Genome-wide association study using family-based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone mineral density View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Benjamin H. Mullin, John P. Walsh, Hou-Feng Zheng, Suzanne J. Brown, Gabriela L. Surdulescu, Charles Curtis, Gerome Breen, Frank Dudbridge, J. Brent Richards, Tim D. Spector, Scott G. Wilson

ABSTRACT

BACKGROUND: Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD. It has also recently been suggested that unintended bias can be introduced as a result of adjusting a phenotype for a correlated trait. We performed a GWAS meta-analysis in two populations (total n = 6,696) using BMD data adjusted for only age and gender, in an attempt to identify genetic variants associated with BMD including those that may have potential pleiotropic effects on BMD and body size traits. RESULTS: We observed a single variant, rs2566752, associated with spine BMD at the genome-wide significance level in the meta-analysis (P = 3.36 × 10(-09)). Logistic regression analysis also revealed an association between rs2566752 and fracture rate in one of our study cohorts (P = 0.017, n = 5,654). This is an intronic variant located in the wntless Wnt ligand secretion mediator (WLS) gene (1p31.3), a known BMD locus which encodes an integral component of the Wnt ligand secretion pathway. Bioinformatics analyses of variants in moderate LD with rs2566752 produced strong evidence for a regulatory role for the variants rs72670452, rs17130567 and rs1430738. Expression quantitative trait locus (eQTL) analysis suggested that the variants rs12568456 and rs17130567 are associated with expression of the WLS gene in whole blood, cerebellum and temporal cortex brain tissue (P = 0.034-1.19 × 10(-23)). Gene-wide association testing using the VErsatile Gene-based Association Study 2 (VEGAS2) software revealed associations between the coiled-coil domain containing 170 (CCDC170) gene, located adjacent to the oestrogen receptor 1 (ESR1) gene, and BMD at the spine, femoral neck and total hip sites (P = 1.0 × 10(-06), 2.0 × 10(-06) and 2.0 × 10(-06) respectively). CONCLUSIONS: Genetic variation at the WLS and CCDC170/ESR1 loci were found to be significantly associated with BMD adjusted for only age and gender at the genome-wide level in this meta-analysis. More... »

PAGES

136

References to SciGraph publications

  • 2012-08. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing in NATURE GENETICS
  • 2005-09. Genetic and environmental correlations between bone phenotypes and anthropometric indices in Chinese in OSTEOPOROSIS INTERNATIONAL
  • 2015-12. Whole-genome sequence-based analysis of thyroid function in NATURE COMMUNICATIONS
  • 2013-12. Cell–cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas in NATURE COMMUNICATIONS
  • 2015-10. Whole‐genome sequencing identifies EN1 as a determinant of bone density and fracture in NATURE
  • 2014-03. Functional annotation of noncoding sequence variants in NATURE METHODS
  • 2013-11. Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development in NATURE GENETICS
  • 2008-08. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease in NATURE GENETICS
  • 1997-02. Cerebellar deficient folia (cdf): A new mutation on mouse Chromosome 6 in MAMMALIAN GENOME
  • 2013-10. Systematic identification of trans eQTLs as putative drivers of known disease associations in NATURE GENETICS
  • 2006-01. Genetic determination and correlation of body mass index and bone mineral density at the spine and hip in Chinese Han ethnicity in OSTEOPOROSIS INTERNATIONAL
  • 2012-07. Genome-wide efficient mixed-model analysis for association studies in NATURE GENETICS
  • 2012-05. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture in NATURE GENETICS
  • 2006-08. Principal components analysis corrects for stratification in genome-wide association studies in NATURE GENETICS
  • 2012-01. Meta-analysis of gene-based genome-wide association studies of bone mineral density in Chinese and European subjects in OSTEOPOROSIS INTERNATIONAL
  • 2007-09. Genome-wide association with bone mass and geometry in the Framingham Heart Study in BMC MEDICAL GENETICS
  • 2010-12. GWAMA: software for genome-wide association meta-analysis in BMC BIOINFORMATICS
  • 1999-08. Family History of Appendicular Fracture and Risk of Osteoporosis: A Population-Based Study in OSTEOPOROSIS INTERNATIONAL
  • 2009-11. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies in NATURE GENETICS
  • 2012-02. A linear complexity phasing method for thousands of genomes in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-016-2481-0

    DOI

    http://dx.doi.org/10.1186/s12864-016-2481-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044085617

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26911590


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bone Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carrier Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Estrogen Receptor alpha", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Femur Neck", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fractures, Bone", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intracellular Signaling Peptides and Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Osteoporosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, G-Protein-Coupled", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Western Australia", 
              "id": "https://www.grid.ac/institutes/grid.1012.2", 
              "name": [
                "Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia", 
                "School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mullin", 
            "givenName": "Benjamin H.", 
            "id": "sg:person.01251151302.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251151302.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Western Australia", 
              "id": "https://www.grid.ac/institutes/grid.1012.2", 
              "name": [
                "Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia", 
                "School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walsh", 
            "givenName": "John P.", 
            "id": "sg:person.01120535237.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120535237.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of Aging Research, School of Medicine, Hangzhou Normal University, and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Hou-Feng", 
            "id": "sg:person.01150067573.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150067573.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sir Charles Gairdner Hospital", 
              "id": "https://www.grid.ac/institutes/grid.3521.5", 
              "name": [
                "Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "Suzanne J.", 
            "id": "sg:person.0755550215.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755550215.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Twin Research & Genetic Epidemiology, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Surdulescu", 
            "givenName": "Gabriela L.", 
