OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-25

AUTHORS

Alfredo Rago, Donald G. Gilbert, Jeong-Hyeon Choi, Timothy B. Sackton, Xu Wang, Yogeshwar D. Kelkar, John H. Werren, John K. Colbourne

ABSTRACT

BackgroundNasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative analyses showcasing the usefulness of the revised annotated gene set.ResultsThe revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97 % of the genes compared to 28 % of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98 % in this latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712 alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola.Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than those of other sequenced hymenopteran species, owing both to improvements in the genome annotation and to unique genes in the wasp lineage.We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution and higher probabilities of duplication than genes having alternative transcripts.ConclusionsGenome-wide expression data greatly improves the annotation of the N. vitripennis genome, by increasing the gene count, reducing the number of missing genes and providing more comprehensive data on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to Nasonia’s biology, as well as numerous novel genes.OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/, www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas.The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/. More... »

PAGES

678

References to SciGraph publications

  • 2013-02-13. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones in NATURE
  • 2009-08-04. The evolutionary significance of ancient genome duplications in NATURE REVIEWS GENETICS
  • 2015-03-10. Learning-induced gene expression in the heads of two Nasonia species that differ in long-term memory formation in BMC GENOMICS
  • 2014-01-30. Finding the missing honey bee genes: lessons learned from a genome upgrade in BMC GENOMICS
  • 2001-12-15. A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development in DEVELOPMENT GENES AND EVOLUTION
  • 2011-11-30. An evolutionarily and ecologically focused strategy for genome sequencing efforts in HEREDITY
  • 2014-11-19. RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation in NATURE
  • 2012-09-15. Genome-wide association between DNA methylation and alternative splicing in an invertebrate in BMC GENOMICS
  • 1990-08-09. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species in NATURE
  • 2005-05-15. Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms in NATURE GENETICS
  • 2014-03-16. Diversity and dynamics of the Drosophila transcriptome in NATURE
  • 2006-10. Insights into social insects from the genome of the honeybee Apis mellifera in NATURE
  • 2005-02-15. Automated generation of heuristics for biological sequence comparison in BMC BIOINFORMATICS
  • 2010-01-20. Behavioral and genetic characteristics of a new species of Nasonia in HEREDITY
  • 2006-02-09. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources in BMC BIOINFORMATICS
  • 2015-01-02. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing in BMC GENOMICS
  • 2007-02. The evolution of gene regulation by transcription factors and microRNAs in NATURE REVIEWS GENETICS
  • 2013-01-23. Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes in BMC GENOMICS
  • 2010-03-03. Histone variants — ancient wrap artists of the epigenome in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2009. ggplot2, Elegant Graphics for Data Analysis in NONE
  • 2014-08-27. Comparative analysis of the transcriptome across distant species in NATURE
  • 2014-09-09. Eusocial insects as emerging models for behavioural epigenetics in NATURE REVIEWS GENETICS
  • 2011-01-18. Non-coding RNAs as regulators of embryogenesis in NATURE REVIEWS GENETICS
  • 2008-01-11. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments in GENOME BIOLOGY
  • 2010-12-08. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns in NATURE
  • 2007-01-22. Creating a honey bee consensus gene set in GENOME BIOLOGY
  • 2011-11-03. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing in NATURE
  • 2015-10-19. Analysis of 5’ gene regions reveals extraordinary conservation of novel non-coding sequences in a wide range of animals in BMC ECOLOGY AND EVOLUTION
  • 2010-05-02. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation in NATURE BIOTECHNOLOGY
  • 2013-11-03. Assessment of transcript reconstruction methods for RNA-seq in NATURE METHODS
  • 2009-02-22. Systems genetics of complex traits in Drosophila melanogaster in NATURE GENETICS
  • 2001-02. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia in NATURE
  • 2009-08. The genetics of quantitative traits: challenges and prospects in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-016-2886-9

    DOI

    http://dx.doi.org/10.1186/s12864-016-2886-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002535041

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27561358


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alternative Splicing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Contig Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Annotation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multigene Family", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Open Reading Frames", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Untranslated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wasps", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Web Browser", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rago", 
