.org/10.1038/nbt1203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027009477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-s3-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027431487", 
          "https://doi.org/10.1186/1752-0509-5-s3-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbp048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028071757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbp048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028071757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029045446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2828-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029098400", 
          "https://doi.org/10.1186/s12864-016-2828-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2828-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029098400", 
          "https://doi.org/10.1186/s12864-016-2828-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029709680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/4130861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029960469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030123122", 
          "https://doi.org/10.1186/1471-2105-15-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030123122", 
          "https://doi.org/10.1186/1471-2105-15-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032298109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0075504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034161784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035429197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-s1-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036865160", 
          "https://doi.org/10.1186/1752-0509-5-s1-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037383115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0404315101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038693032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039936775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041020142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-007-0094-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041080591", 
          "https://doi.org/10.1007/s10115-007-0094-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-007-0094-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041080591", 
          "https://doi.org/10.1007/s10115-007-0094-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/5313050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042768543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-s2-s5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042777752", 
          "https://doi.org/10.1186/1471-2105-15-s2-s5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042802800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-16-s9-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042849736", 
          "https://doi.org/10.1186/1471-2164-16-s9-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044643356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-001-0615-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045104992", 
          "https://doi.org/10.1007/s00439-001-0615-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-001-0615-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045104992", 
          "https://doi.org/10.1007/s00439-001-0615-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-014-0430-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046106991", 
          "https://doi.org/10.1186/s12859-014-0430-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-014-0430-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046106991", 
          "https://doi.org/10.1186/s12859-014-0430-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-014-0430-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046106991", 
          "https://doi.org/10.1186/s12859-014-0430-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047354122", 
          "https://doi.org/10.1038/nature08454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047354122", 
          "https://doi.org/10.1038/nature08454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048238292", 
          "https://doi.org/10.1186/s12859-015-0474-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048238292", 
          "https://doi.org/10.1186/s12859-015-0474-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048238292", 
          "https://doi.org/10.1186/s12859-015-0474-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-4-s1-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049361572", 
          "https://doi.org/10.1186/1752-0509-4-s1-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2006.041376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052810524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2009.0173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2015.2430289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2016.2553119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040608635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijdmb.2013.056078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067446231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389202917666160726151048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069178852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074680452", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077848501", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.143.1.7063747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082130998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.2000.892065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094249267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812836939_0035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096069704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "BACKGROUND: Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. However, none of the existing computational approaches is able to integrate the huge amount of omics data into a weighted integrated network and utilize it to enhance disease related gene discovery.\nRESULTS: We propose a new network-based disease gene prediction method called SLN-SRW (Simplified Laplacian Normalization-Supervised Random Walk) to generate and model the edge weights of a new biomedical network that integrates biomedical data from heterogeneous sources, thus far enhancing the disease related gene discovery.\nCONCLUSIONS: The experiment results show that SLN-SRW significantly improves the performance of disease gene prediction on both the real and the synthetic data sets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-016-3263-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2565204", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2444622", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7191917", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Predicting disease-related genes using integrated biomedical networks", 
    "pagination": "1043", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7cfc7fdce1bebb54ff42c247f2bd64ba0c1287a5be7ca192450d48d6b5641db4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28198675"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-016-3263-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1074236735"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-016-3263-4", 
      "https://app.dimensions.ai/details/publication/pub.1074236735"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12864-016-3263-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3263-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3263-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3263-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3263-4'


 

This table displays all metadata directly associated to this object as RDF triples.