            "id": "sg:person.0664537236.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664537236.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King\u2019s College London, London, UK", 
                "NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Curtis", 
            "givenName": "Charles", 
            "id": "sg:person.01357035211.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357035211.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King\u2019s College London, London, UK", 
                "NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Breen", 
            "givenName": "Gerome", 
            "id": "sg:person.0654201533.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654201533.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "London School of Hygiene & Tropical Medicine", 
              "id": "https://www.grid.ac/institutes/grid.8991.9", 
              "name": [
                "Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dudbridge", 
            "givenName": "Frank", 
            "id": "sg:person.0705653401.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705653401.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, Canada", 
                "Department of Twin Research & Genetic Epidemiology, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Richards", 
            "givenName": "J. Brent", 
            "id": "sg:person.01265671725.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265671725.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Twin Research & Genetic Epidemiology, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spector", 
            "givenName": "Tim D.", 
            "id": "sg:person.014424006237.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424006237.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia", 
                "School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia", 
                "Department of Twin Research & Genetic Epidemiology, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wilson", 
            "givenName": "Scott G.", 
            "id": "sg:person.010536044652.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010536044652.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000749622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.21797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001742959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650080102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002109790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650080102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002109790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002640757", 
              "https://doi.org/10.1038/nmeth.1785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-011-1779-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004873612", 
              "https://doi.org/10.1007/s00198-011-1779-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bone.2009.04.254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006485679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009497006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0904894106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011575455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012013482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012196256", 
              "https://doi.org/10.1038/ncomms6681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.diff.2012.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012970096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1375/twin.9.6.899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013288617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/19.1.149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013784960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3577405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014343625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014945864", 
              "https://doi.org/10.1038/ng.2756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015924562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-004-1825-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016010391", 
              "https://doi.org/10.1007/s00198-004-1825-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-004-1825-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016010391", 
              "https://doi.org/10.1007/s00198-004-1825-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-005-1930-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017115085", 
              "https://doi.org/10.1007/s00198-005-1930-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-005-1930-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017115085", 
              "https://doi.org/10.1007/s00198-005-1930-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017756679", 
              "https://doi.org/10.1038/ng.446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017756679", 
              "https://doi.org/10.1038/ng.446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jmedgenet-2012-101287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018808681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.095224.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021365045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.1796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023518873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023780871", 
              "https://doi.org/10.1186/1471-2105-11-288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023780871", 
              "https://doi.org/10.1186/1471-2105-11-288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2350-8-s1-s14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024227590", 
              "https://doi.org/10.1186/1471-2350-8-s1-s14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001980050211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026571543", 
              "https://doi.org/10.1007/s001980050211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650040404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027211112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650040404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027211112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027280552", 
              "https://doi.org/10.1038/ncomms3531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199410203311604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028310559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029026049", 
              "https://doi.org/10.1038/ng.179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1262110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029707840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029723318", 
              "https://doi.org/10.1038/ng.2354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650111022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029881238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650111022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029881238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.steroids.2014.12.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031303724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429813", 