            "givenName": "Alfredo", 
            "id": "sg:person.0724654415.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724654415.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, Indiana University, Bloomington, IN, USA", 
              "id": "http://www.grid.ac/institutes/grid.411377.7", 
              "name": [
                "Department of Biology, Indiana University, Bloomington, IN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gilbert", 
            "givenName": "Donald G.", 
            "id": "sg:person.01227757437.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227757437.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Center, Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, USA", 
              "id": "http://www.grid.ac/institutes/grid.410427.4", 
              "name": [
                "Cancer Center, Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Jeong-Hyeon", 
            "id": "sg:person.01041431323.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041431323.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Organismic and Evolutionary Biology, and FAS Informatics Group, Harvard University, Cambridge, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Organismic and Evolutionary Biology, and FAS Informatics Group, Harvard University, Cambridge, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sackton", 
            "givenName": "Timothy B.", 
            "id": "sg:person.010613675247.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613675247.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Biology and Genetics, Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Molecular Biology and Genetics, Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xu", 
            "id": "sg:person.0632050341.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632050341.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics and Computational Biology, University of Rochester Medical School, Rochester, USA", 
              "id": "http://www.grid.ac/institutes/grid.412750.5", 
              "name": [
                "Department of Biostatistics and Computational Biology, University of Rochester Medical School, Rochester, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kelkar", 
            "givenName": "Yogeshwar D.", 
            "id": "sg:person.01270457646.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270457646.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, University of Rochester, Rochester, USA", 
              "id": "http://www.grid.ac/institutes/grid.16416.34", 
              "name": [
                "Department of Biology, University of Rochester, Rochester, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Werren", 
            "givenName": "John H.", 
            "id": "sg:person.07602145643.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602145643.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Colbourne", 
            "givenName": "John K.", 
            "id": "sg:person.01331775441.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331775441.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature09632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015267788", 
              "https://doi.org/10.1038/nature09632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12862-015-0499-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022224894", 
              "https://doi.org/10.1186/s12862-015-0499-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051536247", 
              "https://doi.org/10.1186/1471-2164-15-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346558a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048919216", 
              "https://doi.org/10.1038/346558a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025508802", 
              "https://doi.org/10.1038/nrg1990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00427-001-0196-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015771008", 
              "https://doi.org/10.1007/s00427-001-0196-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-1-r7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029779393", 
              "https://doi.org/10.1186/gb-2008-9-1-r7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023509855", 
              "https://doi.org/10.1038/nrm2861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010551629", 
              "https://doi.org/10.1186/1471-2105-6-31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041919938", 
              "https://doi.org/10.1038/nature10442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035095", 
              "https://doi.org/10.1038/nbt.1621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037670949", 
              "https://doi.org/10.1038/nrg2904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045310485", 
              "https://doi.org/10.1186/1471-2164-14-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35055543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004697552", 
              "https://doi.org/10.1038/35055543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035008603", 
              "https://doi.org/10.1038/nrg2612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-16-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608153", 