423 TRIPLES      21 PREDICATES      111 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-016-3263-4 schema:about N0e95c09a6f1c44fcbb5e147fe38e3dd5
2 N1191a18a208d40ebae2bc21de730c083
3 N129869f7c3064210ae3aa7e609ca8159
4 N2da829b9f20e4bb8815fbb1d648ec242
5 N38bf38be23f5470292890ef189b1e3a5
6 N3a941fdbfc27462b9eb7f5a6cbae2786
7 N3c3f38b3d8884c038869c101336c123d
8 N71457a8e5086456da656d61071ad9c3b
9 N71d1ec1de06e4270a6e8ac5be9798312
10 Nc4da3c792bcf495c97367a77a10f1b7f
11 Nc8cb3090815048f09c7e55e1dee5f268
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author Naa930fe8792f4f2aafd93b91ff969bef
15 schema:citation sg:pub.10.1007/978-3-642-02008-7_29
16 sg:pub.10.1007/s00439-001-0615-0
17 sg:pub.10.1007/s10115-007-0094-2
18 sg:pub.10.1038/75556
19 sg:pub.10.1038/nature08454
20 sg:pub.10.1038/nbt1203
21 sg:pub.10.1038/nmeth.2810
22 sg:pub.10.1038/nrg2918
23 sg:pub.10.1038/nrg3253
24 sg:pub.10.1038/srep30024
25 sg:pub.10.1186/1471-2105-13-1
26 sg:pub.10.1186/1471-2105-13-119
27 sg:pub.10.1186/1471-2105-15-1
28 sg:pub.10.1186/1471-2105-15-s2-s5
29 sg:pub.10.1186/1471-2164-16-s9-s2
30 sg:pub.10.1186/1752-0509-4-1
31 sg:pub.10.1186/1752-0509-4-s1-s2
32 sg:pub.10.1186/1752-0509-5-1
33 sg:pub.10.1186/1752-0509-5-s1-s1
34 sg:pub.10.1186/1752-0509-5-s3-s10
35 sg:pub.10.1186/1752-0509-8-s3-s3
36 sg:pub.10.1186/1752-0509-8-s5-s8
37 sg:pub.10.1186/1755-8794-8-s3-s2
38 sg:pub.10.1186/gb-2011-12-6-r57
39 sg:pub.10.1186/s12859-014-0430-y
40 sg:pub.10.1186/s12859-015-0474-7
41 sg:pub.10.1186/s12864-016-2828-6
42 https://app.dimensions.ai/details/publication/pub.1074680452
43 https://app.dimensions.ai/details/publication/pub.1077848501
44 https://doi.org/10.1002/jez.a.307
45 https://doi.org/10.1016/j.ajhg.2008.02.013
46 https://doi.org/10.1016/j.ajhg.2015.05.020
47 https://doi.org/10.1039/c1mb05340j
48 https://doi.org/10.1073/pnas.0404315101
49 https://doi.org/10.1089/cmb.2009.0173
50 https://doi.org/10.1093/bfgp/elr024
51 https://doi.org/10.1093/bib/bbp048
52 https://doi.org/10.1093/bioinformatics/bti273
53 https://doi.org/10.1093/bioinformatics/btn291
54 https://doi.org/10.1093/bioinformatics/btq076
55 https://doi.org/10.1093/bioinformatics/btq108
56 https://doi.org/10.1093/bioinformatics/btq384
57 https://doi.org/10.1093/bioinformatics/btv712
58 https://doi.org/10.1093/nar/gkh061
59 https://doi.org/10.1093/nar/gki033
60 https://doi.org/10.1093/nar/gkr972
61 https://doi.org/10.1093/nar/gkt1026
62 https://doi.org/10.1093/nar/gkt1113
63 https://doi.org/10.1093/nar/gku1003
64 https://doi.org/10.1093/nar/gku1011
65 https://doi.org/10.1093/nar/gku1173
66 https://doi.org/10.1093/nar/gku1179
67 https://doi.org/10.1093/nar/gku1205
68 https://doi.org/10.1109/sfcs.2000.892065
69 https://doi.org/10.1109/tcbb.2015.2430289
70 https://doi.org/10.1109/tnb.2016.2553119
71 https://doi.org/10.1136/jmg.2006.041376
72 https://doi.org/10.1137/040608635
73 https://doi.org/10.1142/9789812836939_0035
74 https://doi.org/10.1145/1935826.1935914
75 https://doi.org/10.1148/radiology.143.1.7063747
76 https://doi.org/10.1155/2016/2395341
77 https://doi.org/10.1155/2016/4130861
78 https://doi.org/10.1155/2016/5313050
79 https://doi.org/10.1371/journal.pcbi.0040001
80 https://doi.org/10.1371/journal.pcbi.1000043
81 https://doi.org/10.1371/journal.pcbi.1000641
82 https://doi.org/10.1371/journal.pone.0075504
83 https://doi.org/10.1504/ijdmb.2013.056078
84 https://doi.org/10.18632/oncotarget.10012
85 https://doi.org/10.2174/1389202917666160726151048
86 schema:datePublished 2017-01
87 schema:datePublishedReg 2017-01-01
88 schema:description BACKGROUND: Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. However, none of the existing computational approaches is able to integrate the huge amount of omics data into a weighted integrated network and utilize it to enhance disease related gene discovery. RESULTS: We propose a new network-based disease gene prediction method called SLN-SRW (Simplified Laplacian Normalization-Supervised Random Walk) to generate and model the edge weights of a new biomedical network that integrates biomedical data from heterogeneous sources, thus far enhancing the disease related gene discovery. CONCLUSIONS: The experiment results show that SLN-SRW significantly improves the performance of disease gene prediction on both the real and the synthetic data sets.