              "https://doi.org/10.1038/ng1847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429813", 
              "https://doi.org/10.1038/ng1847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddt575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031751289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0006827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032581575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/thg.2014.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032809734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.12.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033458502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.057166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034234348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/bbrc.1999.1711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034812449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650090802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034966333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650090802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034966333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036490983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/thg.2014.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038457582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039034540", 
              "https://doi.org/10.1038/nature14878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0028031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040839129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1532-5415.2006.00985.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041563645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci113125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041601809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.23.12729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042279120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044403184", 
              "https://doi.org/10.1038/ng.2765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(08)60599-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044421127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddt675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044739592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045762659", 
              "https://doi.org/10.1038/nmeth.2832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046029840", 
              "https://doi.org/10.1038/ng.2310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.1998.13.1.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047326434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047459836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047459836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/dvdy.24316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051226873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.1830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051476622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2008.04.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051878941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.2000.15.7.1243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052792621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052960118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052981137", 
              "https://doi.org/10.1038/ng.2249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003359900368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053548201", 
              "https://doi.org/10.1007/s003359900368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/345819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058641214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/345819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058641214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/503711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058783898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2007-2397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064290366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2013-3200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064294619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jcem-72-2-401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064316645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7326/0003-4819-151-8-200910200-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073711086"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "BACKGROUND: Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD. It has also recently been suggested that unintended bias can be introduced as a result of adjusting a phenotype for a correlated trait. We performed a GWAS meta-analysis in two populations (total n = 6,696) using BMD data adjusted for only age and gender, in an attempt to identify genetic variants associated with BMD including those that may have potential pleiotropic effects on BMD and body size traits.\nRESULTS: We observed a single variant, rs2566752, associated with spine BMD at the genome-wide significance level in the meta-analysis (P = 3.36 \u00d7 10(-09)). Logistic regression analysis also revealed an association between rs2566752 and fracture rate in one of our study cohorts (P = 0.017, n = 5,654). This is an intronic variant located in the wntless Wnt ligand secretion mediator (WLS) gene (1p31.3), a known BMD locus which encodes an integral component of the Wnt ligand secretion pathway. Bioinformatics analyses of variants in moderate LD with rs2566752 produced strong evidence for a regulatory role for the variants rs72670452, rs17130567 and rs1430738. Expression quantitative trait locus (eQTL) analysis suggested that the variants rs12568456 and rs17130567 are associated with expression of the WLS gene in whole blood, cerebellum and temporal cortex brain tissue (P = 0.034-1.19 \u00d7 10(-23)). Gene-wide association testing using the VErsatile Gene-based Association Study 2 (VEGAS2) software revealed associations between the coiled-coil domain containing 170 (CCDC170) gene, located adjacent to the oestrogen receptor 1 (ESR1) gene, and BMD at the spine, femoral neck and total hip sites (P = 1.0 \u00d7 10(-06), 2.0 \u00d7 10(-06) and 2.0 \u00d7 10(-06) respectively).\nCONCLUSIONS: Genetic variation at the WLS and CCDC170/ESR1 loci were found to be significantly associated with BMD adjusted for only age and gender at the genome-wide level in this meta-analysis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-016-2481-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2784563", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6736498", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4576591", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Genome-wide association study using family-based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone mineral density", 