              "https://doi.org/10.1186/1471-2164-16-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-1-r13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012922069", 
              "https://doi.org/10.1186/gb-2007-8-1-r13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007857516", 
              "https://doi.org/10.1186/1471-2164-13-480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039885096", 
              "https://doi.org/10.1038/nature14010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044643224", 
              "https://doi.org/10.1038/nature12962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020194875", 
              "https://doi.org/10.1038/nature13424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041353582", 
              "https://doi.org/10.1186/1471-2105-7-62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-98141-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041188628", 
              "https://doi.org/10.1007/978-0-387-98141-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707686", 
              "https://doi.org/10.1038/nmeth.2714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2011.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034340956", 
              "https://doi.org/10.1038/hdy.2011.109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047953003", 
              "https://doi.org/10.1038/nrg3787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002194577", 
              "https://doi.org/10.1038/ng1575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048178937", 
              "https://doi.org/10.1038/ng.332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033086863", 
              "https://doi.org/10.1038/nrg2600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038603871", 
              "https://doi.org/10.1038/nature11838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1355-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004614854", 
              "https://doi.org/10.1186/s12864-015-1355-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2009.147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031119810", 
              "https://doi.org/10.1038/hdy.2009.147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033687011", 
              "https://doi.org/10.1038/nature05260"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08-25", 
        "datePublishedReg": "2016-08-25", 
        "description": "BackgroundNasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative analyses showcasing the usefulness of the revised annotated gene set.ResultsThe revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97\u00a0% of the genes compared to 28\u00a0% of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98\u00a0% in this latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712 alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola.Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than those of other sequenced hymenopteran species, owing both to improvements in the genome annotation and to unique genes in the wasp lineage.We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution and higher probabilities of duplication than genes having alternative transcripts.ConclusionsGenome-wide expression data greatly improves the annotation of the N. vitripennis genome, by increasing the gene count, reducing the number of missing genes and providing more comprehensive data on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to Nasonia\u2019s biology, as well as numerous novel genes.OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/, www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas.The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12864-016-2886-9", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3073258", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2621361", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "keywords": [
          "alternative transcripts", 
          "protein evolution", 
          "gene counts", 
          "gene sets", 
          "untranslated region", 
          "expression data", 
          "N. vitripennis genome", 
          "single-copy orthologs", 
          "Drosophila melanogaster genome", 
          "insect model systems", 
          "single-copy gene", 
          "numerous novel genes", 
          "RNA-seq expression data", 
          "haplodiploid genetics", 
          "copy orthologs", 
          "EvidentialGene pipeline", 
          "wasp lineages", 
          "insect phylogeny", 
          "melanogaster genome", 
          "gene structure", 
          "Duplicated Genes", 
          "unique genes", 
          "genome annotation", 
          "gene family", 
          "N. vitripennis", 
          "copy gene", 
          "hymenopteran species", 
          "duplication history", 
          "novel genes", 
          "Nasonia vitripennis", 
          "alternative splicing", 
          "RNA-seq", 
          "late genes", 
          "genomic features", 
          "complete annotation", 
          "short transcripts", 
          "genome", 
          "genetic studies", 
          "genes", 
          "vitripennis", 
          "transcripts", 
          "introns", 
          "splicing", 
          "behavioral genetic studies", 
          "model system", 
          "annotation", 
          "search tools", 