89 schema:genre research_article
90 schema:inLanguage en
91 schema:isAccessibleForFree true
92 schema:isPartOf N0b94793c30f94b21a140702f687d651c
93 Nbaf333ad26a44f0e845d9f7f31158146
94 sg:journal.1023790
95 schema:name Predicting disease-related genes using integrated biomedical networks
96 schema:pagination 1043
97 schema:productId N0a8ccfb05a014355afb065c46a123b3e
98 N440853a6e25c417a8c884ed491957957
99 N5fa4ae3440dd4a5dacbbb93d73016c5d
100 N94a47eea17b54743a69b28d2077dce58
101 Na396eddaa6864b6b90bf5e6673e9a416
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074236735
103 https://doi.org/10.1186/s12864-016-3263-4
104 schema:sdDatePublished 2019-04-11T09:55
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N533e7c725f554865968487ecabb585e3
107 schema:url https://link.springer.com/10.1186%2Fs12864-016-3263-4
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N0a8ccfb05a014355afb065c46a123b3e schema:name nlm_unique_id
112 schema:value 100965258
113 rdf:type schema:PropertyValue
114 N0b94793c30f94b21a140702f687d651c schema:volumeNumber 18
115 rdf:type schema:PublicationVolume
116 N0e95c09a6f1c44fcbb5e147fe38e3dd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Algorithms
118 rdf:type schema:DefinedTerm
119 N1191a18a208d40ebae2bc21de730c083 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Humans
121 rdf:type schema:DefinedTerm
122 N129869f7c3064210ae3aa7e609ca8159 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Computational Biology
124 rdf:type schema:DefinedTerm
125 N2da829b9f20e4bb8815fbb1d648ec242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Regulatory Networks
127 rdf:type schema:DefinedTerm
128 N38bf38be23f5470292890ef189b1e3a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Genetic Association Studies
130 rdf:type schema:DefinedTerm
131 N3a941fdbfc27462b9eb7f5a6cbae2786 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Genetic Predisposition to Disease
133 rdf:type schema:DefinedTerm
134 N3c3f38b3d8884c038869c101336c123d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Databases, Genetic
136 rdf:type schema:DefinedTerm
137 N41814f56e00c444883b6eb0240217e9e schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
138 schema:familyName Bai
139 schema:givenName Kun
140 rdf:type schema:Person
141 N440853a6e25c417a8c884ed491957957 schema:name doi
142 schema:value 10.1186/s12864-016-3263-4
143 rdf:type schema:PropertyValue
144 N533e7c725f554865968487ecabb585e3 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N5fa4ae3440dd4a5dacbbb93d73016c5d schema:name readcube_id
147 schema:value 7cfc7fdce1bebb54ff42c247f2bd64ba0c1287a5be7ca192450d48d6b5641db4
148 rdf:type schema:PropertyValue
149 N71457a8e5086456da656d61071ad9c3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Workflow
151 rdf:type schema:DefinedTerm
152 N71d1ec1de06e4270a6e8ac5be9798312 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Reproducibility of Results
154 rdf:type schema:DefinedTerm
155 N8ad84322d56f47dfb9292beaebbfc39b rdf:first sg:person.01207761463.16
156 rdf:rest N9fc276501df9456ca179f5b7fb092073
157 N94a47eea17b54743a69b28d2077dce58 schema:name pubmed_id
158 schema:value 28198675
159 rdf:type schema:PropertyValue
160 N9dccfe6e1f8a4f49b637bf3640c6ee84 rdf:first sg:person.01040073534.94
161 rdf:rest Nfcbd9cf9cdee45abb22fe3f8671823e7
162 N9fc276501df9456ca179f5b7fb092073 rdf:first sg:person.01037364767.13
163 rdf:rest Na64ec12337e04a04bd8db21d79e7a915
164 Na1e71196ccf442838e5bb611731c3b45 rdf:first N41814f56e00c444883b6eb0240217e9e
165 rdf:rest Nefc1d77120f7450fb4834f3153afb8ae
166 Na396eddaa6864b6b90bf5e6673e9a416 schema:name dimensions_id
167 schema:value pub.1074236735
168 rdf:type schema:PropertyValue
169 Na64ec12337e04a04bd8db21d79e7a915 rdf:first sg:person.011741530235.26
170 rdf:rest rdf:nil
171 Naa930fe8792f4f2aafd93b91ff969bef rdf:first sg:person.01067474314.56
172 rdf:rest Na1e71196ccf442838e5bb611731c3b45
173 Nbaf333ad26a44f0e845d9f7f31158146 schema:issueNumber Suppl 1
174 rdf:type schema:PublicationIssue
175 Nc11c72492c554ccdb553c0e31fc9e85c rdf:first sg:person.0774535104.84
176 rdf:rest N8ad84322d56f47dfb9292beaebbfc39b
177 Nc4da3c792bcf495c97367a77a10f1b7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name ROC Curve
179 rdf:type schema:DefinedTerm
180 Nc8cb3090815048f09c7e55e1dee5f268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Gene Ontology
182 rdf:type schema:DefinedTerm
183 Nefc1d77120f7450fb4834f3153afb8ae rdf:first sg:person.01136774561.78
184 rdf:rest N9dccfe6e1f8a4f49b637bf3640c6ee84
185 Nfcbd9cf9cdee45abb22fe3f8671823e7 rdf:first sg:person.010000607137.92
186 rdf:rest Nc11c72492c554ccdb553c0e31fc9e85c
187 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