        "pagination": "136", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d1fea84fc056aff90e526475ce102a15bae01150e3343bf7c198f975025b51bc"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26911590"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-016-2481-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044085617"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-016-2481-0", 
          "https://app.dimensions.ai/details/publication/pub.1044085617"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs12864-016-2481-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2481-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2481-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2481-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-016-2481-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    484 TRIPLES      21 PREDICATES      122 URIs      45 LITERALS      33 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-016-2481-0 schema:about N0b1fa6faf5ed4960a0b0ee9fd72f3b56
    2 N0df03d9c2dfb4db8b5d67232cd4d0a7b
    3 N120f7eb4a5b947fb8725dc48fb418d20
    4 N15a2fe63e90b4a09921a469ccca9d848
    5 N18758fae73394314a52aefb1d0700e3d
    6 N19e00c7b1899473dab3b379a755ae9ce
    7 N2360e0101c434ba38809ac882ff88d58
    8 N383e43e5d9d14f3e8f5acdf89f350baf
    9 N42ba0c7172f84cbd8402b41c19431843
    10 N53417c24198b4ece99bb14e25ca7601a
    11 N550867b93382491490d6d51592914d9c
    12 N5a487beb6f05430fad806bf85a3b74d5
    13 N5af8745e659c4752b3c8b33a9e3c321d
    14 N5e283815d31d4716b165e41fb79cb277
    15 N5ef07c5741bd4faa9806766ee1b6f20c
    16 N6319b60a05ad4b598caa32048de12b61
    17 N70badc82d1c54d0fb77190702800ddbf
    18 N745eaa43889540d48b910b051be61ebe
    19 Nb5bb28863ac244c185128b056e143856
    20 Nb859e38ea62545a38509a67edd4611d9
    21 Nbcada6c9a092460ab432c36fa0f0b93d
    22 Necb633a077a44fccbeee83fb56fe5eb9
    23 Ned4b007d954c40558faedc8489202c2c
    24 Nf06a63d177b34a7a981872a6e9b9ba25
    25 anzsrc-for:06
    26 anzsrc-for:0604
    27 schema:author N6c079b3c23c34e19bc8cd4777c695dc4
    28 schema:citation sg:pub.10.1007/s00198-004-1825-9
    29 sg:pub.10.1007/s00198-005-1930-4
    30 sg:pub.10.1007/s00198-011-1779-7
    31 sg:pub.10.1007/s001980050211
    32 sg:pub.10.1007/s003359900368
    33 sg:pub.10.1038/nature14878
    34 sg:pub.10.1038/ncomms3531
    35 sg:pub.10.1038/ncomms6681
    36 sg:pub.10.1038/ng.179
    37 sg:pub.10.1038/ng.2249
    38 sg:pub.10.1038/ng.2310
    39 sg:pub.10.1038/ng.2354
    40 sg:pub.10.1038/ng.2756
    41 sg:pub.10.1038/ng.2765
    42 sg:pub.10.1038/ng.446
    43 sg:pub.10.1038/ng1847
    44 sg:pub.10.1038/nmeth.1785
    45 sg:pub.10.1038/nmeth.2832
    46 sg:pub.10.1186/1471-2105-11-288
    47 sg:pub.10.1186/1471-2350-8-s1-s14
    48 https://doi.org/10.1002/dvdy.24316
    49 https://doi.org/10.1002/gepi.20308
    50 https://doi.org/10.1002/gepi.21797
    51 https://doi.org/10.1002/jbmr.1796
    52 https://doi.org/10.1002/jbmr.1830
    53 https://doi.org/10.1002/jbmr.5650040404
    54 https://doi.org/10.1002/jbmr.5650080102
    55 https://doi.org/10.1002/jbmr.5650090802
    56 https://doi.org/10.1002/jbmr.5650111022
    57 https://doi.org/10.1006/bbrc.1999.1711
    58 https://doi.org/10.1016/j.ajhg.2008.04.016
    59 https://doi.org/10.1016/j.ajhg.2010.11.011
    60 https://doi.org/10.1016/j.ajhg.2013.10.005
    61 https://doi.org/10.1016/j.ajhg.2014.12.021
    62 https://doi.org/10.1016/j.bone.2009.04.254
    63 https://doi.org/10.1016/j.diff.2012.06.004
    64 https://doi.org/10.1016/j.steroids.2014.12.010
    65 https://doi.org/10.1016/s0140-6736(08)60599-1
    66 https://doi.org/10.1017/thg.2014.34
    67 https://doi.org/10.1017/thg.2014.79
    68 https://doi.org/10.1056/nejm199410203311604
    69 https://doi.org/10.1073/pnas.0904894106
    70 https://doi.org/10.1073/pnas.97.23.12729
    71 https://doi.org/10.1086/345819
    72 https://doi.org/10.1086/503711
    73 https://doi.org/10.1093/bioinformatics/19.1.149
    74 https://doi.org/10.1093/bioinformatics/btq419
    75 https://doi.org/10.1093/bioinformatics/btv402
    76 https://doi.org/10.1093/hmg/ddt575
    77 https://doi.org/10.1093/hmg/ddt675
    78 https://doi.org/10.1093/nar/gkr917
    79 https://doi.org/10.1093/nar/gkt1229
    80 https://doi.org/10.1101/gr.095224.109
    81 https://doi.org/10.1101/gr.3577405
    82 https://doi.org/10.1111/j.1532-5415.2006.00985.x
    83 https://doi.org/10.1126/science.1262110
    84 https://doi.org/10.1136/jmedgenet-2012-101287
    85 https://doi.org/10.1172/jci113125
    86 https://doi.org/10.1210/jc.2007-2397
    87 https://doi.org/10.1210/jc.2013-3200
    88 https://doi.org/10.1210/jcem-72-2-401
    89 https://doi.org/10.1242/dev.057166
    90 https://doi.org/10.1359/jbmr.1998.13.1.133
    91 https://doi.org/10.1359/jbmr.2000.15.7.1243
    92 https://doi.org/10.1371/journal.pgen.1002707
    93 https://doi.org/10.1371/journal.pone.0006827
    94 https://doi.org/10.1371/journal.pone.0028031
    95 https://doi.org/10.1375/twin.9.6.899
    96 https://doi.org/10.7326/0003-4819-151-8-200910200-00006
    97 schema:datePublished 2016-12
    98 schema:datePublishedReg 2016-12-01
    99 schema:description BACKGROUND: Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD. It has also recently been suggested that unintended bias can be introduced as a result of adjusting a phenotype for a correlated trait. We performed a GWAS meta-analysis in two populations (total n = 6,696) using BMD data adjusted for only age and gender, in an attempt to identify genetic variants associated with BMD including those that may have potential pleiotropic effects on BMD and body size traits. RESULTS: We observed a single variant, rs2566752, associated with spine BMD at the genome-wide significance level in the meta-analysis (P = 3.36 × 10(-09)). Logistic regression analysis also revealed an association between rs2566752 and fracture rate in one of our study cohorts (P = 0.017, n = 5,654). This is an intronic variant located in the wntless Wnt ligand secretion mediator (WLS) gene (1p31.3), a known BMD locus which encodes an integral component of the Wnt ligand secretion pathway. Bioinformatics analyses of variants in moderate LD with rs2566752 produced strong evidence for a regulatory role for the variants rs72670452, rs17130567 and rs1430738. Expression quantitative trait locus (eQTL) analysis suggested that the variants rs12568456 and rs17130567 are associated with expression of the WLS gene in whole blood, cerebellum and temporal cortex brain tissue (P = 0.034-1.19 × 10(-23)). Gene-wide association testing using the VErsatile Gene-based Association Study 2 (VEGAS2) software revealed associations between the coiled-coil domain containing 170 (CCDC170) gene, located adjacent to the oestrogen receptor 1 (ESR1) gene, and BMD at the spine, femoral neck and total hip sites (P = 1.0 × 10(-06), 2.0 × 10(-06) and 2.0 × 10(-06) respectively). CONCLUSIONS: Genetic variation at the WLS and CCDC170/ESR1 loci were found to be significantly associated with BMD adjusted for only age and gender at the genome-wide level in this meta-analysis.
