Comparison between two amplicon-based sequencing panels of different scales in the detection of somatic mutations associated with gastric cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Yosuke Hirotsu, Yuichiro Kojima, Kenichiro Okimoto, Kenji Amemiya, Hitoshi Mochizuki, Masao Omata

ABSTRACT

BACKGROUND: Sequencing data from The Cancer Genome Atlas (TGCA), the International Cancer Genome Consortium and other research institutes have revealed the presence of genetic alterations in several tumor types, including gastric cancer. These data have been combined into a catalog of significantly mutated genes for each cancer type. However, it is unclear to what extent significantly mutated genes need to be examined for detecting genetic alterations in gastric cancer patients. Here, we constructed two custom-made sequencing panels of different scales, the Selective hotspot Panel and the Comprehensive Panel, to analyze genetic alterations in 21 resected specimens endoscopically obtained from 20 gastric cancer patients, and we assessed how many mutations were detectable using these different panels. RESULTS: A total of 21 somatic mutations were identified by the Selective hotspot Panel and 70 mutations were detected by the Comprehensive Panel. All mutations identified by the Selective hotspot Panel were detected by the Comprehensive Panel, with high concordant values of the variant allelic fraction of each mutation (correlation coefficient, R = 0.92). At least one mutation was identified in 13 patients (65 %) by the Selective hotspot Panel, whereas the Comprehensive Panel detected mutations in 19 (95 %) patients. Library preparation and sequencing costs were comparable between the two panels. CONCLUSIONS: Our results indicate the utility of comprehensive panel-based targeted sequencing in gastric cancer. More... »

PAGES

833

References to SciGraph publications

  • 2014-12. Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing in NATURE COMMUNICATIONS
  • 2014-12. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer in NATURE COMMUNICATIONS
  • 2014-06. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma in NATURE GENETICS
  • 2007-02. Endoscopic resection of early gastric cancer in GASTRIC CANCER
  • 2014-07. High-throughput mutation profiling identifies novel molecular dysregulation in high-grade intraepithelial neoplasia and early gastric cancers in GASTRIC CANCER
  • 2014-06. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer in NATURE GENETICS
  • 2014-07-23. Comprehensive molecular characterization of gastric adenocarcinoma in NATURE
  • 2011-06. Japanese classification of gastric carcinoma: 3rd English edition in GASTRIC CANCER
  • 2013-10. Mutational landscape and significance across 12 major cancer types in NATURE
  • 2011-06. New Japanese classifications and treatment guidelines for gastric cancer: revision concepts and major revised points in GASTRIC CANCER
  • 2009-01. High-resolution mapping of copy-number alterations with massively parallel sequencing in NATURE METHODS
  • 2006-11. A multicenter retrospective study of endoscopic resection for early gastric cancer in GASTRIC CANCER
  • 2014-04. PyClone: statistical inference of clonal population structure in cancer in NATURE METHODS
  • 2011-12. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer in NATURE GENETICS
  • 2016-03. Analysis of tumor-derived DNA in plasma and bone marrow fluid in lung cancer patients in MEDICAL ONCOLOGY
  • 2012-05. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes in NATURE GENETICS
  • 2016-02. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-016-3166-4

    DOI

    http://dx.doi.org/10.1186/s12864-016-3166-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039726049