188 schema:name Biological Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
191 schema:name Genetics
192 rdf:type schema:DefinedTerm
193 sg:grant.2444622 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-3263-4
194 rdf:type schema:MonetaryGrant
195 sg:grant.2565204 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-3263-4
196 rdf:type schema:MonetaryGrant
197 sg:grant.7191917 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-3263-4
198 rdf:type schema:MonetaryGrant
199 sg:journal.1023790 schema:issn 1471-2164
200 schema:name BMC Genomics
201 rdf:type schema:Periodical
202 sg:person.010000607137.92 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
203 schema:familyName Xue
204 schema:givenName Hansheng
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010000607137.92
206 rdf:type schema:Person
207 sg:person.01037364767.13 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
208 schema:familyName Wang
209 schema:givenName Yadong
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037364767.13
211 rdf:type schema:Person
212 sg:person.01040073534.94 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
213 schema:familyName Wang
214 schema:givenName Guohua
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040073534.94
216 rdf:type schema:Person
217 sg:person.01067474314.56 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
218 schema:familyName Peng
219 schema:givenName Jiajie
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067474314.56
221 rdf:type schema:Person
222 sg:person.01136774561.78 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
223 schema:familyName Shang
224 schema:givenName Xuequn
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136774561.78
226 rdf:type schema:Person
227 sg:person.011741530235.26 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
228 schema:familyName Chen
229 schema:givenName Jin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741530235.26
231 rdf:type schema:Person
232 sg:person.01207761463.16 schema:affiliation https://www.grid.ac/institutes/grid.410736.7
233 schema:familyName Cheng
234 schema:givenName Liang
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207761463.16
236 rdf:type schema:Person
237 sg:person.0774535104.84 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
238 schema:familyName Jin
239 schema:givenName Shuilin
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774535104.84
241 rdf:type schema:Person
242 sg:pub.10.1007/978-3-642-02008-7_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005288938
243 https://doi.org/10.1007/978-3-642-02008-7_29
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/s00439-001-0615-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045104992
246 https://doi.org/10.1007/s00439-001-0615-0
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/s10115-007-0094-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041080591
249 https://doi.org/10.1007/s10115-007-0094-2
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
252 https://doi.org/10.1038/75556
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/nature08454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047354122
255 https://doi.org/10.1038/nature08454
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/nbt1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343689
258 https://doi.org/10.1038/nbt1203
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/nmeth.2810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014600221
261 https://doi.org/10.1038/nmeth.2810
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/nrg2918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371713
264 https://doi.org/10.1038/nrg2918
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/nrg3253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783083
267 https://doi.org/10.1038/nrg3253
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/srep30024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020214306
270 https://doi.org/10.1038/srep30024
271 rdf:type schema:CreativeWork
272 sg:pub.10.1186/1471-2105-13-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770106
273 https://doi.org/10.1186/1471-2105-13-1
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/1471-2105-13-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024032576
276 https://doi.org/10.1186/1471-2105-13-119
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/1471-2105-15-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030123122
279 https://doi.org/10.1186/1471-2105-15-1
280 rdf:type schema:CreativeWork
281 sg:pub.10.1186/1471-2105-15-s2-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042777752