          "biology", 
          "species", 
          "Nasonia", 
          "orthologs", 
          "phylogeny", 
          "Hymenoptera", 
          "arthropods", 
          "lineages", 
          "ESTs", 
          "loci", 
          "genetics", 
          "duplication", 
          "isoforms", 
          "key position", 
          "comparative analysis", 
          "evolution", 
          "Lola", 
          "family", 
          "comprehensive data", 
          "considerable amount", 
          "region", 
          "analysis", 
          "data", 
          "evidence", 
          "pipeline", 
          "structure", 
          "fraction", 
          "high probability", 
          "number", 
          "set", 
          "jewels", 
          "count", 
          "amount", 
          "tool", 
          "study", 
          "www", 
          "position", 
          "features", 
          "rate", 
          "system", 
          "history", 
          "draft", 
          "probability", 
          "usefulness", 
          "improvement", 
          "method", 
          "support", 
          "ResultsThe"
        ], 
        "name": "OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis", 
        "pagination": "678", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002535041"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-016-2886-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27561358"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-016-2886-9", 
          "https://app.dimensions.ai/details/publication/pub.1002535041"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_711.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12864-016-2886-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2886-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2886-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2886-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2886-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    430 TRIPLES      21 PREDICATES      171 URIs      130 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-016-2886-9 schema:about N10e17bc4832543a297c23c9927cd4d98
    2 N1a9a98e38ead4071ac7487bff551fe9b
    3 N2abdaef5744e4d6c88945189b065903a
    4 N3dbf90cc50444d5d8a5d381212b92497
    5 N496926aea3ee4e7caaf3c98eababbfbf
    6 N6a2be0b67534417da683de7ddaba0e4b
    7 N6a76432eeb6e468c951c8368ec4bfa73
    8 N8186b5736aa646d6890ca0e6cfbd8605
    9 N9106d706f6244e749841877a42967189
    10 N9ac11e3e2d7b4e7486e9fdecb34e259b
    11 Na6c50a6d354c400bbfbf9659949fe086
    12 Na92b5f3435e24039a825c6d45182757e
    13 Na9d1eee371934a3dab991060be1b2d02
    14 Nb0ab4f78a3604c8e9812206be31cb2c6
    15 Nc7907be112a2455290b22796698583d1
    16 Nc8429e70d3c7447eb810c1343c96005f
    17 Nccf8493a59624fa7965c79d930d7cb74
    18 Nce4875589a364b7eb5b98c1bb79305a4
    19 anzsrc-for:06
    20 anzsrc-for:0604
    21 schema:author N21560eadeed44928b35ad56da519df06
    22 schema:citation sg:pub.10.1007/978-0-387-98141-3
    23 sg:pub.10.1007/s00427-001-0196-x
    24 sg:pub.10.1038/346558a0
    25 sg:pub.10.1038/35055543
    26 sg:pub.10.1038/hdy.2009.147
    27 sg:pub.10.1038/hdy.2011.109
    28 sg:pub.10.1038/nature05260
    29 sg:pub.10.1038/nature09632
    30 sg:pub.10.1038/nature10442
    31 sg:pub.10.1038/nature11838
    32 sg:pub.10.1038/nature12962
    33 sg:pub.10.1038/nature13424
    34 sg:pub.10.1038/nature14010
    35 sg:pub.10.1038/nbt.1621
    36 sg:pub.10.1038/ng.332
    37 sg:pub.10.1038/ng1575
    38 sg:pub.10.1038/nmeth.2714
    39 sg:pub.10.1038/nrg1990
    40 sg:pub.10.1038/nrg2600
    41 sg:pub.10.1038/nrg2612
    42 sg:pub.10.1038/nrg2904
    43 sg:pub.10.1038/nrg3787
    44 sg:pub.10.1038/nrm2861
    45 sg:pub.10.1186/1471-2105-6-31
    46 sg:pub.10.1186/1471-2105-7-62
    47 sg:pub.10.1186/1471-2164-13-480
    48 sg:pub.10.1186/1471-2164-14-49
    49 sg:pub.10.1186/1471-2164-15-86
    50 sg:pub.10.1186/1471-2164-16-1
    51 sg:pub.10.1186/gb-2007-8-1-r13
    52 sg:pub.10.1186/gb-2008-9-1-r7
    53 sg:pub.10.1186/s12862-015-0499-6
    54 sg:pub.10.1186/s12864-015-1355-1
    55 schema:datePublished 2016-08-25
    56 schema:datePublishedReg 2016-08-25
    57 schema:description BackgroundNasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative analyses showcasing the usefulness of the revised annotated gene set.ResultsThe revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97 % of the genes compared to 28 % of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98 % in this latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712 alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola.Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than those of other sequenced hymenopteran species, owing both to improvements in the genome annotation and to unique genes in the wasp lineage.We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution and higher probabilities of duplication than genes having alternative transcripts.ConclusionsGenome-wide expression data greatly improves the annotation of the N. vitripennis genome, by increasing the gene count, reducing the number of missing genes and providing more comprehensive data on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to Nasonia’s biology, as well as numerous novel genes.OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/, www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas.The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/.