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27782820


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Mutational Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stomach Neoplasms", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yamanashi Prefectural Central Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417333.1", 
              "name": [
                "Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hirotsu", 
            "givenName": "Yosuke", 
            "id": "sg:person.01104463136.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104463136.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yamanashi Prefectural Central Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417333.1", 
              "name": [
                "Department of Gastroenterology, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kojima", 
            "givenName": "Yuichiro", 
            "id": "sg:person.01177703152.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177703152.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan", 
                "Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8677, Chuo-ku, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okimoto", 
            "givenName": "Kenichiro", 
            "id": "sg:person.01114644070.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114644070.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yamanashi Prefectural Central Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417333.1", 
              "name": [
                "Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amemiya", 
            "givenName": "Kenji", 
            "id": "sg:person.01271466715.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271466715.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yamanashi Prefectural Central Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417333.1", 
              "name": [
                "Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan", 
                "Department of Gastroenterology, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mochizuki", 
            "givenName": "Hitoshi", 
            "id": "sg:person.01335140136.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335140136.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan", 
                "Department of Gastroenterology, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan", 
                "The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Omata", 
            "givenName": "Masao", 
            "id": "sg:person.0775700471.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775700471.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10120-011-0040-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000274688", 
              "https://doi.org/10.1007/s10120-011-0040-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10120-006-0389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000507422", 
              "https://doi.org/10.1007/s10120-006-0389-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10120-006-0389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000507422", 
              "https://doi.org/10.1007/s10120-006-0389-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001644479", 
              "https://doi.org/10.1038/nature12634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004475958", 
              "https://doi.org/10.1038/nbt.3391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/hepr.12663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005199255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10120-013-0315-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008321190", 
              "https://doi.org/10.1007/s10120-013-0315-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3322/caac.20107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009055747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1443-1661.2004.00313.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009984489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-15-2443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010953004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10120-006-0408-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013838019", 
              "https://doi.org/10.1007/s10120-006-0408-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10120-006-0408-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013838019", 
              "https://doi.org/10.1007/s10120-006-0408-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10120-011-0041-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016436945", 
              "https://doi.org/10.1007/s10120-011-0041-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016745974", 
              "https://doi.org/10.1038/ng.982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018113113", 
              "https://doi.org/10.1038/ng.2984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018877372", 
              "https://doi.org/10.1038/nmeth.2883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mgg3.157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024429567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025333243", 
              "https://doi.org/10.1038/nmeth.1276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aab4082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028619148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030174183", 
              "https://doi.org/10.1038/ncomms4830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2013-2292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035347371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035707124", 
              "https://doi.org/10.1038/nature13480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1235122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035954369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038191771", 
              "https://doi.org/10.1038/ng.2983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmp1507427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038727637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1422640112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041684216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-05-0029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044206462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1443-1661.2012.01376.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044589178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045166747", 
              "https://doi.org/10.1038/ncomms6477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047212289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047821839", 