282 https://doi.org/10.1186/1471-2105-15-s2-s5
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/1471-2164-16-s9-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042849736
285 https://doi.org/10.1186/1471-2164-16-s9-s2
286 rdf:type schema:CreativeWork
287 sg:pub.10.1186/1752-0509-4-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021942884
288 https://doi.org/10.1186/1752-0509-4-1
289 rdf:type schema:CreativeWork
290 sg:pub.10.1186/1752-0509-4-s1-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049361572
291 https://doi.org/10.1186/1752-0509-4-s1-s2
292 rdf:type schema:CreativeWork
293 sg:pub.10.1186/1752-0509-5-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019077511
294 https://doi.org/10.1186/1752-0509-5-1
295 rdf:type schema:CreativeWork
296 sg:pub.10.1186/1752-0509-5-s1-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036865160
297 https://doi.org/10.1186/1752-0509-5-s1-s1
298 rdf:type schema:CreativeWork
299 sg:pub.10.1186/1752-0509-5-s3-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027431487
300 https://doi.org/10.1186/1752-0509-5-s3-s10
301 rdf:type schema:CreativeWork
302 sg:pub.10.1186/1752-0509-8-s3-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002017959
303 https://doi.org/10.1186/1752-0509-8-s3-s3
304 rdf:type schema:CreativeWork
305 sg:pub.10.1186/1752-0509-8-s5-s8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004203273
306 https://doi.org/10.1186/1752-0509-8-s5-s8
307 rdf:type schema:CreativeWork
308 sg:pub.10.1186/1755-8794-8-s3-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002335331
309 https://doi.org/10.1186/1755-8794-8-s3-s2
310 rdf:type schema:CreativeWork
311 sg:pub.10.1186/gb-2011-12-6-r57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024642813
312 https://doi.org/10.1186/gb-2011-12-6-r57
313 rdf:type schema:CreativeWork
314 sg:pub.10.1186/s12859-014-0430-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046106991
315 https://doi.org/10.1186/s12859-014-0430-y
316 rdf:type schema:CreativeWork
317 sg:pub.10.1186/s12859-015-0474-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048238292
318 https://doi.org/10.1186/s12859-015-0474-7
319 rdf:type schema:CreativeWork
320 sg:pub.10.1186/s12864-016-2828-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029098400
321 https://doi.org/10.1186/s12864-016-2828-6
322 rdf:type schema:CreativeWork
323 https://app.dimensions.ai/details/publication/pub.1074680452 schema:CreativeWork
324 https://app.dimensions.ai/details/publication/pub.1077848501 schema:CreativeWork
325 https://doi.org/10.1002/jez.a.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023132142
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1016/j.ajhg.2008.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037383115
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1016/j.ajhg.2015.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003632168
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1039/c1mb05340j schema:sameAs https://app.dimensions.ai/details/publication/pub.1001229802
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1073/pnas.0404315101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038693032
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1089/cmb.2009.0173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245869
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1093/bfgp/elr024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019254294
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1093/bib/bbp048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028071757
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1093/bioinformatics/bti273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017777932
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1093/bioinformatics/btn291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041020142
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1093/bioinformatics/btq076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029709680
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1093/bioinformatics/btq108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027009477
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1093/bioinformatics/btq384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035429197
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1093/bioinformatics/btv712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414587
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1093/nar/gkh061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042802800
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1093/nar/gki033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032298109