    58 schema:genre article
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N0a4981a1327f44ce95dc2f4a5a24b0ae
    61 N9f31ca339ab14cccabc67c19a3523649
    62 sg:journal.1023790
    63 schema:keywords Drosophila melanogaster genome
    64 Duplicated Genes
    65 ESTs
    66 EvidentialGene pipeline
    67 Hymenoptera
    68 Lola
    69 N. vitripennis
    70 N. vitripennis genome
    71 Nasonia
    72 Nasonia vitripennis
    73 RNA-seq
    74 RNA-seq expression data
    75 ResultsThe
    76 alternative splicing
    77 alternative transcripts
    78 amount
    79 analysis
    80 annotation
    81 arthropods
    82 behavioral genetic studies
    83 biology
    84 comparative analysis
    85 complete annotation
    86 comprehensive data
    87 considerable amount
    88 copy gene
    89 copy orthologs
    90 count
    91 data
    92 draft
    93 duplication
    94 duplication history
    95 evidence
    96 evolution
    97 expression data
    98 family
    99 features
    100 fraction
    101 gene counts
    102 gene family
    103 gene sets
    104 gene structure
    105 genes
    106 genetic studies
    107 genetics
    108 genome
    109 genome annotation
    110 genomic features
    111 haplodiploid genetics
    112 high probability
    113 history
    114 hymenopteran species
    115 improvement
    116 insect model systems
    117 insect phylogeny
    118 introns
    119 isoforms
    120 jewels
    121 key position
    122 late genes
    123 lineages
    124 loci
    125 melanogaster genome
    126 method
    127 model system
    128 novel genes
    129 number
    130 numerous novel genes
    131 orthologs
    132 phylogeny
    133 pipeline
    134 position
    135 probability
    136 protein evolution
    137 rate
    138 region
    139 search tools
    140 set
    141 short transcripts
    142 single-copy gene
    143 single-copy orthologs
    144 species
    145 splicing
    146 structure
    147 study
    148 support
    149 system
    150 tool
    151 transcripts
    152 unique genes
    153 untranslated region
    154 usefulness
    155 vitripennis
    156 wasp lineages
    157 www
    158 schema:name OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis
    159 schema:pagination 678
    160 schema:productId Ncfd21292a7854ba5b08ee41df22ded59
    161 Nd7f69129bc3f40159e895087a8ce70c8
    162 Ne3524de168be474db9d1c7e33fe7dd99
    163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002535041
    164 https://doi.org/10.1186/s12864-016-2886-9
    165 schema:sdDatePublished 2022-12-01T06:35
    166 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    167 schema:sdPublisher Nbf8853f62ad740d38c53fff63b24f3fb
    168 schema:url https://doi.org/10.1186/s12864-016-2886-9
    169 sgo:license sg:explorer/license/
    170 sgo:sdDataset articles
    171 rdf:type schema:ScholarlyArticle
    172 N0a4981a1327f44ce95dc2f4a5a24b0ae schema:issueNumber 1
    173 rdf:type schema:PublicationIssue
    174 N10e17bc4832543a297c23c9927cd4d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Open Reading Frames
    176 rdf:type schema:DefinedTerm
    177 N1a9a98e38ead4071ac7487bff551fe9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Software
    179 rdf:type schema:DefinedTerm
    180 N21560eadeed44928b35ad56da519df06 rdf:first sg:person.0724654415.35
    181 rdf:rest Nd491fe0972aa44ac9e01aee61b9b1fd4
    182 N2abdaef5744e4d6c88945189b065903a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Gene Expression Profiling
    184 rdf:type schema:DefinedTerm
    185 N3179af64bc8b49269a2aca3527472ed4 rdf:first sg:person.01041431323.14
    186 rdf:rest N6a924419a0cc4f1283a5bc2cd42b7721
    187 N3dbf90cc50444d5d8a5d381212b92497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Contig Mapping
    189 rdf:type schema:DefinedTerm
    190 N496926aea3ee4e7caaf3c98eababbfbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Databases, Nucleic Acid
    192 rdf:type schema:DefinedTerm
    193 N4cf22dd649dd4c73910c9c3d9ca7c7a4 rdf:first sg:person.01270457646.81
    194 rdf:rest Na6a3bf0d33e64414a1f76268326ba647
    195 N6a2be0b67534417da683de7ddaba0e4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Wasps
    197 rdf:type schema:DefinedTerm