    100 schema:genre research_article
    101 schema:inLanguage en
    102 schema:isAccessibleForFree true
    103 schema:isPartOf N4702e7f133854ddfb8674630edac339d
    104 Nbfd83510e6334300b423350c7ea57479
    105 sg:journal.1023790
    106 schema:name Genome-wide association study using family-based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone mineral density
    107 schema:pagination 136
    108 schema:productId N01468f80d46e4efcb4abc82c34ce43d8
    109 N127ff951963845728fb4f62aa3e52034
    110 N189aafaa2d2a444f9d6182a261b96971
    111 N963dbc46f9304439904dad29a0f0b419
    112 Nc557384f48574811a3d8c10342b9c092
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044085617
    114 https://doi.org/10.1186/s12864-016-2481-0
    115 schema:sdDatePublished 2019-04-10T17:38
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Nf463bc391b9840db86d78dcbdd94f596
    118 schema:url http://link.springer.com/10.1186%2Fs12864-016-2481-0
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N01468f80d46e4efcb4abc82c34ce43d8 schema:name doi
    123 schema:value 10.1186/s12864-016-2481-0
    124 rdf:type schema:PropertyValue
    125 N0538101906ad4761a79fe70d064f8b8e rdf:first sg:person.01150067573.14
    126 rdf:rest N692ab31760ac46b3ace05314136161c8
    127 N0b1fa6faf5ed4960a0b0ee9fd72f3b56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Male
    129 rdf:type schema:DefinedTerm
    130 N0df03d9c2dfb4db8b5d67232cd4d0a7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Humans
    132 rdf:type schema:DefinedTerm
    133 N120f7eb4a5b947fb8725dc48fb418d20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Young Adult
    135 rdf:type schema:DefinedTerm
    136 N127ff951963845728fb4f62aa3e52034 schema:name readcube_id
    137 schema:value d1fea84fc056aff90e526475ce102a15bae01150e3343bf7c198f975025b51bc
    138 rdf:type schema:PropertyValue
    139 N15a2fe63e90b4a09921a469ccca9d848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Aged
    141 rdf:type schema:DefinedTerm
    142 N18758fae73394314a52aefb1d0700e3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Adult
    144 rdf:type schema:DefinedTerm
    145 N189aafaa2d2a444f9d6182a261b96971 schema:name dimensions_id
    146 schema:value pub.1044085617
    147 rdf:type schema:PropertyValue
    148 N19e00c7b1899473dab3b379a755ae9ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Intracellular Signaling Peptides and Proteins
    150 rdf:type schema:DefinedTerm
    151 N1b041cf0030f4923bc460e69e898677c rdf:first sg:person.01120535237.50
    152 rdf:rest N0538101906ad4761a79fe70d064f8b8e
    153 N2360e0101c434ba38809ac882ff88d58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Spine
    155 rdf:type schema:DefinedTerm
    156 N383e43e5d9d14f3e8f5acdf89f350baf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Adolescent
    158 rdf:type schema:DefinedTerm
    159 N3cc9d921ba704bd1977b9efc00699776 rdf:first sg:person.01357035211.04
    160 rdf:rest N5fd091c4c7cd405784111012a170a10d
    161 N42ba0c7172f84cbd8402b41c19431843 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Cohort Studies
    163 rdf:type schema:DefinedTerm
    164 N4702e7f133854ddfb8674630edac339d schema:volumeNumber 17
    165 rdf:type schema:PublicationVolume
    166 N53417c24198b4ece99bb14e25ca7601a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Genome-Wide Association Study
    168 rdf:type schema:DefinedTerm
    169 N550867b93382491490d6d51592914d9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Phenotype
    171 rdf:type schema:DefinedTerm
    172 N5912a8203ad2407183a3655008e46d8e rdf:first sg:person.0705653401.15
    173 rdf:rest N9a8b55e42a7940328f0ad147f292d102
    174 N5a487beb6f05430fad806bf85a3b74d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Aged, 80 and over
    176 rdf:type schema:DefinedTerm
    177 N5af8745e659c4752b3c8b33a9e3c321d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Fractures, Bone
    179 rdf:type schema:DefinedTerm
    180 N5e283815d31d4716b165e41fb79cb277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Polymorphism, Single Nucleotide