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1093/nar/gkr972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012078987
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1093/nar/gkt1026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039936775
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1093/nar/gkt1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629440
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1093/nar/gku1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029045446
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1093/nar/gku1011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006420012
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1093/nar/gku1173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009025044
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1093/nar/gku1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004916975
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1093/nar/gku1205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001175538
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1109/sfcs.2000.892065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094249267
374 rdf:type schema:CreativeWork
375 https://doi.org/10.1109/tcbb.2015.2430289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541433
376 rdf:type schema:CreativeWork
377 https://doi.org/10.1109/tnb.2016.2553119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714214
378 rdf:type schema:CreativeWork
379 https://doi.org/10.1136/jmg.2006.041376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052810524
380 rdf:type schema:CreativeWork
381 https://doi.org/10.1137/040608635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845023
382 rdf:type schema:CreativeWork
383 https://doi.org/10.1142/9789812836939_0035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096069704
384 rdf:type schema:CreativeWork
385 https://doi.org/10.1145/1935826.1935914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014977753
386 rdf:type schema:CreativeWork
387 https://doi.org/10.1148/radiology.143.1.7063747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082130998
388 rdf:type schema:CreativeWork
389 https://doi.org/10.1155/2016/2395341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002459420
390 rdf:type schema:CreativeWork
391 https://doi.org/10.1155/2016/4130861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029960469
392 rdf:type schema:CreativeWork
393 https://doi.org/10.1155/2016/5313050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042768543
394 rdf:type schema:CreativeWork
395 https://doi.org/10.1371/journal.pcbi.0040001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787580
396 rdf:type schema:CreativeWork
397 https://doi.org/10.1371/journal.pcbi.1000043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044643356
398 rdf:type schema:CreativeWork
399 https://doi.org/10.1371/journal.pcbi.1000641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017300707
400 rdf:type schema:CreativeWork
401 https://doi.org/10.1371/journal.pone.0075504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034161784
402 rdf:type schema:CreativeWork
403 https://doi.org/10.1504/ijdmb.2013.056078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067446231
404 rdf:type schema:CreativeWork
405 https://doi.org/10.18632/oncotarget.10012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002374545
406 rdf:type schema:CreativeWork
407 https://doi.org/10.2174/1389202917666160726151048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069178852
408 rdf:type schema:CreativeWork
409 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
410 schema:name Department of Energy Plant Research Lab, Michigan State University, 48824, East Lansing, MI, USA
411 Institue of Biomedical Informatics, College of Medicine, University of Kentucky, 40536, Lexington, KY, USA
412 rdf:type schema:Organization
413 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
414 schema:name Current address: Tencent, Inc., Shenzhen, China
415 Department of Mathematics, Harbin Institute of Technology, Harbin, China
416 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
417 rdf:type schema:Organization
418 https://www.grid.ac/institutes/grid.410736.7 schema:alternateName Harbin Medical University
419 schema:name College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
420 rdf:type schema:Organization
421 https://www.grid.ac/institutes/grid.440588.5 schema:alternateName Northwestern Polytechnical University
422 schema:name School of Computer Science, Northwestern Polytechnical University, Xi’an, China
423 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...