    198 N6a76432eeb6e468c951c8368ec4bfa73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Molecular Sequence Annotation
    200 rdf:type schema:DefinedTerm
    201 N6a924419a0cc4f1283a5bc2cd42b7721 rdf:first sg:person.010613675247.55
    202 rdf:rest N7d079f61d89d470bacd92dd4f5f34c00
    203 N7d079f61d89d470bacd92dd4f5f34c00 rdf:first sg:person.0632050341.19
    204 rdf:rest N4cf22dd649dd4c73910c9c3d9ca7c7a4
    205 N8186b5736aa646d6890ca0e6cfbd8605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Animals
    207 rdf:type schema:DefinedTerm
    208 N9106d706f6244e749841877a42967189 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Genes, Insect
    210 rdf:type schema:DefinedTerm
    211 N9ac11e3e2d7b4e7486e9fdecb34e259b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name RNA, Untranslated
    213 rdf:type schema:DefinedTerm
    214 N9f31ca339ab14cccabc67c19a3523649 schema:volumeNumber 17
    215 rdf:type schema:PublicationVolume
    216 Na6a3bf0d33e64414a1f76268326ba647 rdf:first sg:person.07602145643.72
    217 rdf:rest Nb6453701884444f68ed1146b8e99e09f
    218 Na6c50a6d354c400bbfbf9659949fe086 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Evolution, Molecular
    220 rdf:type schema:DefinedTerm
    221 Na92b5f3435e24039a825c6d45182757e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Alternative Splicing
    223 rdf:type schema:DefinedTerm
    224 Na9d1eee371934a3dab991060be1b2d02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Multigene Family
    226 rdf:type schema:DefinedTerm
    227 Nb0ab4f78a3604c8e9812206be31cb2c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Genome, Insect
    229 rdf:type schema:DefinedTerm
    230 Nb6453701884444f68ed1146b8e99e09f rdf:first sg:person.01331775441.21
    231 rdf:rest rdf:nil
    232 Nbf8853f62ad740d38c53fff63b24f3fb schema:name Springer Nature - SN SciGraph project
    233 rdf:type schema:Organization
    234 Nc7907be112a2455290b22796698583d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    235 schema:name Computational Biology
    236 rdf:type schema:DefinedTerm
    237 Nc8429e70d3c7447eb810c1343c96005f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    238 schema:name Genomics
    239 rdf:type schema:DefinedTerm
    240 Nccf8493a59624fa7965c79d930d7cb74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    241 schema:name Genome-Wide Association Study
    242 rdf:type schema:DefinedTerm
    243 Nce4875589a364b7eb5b98c1bb79305a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    244 schema:name Web Browser
    245 rdf:type schema:DefinedTerm
    246 Ncfd21292a7854ba5b08ee41df22ded59 schema:name doi
    247 schema:value 10.1186/s12864-016-2886-9
    248 rdf:type schema:PropertyValue
    249 Nd491fe0972aa44ac9e01aee61b9b1fd4 rdf:first sg:person.01227757437.36
    250 rdf:rest N3179af64bc8b49269a2aca3527472ed4
    251 Nd7f69129bc3f40159e895087a8ce70c8 schema:name pubmed_id
    252 schema:value 27561358
    253 rdf:type schema:PropertyValue
    254 Ne3524de168be474db9d1c7e33fe7dd99 schema:name dimensions_id
    255 schema:value pub.1002535041
    256 rdf:type schema:PropertyValue
    257 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    258 schema:name Biological Sciences
    259 rdf:type schema:DefinedTerm
    260 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    261 schema:name Genetics
    262 rdf:type schema:DefinedTerm
    263 sg:grant.2621361 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-2886-9
    264 rdf:type schema:MonetaryGrant
    265 sg:grant.3073258 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-2886-9
    266 rdf:type schema:MonetaryGrant
    267 sg:journal.1023790 schema:issn 1471-2164
    268 schema:name BMC Genomics
    269 schema:publisher Springer Nature
    270 rdf:type schema:Periodical
    271 sg:person.01041431323.14 schema:affiliation grid-institutes:grid.410427.4
    272 schema:familyName Choi
    273 schema:givenName Jeong-Hyeon
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041431323.14
    275 rdf:type schema:Person
    276 sg:person.010613675247.55 schema:affiliation grid-institutes:grid.38142.3c
    277 schema:familyName Sackton
    278 schema:givenName Timothy B.