    182 rdf:type schema:DefinedTerm
    183 N5ef07c5741bd4faa9806766ee1b6f20c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Genotype
    185 rdf:type schema:DefinedTerm
    186 N5fd091c4c7cd405784111012a170a10d rdf:first sg:person.0654201533.32
    187 rdf:rest N5912a8203ad2407183a3655008e46d8e
    188 N6319b60a05ad4b598caa32048de12b61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Bone Density
    190 rdf:type schema:DefinedTerm
    191 N692ab31760ac46b3ace05314136161c8 rdf:first sg:person.0755550215.48
    192 rdf:rest Nec4d93f991d9465abd5e58a546e6418a
    193 N6c079b3c23c34e19bc8cd4777c695dc4 rdf:first sg:person.01251151302.33
    194 rdf:rest N1b041cf0030f4923bc460e69e898677c
    195 N70badc82d1c54d0fb77190702800ddbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Carrier Proteins
    197 rdf:type schema:DefinedTerm
    198 N745eaa43889540d48b910b051be61ebe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Female
    200 rdf:type schema:DefinedTerm
    201 N963dbc46f9304439904dad29a0f0b419 schema:name pubmed_id
    202 schema:value 26911590
    203 rdf:type schema:PropertyValue
    204 N9a8b55e42a7940328f0ad147f292d102 rdf:first sg:person.01265671725.13
    205 rdf:rest Ne04b38ee2e3f40218986f61d572b486a
    206 Nb5bb28863ac244c185128b056e143856 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Genetic Predisposition to Disease
    208 rdf:type schema:DefinedTerm
    209 Nb859e38ea62545a38509a67edd4611d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Receptors, G-Protein-Coupled
    211 rdf:type schema:DefinedTerm
    212 Nbcada6c9a092460ab432c36fa0f0b93d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Osteoporosis
    214 rdf:type schema:DefinedTerm
    215 Nbfd83510e6334300b423350c7ea57479 schema:issueNumber 1
    216 rdf:type schema:PublicationIssue
    217 Nc557384f48574811a3d8c10342b9c092 schema:name nlm_unique_id
    218 schema:value 100965258
    219 rdf:type schema:PropertyValue
    220 Nd09f55d7d5cb4495a4db3fb45c933cb0 schema:name Institute of Aging Research, School of Medicine, Hangzhou Normal University, and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
    221 rdf:type schema:Organization
    222 Nd3d6434926d243a9b2a747c18a9fca1e rdf:first sg:person.010536044652.79
    223 rdf:rest rdf:nil
    224 Ne04b38ee2e3f40218986f61d572b486a rdf:first sg:person.014424006237.85
    225 rdf:rest Nd3d6434926d243a9b2a747c18a9fca1e
    226 Nec4d93f991d9465abd5e58a546e6418a rdf:first sg:person.0664537236.23
    227 rdf:rest N3cc9d921ba704bd1977b9efc00699776
    228 Necb633a077a44fccbeee83fb56fe5eb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    229 schema:name Middle Aged
    230 rdf:type schema:DefinedTerm
    231 Ned4b007d954c40558faedc8489202c2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    232 schema:name Femur Neck
    233 rdf:type schema:DefinedTerm
    234 Nf06a63d177b34a7a981872a6e9b9ba25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    235 schema:name Estrogen Receptor alpha
    236 rdf:type schema:DefinedTerm
    237 Nf463bc391b9840db86d78dcbdd94f596 schema:name Springer Nature - SN SciGraph project
    238 rdf:type schema:Organization
    239 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    240 schema:name Biological Sciences
    241 rdf:type schema:DefinedTerm
    242 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    243 schema:name Genetics
    244 rdf:type schema:DefinedTerm
    245 sg:grant.2784563 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-2481-0
    246 rdf:type schema:MonetaryGrant
    247 sg:grant.4576591 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-2481-0
    248 rdf:type schema:MonetaryGrant
    249 sg:grant.6736498 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-016-2481-0
    250 rdf:type schema:MonetaryGrant
    251 sg:journal.1023790 schema:issn 1471-2164
    252 schema:name BMC Genomics
    253 rdf:type schema:Periodical
    254 sg:person.010536044652.79 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    255 schema:familyName Wilson
    256 schema:givenName Scott G.