              "https://doi.org/10.1038/ng.2246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mgg3.120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048378034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trecan.2015.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051107904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12032-016-0744-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051585301", 
              "https://doi.org/10.1007/s12032-016-0744-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2005.19.935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064204318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3748/wjg.v12.i3.354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071364852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076588566", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078893220", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "BACKGROUND: Sequencing data from The Cancer Genome Atlas (TGCA), the International Cancer Genome Consortium and other research institutes have revealed the presence of genetic alterations in several tumor types, including gastric cancer. These data have been combined into a catalog of significantly mutated genes for each cancer type. However, it is unclear to what extent significantly mutated genes need to be examined for detecting genetic alterations in gastric cancer patients. Here, we constructed two custom-made sequencing panels of different scales, the Selective hotspot Panel and the Comprehensive Panel, to analyze genetic alterations in 21 resected specimens endoscopically obtained from 20 gastric cancer patients, and we assessed how many mutations were detectable using these different panels.\nRESULTS: A total of 21 somatic mutations were identified by the Selective\u00a0hotspot Panel and 70 mutations were detected by the Comprehensive Panel. All mutations identified by the Selective\u00a0hotspot Panel were detected by the Comprehensive Panel, with high concordant values of the variant allelic fraction of each mutation (correlation coefficient, R\u2009=\u20090.92). At least one mutation was identified in 13 patients (65\u00a0%) by the Selective\u00a0hotspot Panel, whereas the Comprehensive Panel detected mutations in 19 (95\u00a0%) patients. Library preparation and sequencing costs were comparable between the two panels.\nCONCLUSIONS: Our results indicate the utility of comprehensive panel-based targeted sequencing in gastric cancer.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-016-3166-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Comparison between two amplicon-based sequencing panels of different scales in the detection of somatic mutations associated with gastric cancer", 
        "pagination": "833", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bd3c9bf8d1d2db69afb8707d89ce333bf4de2e00bebbaeeb35a32e4c5c41d3f7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27782820"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-016-3166-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039726049"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-016-3166-4", 
          "https://app.dimensions.ai/details/publication/pub.1039726049"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12864-016-3166-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3166-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3166-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3166-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-3166-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      21 PREDICATES      79 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-016-3166-4 schema:about N09be1bfa9662432facd100e31ac67ceb
    2 N1e0152e563174b84bc9ae5b6e5e0404f
    3 N260fa034209d4cb08bec871db7ed2899
    4 N74dd74078da2422a84f2811954896f97
    5 N7e591d33ab434609beafd01877338846
    6 N80d9a9b4504b4276b2c6a45052c1c07e
    7 N907ed646263c42319503a9cef921b899
    8 N919f6fd29c134becb778a8a1b72274ce
    9 N9ea5a7fc79c44c8b99eb6c0498ff170c
    10 Nd17a32d6694d41c58041f6a35b8fe96c
    11 Nd48164c2ee6d4e2d8094e973ef2f901e
    12 Ne11f90c379a44d8392368c533c09cf86
    13 Nf053b5c142bb4a7db8ccbbf10021f728
    14 Nf9e8d641a9264ef7aaf5dbcddd13dab4
    15 anzsrc-for:11
    16 anzsrc-for:1112
    17 schema:author N15ea7be274f3409fa0da4100ddf6fad5
    18 schema:citation sg:pub.10.1007/s10120-006-0389-0
    19 sg:pub.10.1007/s10120-006-0408-1
    20 sg:pub.10.1007/s10120-011-0040-6
    21 sg:pub.10.1007/s10120-011-0041-5
    22 sg:pub.10.1007/s10120-013-0315-1
    23 sg:pub.10.1007/s12032-016-0744-x
    24 sg:pub.10.1038/nature12634
    25 sg:pub.10.1038/nature13480
    26 sg:pub.10.1038/nbt.3391
    27 sg:pub.10.1038/ncomms4830
    28 sg:pub.10.1038/ncomms6477
    29 sg:pub.10.1038/ng.2246
    30 sg:pub.10.1038/ng.2983
    31 sg:pub.10.1038/ng.2984
    32 sg:pub.10.1038/ng.982
    33 sg:pub.10.1038/nmeth.1276
    34 sg:pub.10.1038/nmeth.2883
    35 https://app.dimensions.ai/details/publication/pub.1076588566
    36 https://app.dimensions.ai/details/publication/pub.1078893220
    37 https://doi.org/10.1002/mgg3.120
    38 https://doi.org/10.1002/mgg3.157
    39 https://doi.org/10.1016/j.cell.2013.03.002
    40 https://doi.org/10.1016/j.trecan.2015.07.010
    41 https://doi.org/10.1056/nejmp1507427
    42 https://doi.org/10.1073/pnas.1422640112
    43 https://doi.org/10.1111/hepr.12663
    44 https://doi.org/10.1111/j.1443-1661.2004.00313.x
    45 https://doi.org/10.1111/j.1443-1661.2012.01376.x
    46 https://doi.org/10.1126/science.1235122
    47 https://doi.org/10.1126/science.aab4082
    48 https://doi.org/10.1158/0008-5472.can-15-2443
    49 https://doi.org/10.1158/1055-9965.epi-05-0029
    50 https://doi.org/10.1200/jco.2005.19.935
    51 https://doi.org/10.1210/jc.2013-2292
    52 https://doi.org/10.3322/caac.20107
    53 https://doi.org/10.3748/wjg.v12.i3.354
    54 schema:datePublished 2016-12
    55 schema:datePublishedReg 2016-12-01
    56 schema:description BACKGROUND: Sequencing data from The Cancer Genome Atlas (TGCA), the International Cancer Genome Consortium and other research institutes have revealed the presence of genetic alterations in several tumor types, including gastric cancer. These data have been combined into a catalog of significantly mutated genes for each cancer type. However, it is unclear to what extent significantly mutated genes need to be examined for detecting genetic alterations in gastric cancer patients. Here, we constructed two custom-made sequencing panels of different scales, the Selective hotspot Panel and the Comprehensive Panel, to analyze genetic alterations in 21 resected specimens endoscopically obtained from 20 gastric cancer patients, and we assessed how many mutations were detectable using these different panels. RESULTS: A total of 21 somatic mutations were identified by the Selective hotspot Panel and 70 mutations were detected by the Comprehensive Panel. All mutations identified by the Selective hotspot Panel were detected by the Comprehensive Panel, with high concordant values of the variant allelic fraction of each mutation (correlation coefficient, R = 0.92). At least one mutation was identified in 13 patients (65 %) by the Selective hotspot Panel, whereas the Comprehensive Panel detected mutations in 19 (95 %) patients. Library preparation and sequencing costs were comparable between the two panels. CONCLUSIONS: Our results indicate the utility of comprehensive panel-based targeted sequencing in gastric cancer.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N536a3da1501640ea9116bcb7403769df