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613675247.55
    280 rdf:type schema:Person
    281 sg:person.01227757437.36 schema:affiliation grid-institutes:grid.411377.7
    282 schema:familyName Gilbert
    283 schema:givenName Donald G.
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227757437.36
    285 rdf:type schema:Person
    286 sg:person.01270457646.81 schema:affiliation grid-institutes:grid.412750.5
    287 schema:familyName Kelkar
    288 schema:givenName Yogeshwar D.
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270457646.81
    290 rdf:type schema:Person
    291 sg:person.01331775441.21 schema:affiliation grid-institutes:grid.6572.6
    292 schema:familyName Colbourne
    293 schema:givenName John K.
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331775441.21
    295 rdf:type schema:Person
    296 sg:person.0632050341.19 schema:affiliation grid-institutes:grid.5386.8
    297 schema:familyName Wang
    298 schema:givenName Xu
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632050341.19
    300 rdf:type schema:Person
    301 sg:person.0724654415.35 schema:affiliation grid-institutes:grid.6572.6
    302 schema:familyName Rago
    303 schema:givenName Alfredo
    304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724654415.35
    305 rdf:type schema:Person
    306 sg:person.07602145643.72 schema:affiliation grid-institutes:grid.16416.34
    307 schema:familyName Werren
    308 schema:givenName John H.
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602145643.72
    310 rdf:type schema:Person
    311 sg:pub.10.1007/978-0-387-98141-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041188628
    312 https://doi.org/10.1007/978-0-387-98141-3
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s00427-001-0196-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015771008
    315 https://doi.org/10.1007/s00427-001-0196-x
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/346558a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048919216
    318 https://doi.org/10.1038/346558a0
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/35055543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004697552
    321 https://doi.org/10.1038/35055543
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/hdy.2009.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031119810
    324 https://doi.org/10.1038/hdy.2009.147
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/hdy.2011.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034340956
    327 https://doi.org/10.1038/hdy.2011.109
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/nature05260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033687011
    330 https://doi.org/10.1038/nature05260
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/nature09632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015267788
    333 https://doi.org/10.1038/nature09632
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/nature10442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919938
    336 https://doi.org/10.1038/nature10442
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/nature11838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038603871
    339 https://doi.org/10.1038/nature11838
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/nature12962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044643224
    342 https://doi.org/10.1038/nature12962
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/nature13424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020194875
    345 https://doi.org/10.1038/nature13424
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/nature14010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039885096
    348 https://doi.org/10.1038/nature14010
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
    351 https://doi.org/10.1038/nbt.1621
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/ng.332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048178937
    354 https://doi.org/10.1038/ng.332
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/ng1575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002194577
    357 https://doi.org/10.1038/ng1575
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/nmeth.2714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707686
    360 https://doi.org/10.1038/nmeth.2714
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/nrg1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025508802
    363 https://doi.org/10.1038/nrg1990
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/nrg2600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033086863