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010536044652.79
    258 rdf:type schema:Person
    259 sg:person.01120535237.50 schema:affiliation https://www.grid.ac/institutes/grid.1012.2
    260 schema:familyName Walsh
    261 schema:givenName John P.
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120535237.50
    263 rdf:type schema:Person
    264 sg:person.01150067573.14 schema:affiliation Nd09f55d7d5cb4495a4db3fb45c933cb0
    265 schema:familyName Zheng
    266 schema:givenName Hou-Feng
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150067573.14
    268 rdf:type schema:Person
    269 sg:person.01251151302.33 schema:affiliation https://www.grid.ac/institutes/grid.1012.2
    270 schema:familyName Mullin
    271 schema:givenName Benjamin H.
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251151302.33
    273 rdf:type schema:Person
    274 sg:person.01265671725.13 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    275 schema:familyName Richards
    276 schema:givenName J. Brent
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265671725.13
    278 rdf:type schema:Person
    279 sg:person.01357035211.04 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    280 schema:familyName Curtis
    281 schema:givenName Charles
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357035211.04
    283 rdf:type schema:Person
    284 sg:person.014424006237.85 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    285 schema:familyName Spector
    286 schema:givenName Tim D.
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424006237.85
    288 rdf:type schema:Person
    289 sg:person.0654201533.32 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    290 schema:familyName Breen
    291 schema:givenName Gerome
    292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654201533.32
    293 rdf:type schema:Person
    294 sg:person.0664537236.23 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    295 schema:familyName Surdulescu
    296 schema:givenName Gabriela L.
    297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664537236.23
    298 rdf:type schema:Person
    299 sg:person.0705653401.15 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
    300 schema:familyName Dudbridge
    301 schema:givenName Frank
    302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705653401.15
    303 rdf:type schema:Person
    304 sg:person.0755550215.48 schema:affiliation https://www.grid.ac/institutes/grid.3521.5
    305 schema:familyName Brown
    306 schema:givenName Suzanne J.
    307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755550215.48
    308 rdf:type schema:Person
    309 sg:pub.10.1007/s00198-004-1825-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016010391
    310 https://doi.org/10.1007/s00198-004-1825-9
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s00198-005-1930-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017115085
    313 https://doi.org/10.1007/s00198-005-1930-4
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s00198-011-1779-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004873612
    316 https://doi.org/10.1007/s00198-011-1779-7
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s001980050211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026571543
    319 https://doi.org/10.1007/s001980050211
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1007/s003359900368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053548201
    322 https://doi.org/10.1007/s003359900368
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/nature14878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039034540
    325 https://doi.org/10.1038/nature14878
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/ncomms3531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027280552
    328 https://doi.org/10.1038/ncomms3531
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/ncomms6681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012196256
    331 https://doi.org/10.1038/ncomms6681
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/ng.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029026049
    334 https://doi.org/10.1038/ng.179
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/ng.2249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052981137
    337 https://doi.org/10.1038/ng.2249
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/ng.2310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046029840
    340 https://doi.org/10.1038/ng.2310
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/ng.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029723318
    343 https://doi.org/10.1038/ng.2354
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/ng.2756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014945864
    346 https://doi.org/10.1038/ng.2756
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1038/ng.2765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044403184
    349 https://doi.org/10.1038/ng.2765
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1038/ng.446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017756679
    352 https://doi.org/10.1038/ng.446
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
    355 https://doi.org/10.1038/ng1847
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1038/nmeth.1785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002640757
    358 https://doi.org/10.1038/nmeth.1785
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1038/nmeth.2832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045762659
    361 https://doi.org/10.1038/nmeth.2832
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1186/1471-2105-11-288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023780871
    364 https://doi.org/10.1186/1471-2105-11-288
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1186/1471-2350-8-s1-s14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024227590
    367 https://doi.org/10.1186/1471-2350-8-s1-s14
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1002/dvdy.24316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051226873
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.1002/gepi.20308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012013482
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.1002/gepi.21797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001742959
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.1002/jbmr.1796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023518873
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.1002/jbmr.1830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051476622
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.1002/jbmr.5650040404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027211112
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.1002/jbmr.5650080102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002109790
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.1002/jbmr.5650090802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034966333
    384 rdf:type schema:CreativeWork