    61 Nfd73950b2e4b4157b38be11aacd22bf5
    62 sg:journal.1023790
    63 schema:name Comparison between two amplicon-based sequencing panels of different scales in the detection of somatic mutations associated with gastric cancer
    64 schema:pagination 833
    65 schema:productId N6af78d140d244cbbbd3c2fd3c5e6fb36
    66 N6e7d8824214040749a6855ad9262a642
    67 N79d7f3446b4048de88cf5004be37db2a
    68 Nc84b3d5294d44973b20ea5e340e9bc8d
    69 Nfdbd36ae4d41428aba15380d68aead83
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039726049
    71 https://doi.org/10.1186/s12864-016-3166-4
    72 schema:sdDatePublished 2019-04-11T12:39
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher Nb8c9c5aba0554783bec32c4c419adedd
    75 schema:url https://link.springer.com/10.1186%2Fs12864-016-3166-4
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N09be1bfa9662432facd100e31ac67ceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name DNA Mutational Analysis
    81 rdf:type schema:DefinedTerm
    82 N15ea7be274f3409fa0da4100ddf6fad5 rdf:first sg:person.01104463136.69
    83 rdf:rest N34b0458c0475465491a77668f46c4d6a
    84 N1e0152e563174b84bc9ae5b6e5e0404f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Biomarkers, Tumor
    86 rdf:type schema:DefinedTerm
    87 N2344a1b623a5403a8595cfc06bff6f98 rdf:first sg:person.0775700471.08
    88 rdf:rest rdf:nil
    89 N260fa034209d4cb08bec871db7ed2899 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Alleles
    91 rdf:type schema:DefinedTerm
    92 N34b0458c0475465491a77668f46c4d6a rdf:first sg:person.01177703152.96
    93 rdf:rest N4a3e028fae00407a8a952ec290701e1b
    94 N366d7aac11904fafb2819c249606a637 rdf:first sg:person.01271466715.07
    95 rdf:rest Nacae056f64734e4abceb9ce96ed0365e
    96 N4a3e028fae00407a8a952ec290701e1b rdf:first sg:person.01114644070.93
    97 rdf:rest N366d7aac11904fafb2819c249606a637
    98 N536a3da1501640ea9116bcb7403769df schema:volumeNumber 17
    99 rdf:type schema:PublicationVolume
    100 N6af78d140d244cbbbd3c2fd3c5e6fb36 schema:name doi
    101 schema:value 10.1186/s12864-016-3166-4
    102 rdf:type schema:PropertyValue
    103 N6e7d8824214040749a6855ad9262a642 schema:name pubmed_id
    104 schema:value 27782820
    105 rdf:type schema:PropertyValue
    106 N74dd74078da2422a84f2811954896f97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Female
    108 rdf:type schema:DefinedTerm
    109 N79d7f3446b4048de88cf5004be37db2a schema:name nlm_unique_id
    110 schema:value 100965258
    111 rdf:type schema:PropertyValue
    112 N7e591d33ab434609beafd01877338846 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Stomach Neoplasms
    114 rdf:type schema:DefinedTerm
    115 N80d9a9b4504b4276b2c6a45052c1c07e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Middle Aged
    117 rdf:type schema:DefinedTerm
    118 N907ed646263c42319503a9cef921b899 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Mutation
    120 rdf:type schema:DefinedTerm
    121 N919f6fd29c134becb778a8a1b72274ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name High-Throughput Nucleotide Sequencing
    123 rdf:type schema:DefinedTerm
    124 N9ea5a7fc79c44c8b99eb6c0498ff170c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Aged, 80 and over
    126 rdf:type schema:DefinedTerm
    127 Nacae056f64734e4abceb9ce96ed0365e rdf:first sg:person.01335140136.50
    128 rdf:rest N2344a1b623a5403a8595cfc06bff6f98
    129 Nb8c9c5aba0554783bec32c4c419adedd schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Nc84b3d5294d44973b20ea5e340e9bc8d schema:name dimensions_id
    132 schema:value pub.1039726049
    133 rdf:type schema:PropertyValue
    134 Nd17a32d6694d41c58041f6a35b8fe96c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Humans
    136 rdf:type schema:DefinedTerm
    137 Nd48164c2ee6d4e2d8094e973ef2f901e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Aged
    139 rdf:type schema:DefinedTerm
    140 Ne11f90c379a44d8392368c533c09cf86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Oligonucleotide Array Sequence Analysis
    142 rdf:type schema:DefinedTerm
    143 Nf053b5c142bb4a7db8ccbbf10021f728 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Male
    145 rdf:type schema:DefinedTerm
    146 Nf9e8d641a9264ef7aaf5dbcddd13dab4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Genetic Predisposition to Disease
    148 rdf:type schema:DefinedTerm
    149 Nfd73950b2e4b4157b38be11aacd22bf5 schema:issueNumber 1
    150 rdf:type schema:PublicationIssue
    151 Nfdbd36ae4d41428aba15380d68aead83 schema:name readcube_id
    152 schema:value bd3c9bf8d1d2db69afb8707d89ce333bf4de2e00bebbaeeb35a32e4c5c41d3f7
    153 rdf:type schema:PropertyValue
    154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Medical and Health Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Oncology and Carcinogenesis
    159 rdf:type schema:DefinedTerm
    160 sg:journal.1023790 schema:issn 1471-2164
    161 schema:name BMC Genomics
    162 rdf:type schema:Periodical
    163 sg:person.01104463136.69 schema:affiliation https://www.grid.ac/institutes/grid.417333.1
    164 schema:familyName Hirotsu
    165 schema:givenName Yosuke
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104463136.69
    167 rdf:type schema:Person
    168 sg:person.01114644070.93 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    169 schema:familyName Okimoto
    170 schema:givenName Kenichiro
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114644070.93
    172 rdf:type schema:Person
    173 sg:person.01177703152.96 schema:affiliation https://www.grid.ac/institutes/grid.417333.1
    174 schema:familyName Kojima
    175 schema:givenName Yuichiro
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177703152.96
    177 rdf:type schema:Person
    178 sg:person.01271466715.07 schema:affiliation https://www.grid.ac/institutes/grid.417333.1
    179 schema:familyName Amemiya
    180 schema:givenName Kenji
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271466715.07
    182 rdf:type schema:Person
    183 sg:person.01335140136.50 schema:affiliation https://www.grid.ac/institutes/grid.417333.1