    366 https://doi.org/10.1038/nrg2600
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/nrg2612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035008603
    369 https://doi.org/10.1038/nrg2612
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/nrg2904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037670949
    372 https://doi.org/10.1038/nrg2904
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/nrg3787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047953003
    375 https://doi.org/10.1038/nrg3787
    376 rdf:type schema:CreativeWork
    377 sg:pub.10.1038/nrm2861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023509855
    378 https://doi.org/10.1038/nrm2861
    379 rdf:type schema:CreativeWork
    380 sg:pub.10.1186/1471-2105-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010551629
    381 https://doi.org/10.1186/1471-2105-6-31
    382 rdf:type schema:CreativeWork
    383 sg:pub.10.1186/1471-2105-7-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041353582
    384 https://doi.org/10.1186/1471-2105-7-62
    385 rdf:type schema:CreativeWork
    386 sg:pub.10.1186/1471-2164-13-480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007857516
    387 https://doi.org/10.1186/1471-2164-13-480
    388 rdf:type schema:CreativeWork
    389 sg:pub.10.1186/1471-2164-14-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045310485
    390 https://doi.org/10.1186/1471-2164-14-49
    391 rdf:type schema:CreativeWork
    392 sg:pub.10.1186/1471-2164-15-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051536247
    393 https://doi.org/10.1186/1471-2164-15-86
    394 rdf:type schema:CreativeWork
    395 sg:pub.10.1186/1471-2164-16-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608153
    396 https://doi.org/10.1186/1471-2164-16-1
    397 rdf:type schema:CreativeWork
    398 sg:pub.10.1186/gb-2007-8-1-r13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012922069
    399 https://doi.org/10.1186/gb-2007-8-1-r13
    400 rdf:type schema:CreativeWork
    401 sg:pub.10.1186/gb-2008-9-1-r7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029779393
    402 https://doi.org/10.1186/gb-2008-9-1-r7
    403 rdf:type schema:CreativeWork
    404 sg:pub.10.1186/s12862-015-0499-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022224894
    405 https://doi.org/10.1186/s12862-015-0499-6
    406 rdf:type schema:CreativeWork
    407 sg:pub.10.1186/s12864-015-1355-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004614854
    408 https://doi.org/10.1186/s12864-015-1355-1
    409 rdf:type schema:CreativeWork
    410 grid-institutes:grid.16416.34 schema:alternateName Department of Biology, University of Rochester, Rochester, USA
    411 schema:name Department of Biology, University of Rochester, Rochester, USA
    412 rdf:type schema:Organization
    413 grid-institutes:grid.38142.3c schema:alternateName Department of Organismic and Evolutionary Biology, and FAS Informatics Group, Harvard University, Cambridge, USA
    414 schema:name Department of Organismic and Evolutionary Biology, and FAS Informatics Group, Harvard University, Cambridge, USA
    415 rdf:type schema:Organization
    416 grid-institutes:grid.410427.4 schema:alternateName Cancer Center, Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, USA
    417 schema:name Cancer Center, Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, USA
    418 rdf:type schema:Organization
    419 grid-institutes:grid.411377.7 schema:alternateName Department of Biology, Indiana University, Bloomington, IN, USA
    420 schema:name Department of Biology, Indiana University, Bloomington, IN, USA
    421 rdf:type schema:Organization
    422 grid-institutes:grid.412750.5 schema:alternateName Department of Biostatistics and Computational Biology, University of Rochester Medical School, Rochester, USA
    423 schema:name Department of Biostatistics and Computational Biology, University of Rochester Medical School, Rochester, USA
    424 rdf:type schema:Organization
    425 grid-institutes:grid.5386.8 schema:alternateName Department of Molecular Biology and Genetics, Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, USA
    426 schema:name Department of Molecular Biology and Genetics, Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, USA
    427 rdf:type schema:Organization
    428 grid-institutes:grid.6572.6 schema:alternateName Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK
    429 schema:name Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK
    430 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...