    385 https://doi.org/10.1002/jbmr.5650111022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029881238
    386 rdf:type schema:CreativeWork
    387 https://doi.org/10.1006/bbrc.1999.1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034812449
    388 rdf:type schema:CreativeWork
    389 https://doi.org/10.1016/j.ajhg.2008.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051878941
    390 rdf:type schema:CreativeWork
    391 https://doi.org/10.1016/j.ajhg.2010.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497006
    392 rdf:type schema:CreativeWork
    393 https://doi.org/10.1016/j.ajhg.2013.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000749622
    394 rdf:type schema:CreativeWork
    395 https://doi.org/10.1016/j.ajhg.2014.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033458502
    396 rdf:type schema:CreativeWork
    397 https://doi.org/10.1016/j.bone.2009.04.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006485679
    398 rdf:type schema:CreativeWork
    399 https://doi.org/10.1016/j.diff.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012970096
    400 rdf:type schema:CreativeWork
    401 https://doi.org/10.1016/j.steroids.2014.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031303724
    402 rdf:type schema:CreativeWork
    403 https://doi.org/10.1016/s0140-6736(08)60599-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044421127
    404 rdf:type schema:CreativeWork
    405 https://doi.org/10.1017/thg.2014.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038457582
    406 rdf:type schema:CreativeWork
    407 https://doi.org/10.1017/thg.2014.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032809734
    408 rdf:type schema:CreativeWork
    409 https://doi.org/10.1056/nejm199410203311604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028310559
    410 rdf:type schema:CreativeWork
    411 https://doi.org/10.1073/pnas.0904894106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011575455
    412 rdf:type schema:CreativeWork
    413 https://doi.org/10.1073/pnas.97.23.12729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042279120
    414 rdf:type schema:CreativeWork
    415 https://doi.org/10.1086/345819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058641214
    416 rdf:type schema:CreativeWork
    417 https://doi.org/10.1086/503711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783898
    418 rdf:type schema:CreativeWork
    419 https://doi.org/10.1093/bioinformatics/19.1.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013784960
    420 rdf:type schema:CreativeWork
    421 https://doi.org/10.1093/bioinformatics/btq419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490983
    422 rdf:type schema:CreativeWork
    423 https://doi.org/10.1093/bioinformatics/btv402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414419
    424 rdf:type schema:CreativeWork
    425 https://doi.org/10.1093/hmg/ddt575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031751289
    426 rdf:type schema:CreativeWork
    427 https://doi.org/10.1093/hmg/ddt675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044739592
    428 rdf:type schema:CreativeWork
    429 https://doi.org/10.1093/nar/gkr917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960118
    430 rdf:type schema:CreativeWork
    431 https://doi.org/10.1093/nar/gkt1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047459836
    432 rdf:type schema:CreativeWork
    433 https://doi.org/10.1101/gr.095224.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021365045
    434 rdf:type schema:CreativeWork
    435 https://doi.org/10.1101/gr.3577405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014343625
    436 rdf:type schema:CreativeWork
    437 https://doi.org/10.1111/j.1532-5415.2006.00985.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041563645
    438 rdf:type schema:CreativeWork
    439 https://doi.org/10.1126/science.1262110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029707840
    440 rdf:type schema:CreativeWork
    441 https://doi.org/10.1136/jmedgenet-2012-101287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018808681
    442 rdf:type schema:CreativeWork
    443 https://doi.org/10.1172/jci113125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041601809
    444 rdf:type schema:CreativeWork
    445 https://doi.org/10.1210/jc.2007-2397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064290366
    446 rdf:type schema:CreativeWork
    447 https://doi.org/10.1210/jc.2013-3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064294619
    448 rdf:type schema:CreativeWork
    449 https://doi.org/10.1210/jcem-72-2-401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064316645
    450 rdf:type schema:CreativeWork
    451 https://doi.org/10.1242/dev.057166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034234348
    452 rdf:type schema:CreativeWork
    453 https://doi.org/10.1359/jbmr.1998.13.1.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047326434
    454 rdf:type schema:CreativeWork
    455 https://doi.org/10.1359/jbmr.2000.15.7.1243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052792621
    456 rdf:type schema:CreativeWork
    457 https://doi.org/10.1371/journal.pgen.1002707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015924562
    458 rdf:type schema:CreativeWork
    459 https://doi.org/10.1371/journal.pone.0006827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032581575
    460 rdf:type schema:CreativeWork
    461 https://doi.org/10.1371/journal.pone.0028031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040839129
    462 rdf:type schema:CreativeWork
    463 https://doi.org/10.1375/twin.9.6.899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013288617
    464 rdf:type schema:CreativeWork
    465 https://doi.org/10.7326/0003-4819-151-8-200910200-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073711086
    466 rdf:type schema:CreativeWork
    467 https://www.grid.ac/institutes/grid.1012.2 schema:alternateName University of Western Australia
    468 schema:name Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia
    469 School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia
    470 rdf:type schema:Organization
    471 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
    472 schema:name Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia
    473 Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
    474 Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, Canada
    475 MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
    476 NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
    477 School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia
    478 rdf:type schema:Organization
    479 https://www.grid.ac/institutes/grid.3521.5 schema:alternateName Sir Charles Gairdner Hospital
    480 schema:name Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia
    481 rdf:type schema:Organization
    482 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
    483 schema:name Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
    484 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...