    184 schema:familyName Mochizuki
    185 schema:givenName Hitoshi
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335140136.50
    187 rdf:type schema:Person
    188 sg:person.0775700471.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    189 schema:familyName Omata
    190 schema:givenName Masao
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775700471.08
    192 rdf:type schema:Person
    193 sg:pub.10.1007/s10120-006-0389-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000507422
    194 https://doi.org/10.1007/s10120-006-0389-0
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10120-006-0408-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013838019
    197 https://doi.org/10.1007/s10120-006-0408-1
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10120-011-0040-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000274688
    200 https://doi.org/10.1007/s10120-011-0040-6
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10120-011-0041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016436945
    203 https://doi.org/10.1007/s10120-011-0041-5
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10120-013-0315-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008321190
    206 https://doi.org/10.1007/s10120-013-0315-1
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s12032-016-0744-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051585301
    209 https://doi.org/10.1007/s12032-016-0744-x
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature12634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001644479
    212 https://doi.org/10.1038/nature12634
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature13480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035707124
    215 https://doi.org/10.1038/nature13480
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nbt.3391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004475958
    218 https://doi.org/10.1038/nbt.3391
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ncomms4830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030174183
    221 https://doi.org/10.1038/ncomms4830
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ncomms6477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045166747
    224 https://doi.org/10.1038/ncomms6477
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ng.2246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047821839
    227 https://doi.org/10.1038/ng.2246
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ng.2983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038191771
    230 https://doi.org/10.1038/ng.2983
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/ng.2984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018113113
    233 https://doi.org/10.1038/ng.2984
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/ng.982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016745974
    236 https://doi.org/10.1038/ng.982
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nmeth.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333243
    239 https://doi.org/10.1038/nmeth.1276
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nmeth.2883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018877372
    242 https://doi.org/10.1038/nmeth.2883
    243 rdf:type schema:CreativeWork
    244 https://app.dimensions.ai/details/publication/pub.1076588566 schema:CreativeWork
    245 https://app.dimensions.ai/details/publication/pub.1078893220 schema:CreativeWork
    246 https://doi.org/10.1002/mgg3.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048378034
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1002/mgg3.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024429567
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/j.cell.2013.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047212289
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/j.trecan.2015.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051107904
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1056/nejmp1507427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038727637
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1073/pnas.1422640112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041684216
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1111/hepr.12663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005199255
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1111/j.1443-1661.2004.00313.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009984489
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1111/j.1443-1661.2012.01376.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044589178
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1126/science.1235122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035954369
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1126/science.aab4082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028619148
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1158/0008-5472.can-15-2443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010953004
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1158/1055-9965.epi-05-0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044206462
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1200/jco.2005.19.935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204318
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1210/jc.2013-2292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035347371
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.3322/caac.20107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009055747
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.3748/wjg.v12.i3.354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071364852
    279 rdf:type schema:CreativeWork
    280 https://www.grid.ac/institutes/grid.136304.3 schema:alternateName Chiba University
    281 schema:name Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8677, Chuo-ku, Chiba, Japan
    282 Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan
    283 rdf:type schema:Organization
    284 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
    285 schema:name Department of Gastroenterology, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan
    286 Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan
    287 The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan
    288 rdf:type schema:Organization
    289 https://www.grid.ac/institutes/grid.417333.1 schema:alternateName Yamanashi Prefectural Central Hospital
    290 schema:name Department of Gastroenterology, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan
    291 Genome Analysis Center, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, 400-8506, Kofu, Yamanashi, Japan
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...