Changes in correlation between promoter methylation and gene expression in cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Matahi Moarii, Valentina Boeva, Jean-Philippe Vert, Fabien Reyal

ABSTRACT

BACKGROUND: Methylation of high-density CpG regions known as CpG Islands (CGIs) has been widely described as a mechanism associated with gene expression regulation. Aberrant promoter methylation is considered a hallmark of cancer involved in silencing of tumor suppressor genes and activation of oncogenes. However, recent studies have also challenged the simple model of gene expression control by promoter methylation in cancer, and the precise mechanism of and role played by changes in DNA methylation in carcinogenesis remains elusive. RESULTS: Using a large dataset of 672 matched cancerous and healthy methylomes, gene expression, and copy number profiles accross 3 types of tissues from The Cancer Genome Atlas (TCGA), we perform a detailed meta-analysis to clarify the interplay between promoter methylation and gene expression in normal and cancer samples. On the one hand, we recover the existence of a CpG island methylator phenotype (CIMP) with prognostic value in a subset of breast, colon and lung cancer samples, where a common subset of promoter CGIs hypomethylated in normal samples become hypermethylated. However, this hypermethylation is not accompanied by a decrease in expression of the corresponding genes, which are already lowly expressed in the normal genes. On the other hand, we identify tissue-specific sets of genes, different between normal and cancer samples, whose inter-individual variation in expression is significantly correlated with the variation in methylation of the 3' flanking regions of the promoter CGIs. These subsets of genes are not the same in the different tissues, nor between normal and cancerous samples, but transcription factors are over-represented in all subsets. CONCLUSION: Our results suggest that epigenetic reprogramming in cancer does not contribute to cancer development via direct inhibition of gene expression through promoter hypermethylation. It may instead modify how the expression of a few specific genes, particularly transcription factors, are associated with DNA methylation variations in a tissue-dependent manner. More... »

PAGES

873

References to SciGraph publications

  • 2013-11. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition in CELL RESEARCH
  • 1993-12. Role for DNA methylation in genomic imprinting in NATURE
  • 2009-11. Human DNA methylomes at base resolution show widespread epigenomic differences in NATURE
  • 2014-08. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors in GENOME MEDICINE
  • 2013-03. DNA methylation: roles in mammalian development in NATURE REVIEWS GENETICS
  • 2008-01. Method of the Year in NATURE METHODS
  • 2008-08. Genome-scale DNA methylation maps of pluripotent and differentiated cells in NATURE
  • 2002-08. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future in ONCOGENE
  • 2009-02. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores in NATURE GENETICS
  • 2006-02. Evidence for an instructive mechanism of de novo methylation in cancer cells in NATURE GENETICS
  • 2008-07. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2007-04. Curve Matching, Time Warping, and Light Fields: New Algorithms for Computing Similarity between Curves in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2009-04. A census of human transcription factors: function, expression and evolution in NATURE REVIEWS GENETICS
  • 2013-07. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host in NATURE REVIEWS CANCER
  • 2002-08. DNA methylation in cancer: too much, but also too little in ONCOGENE
  • 2012-10. Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns in GENOME BIOLOGY
  • 2006-05. GenePattern 2.0 in NATURE GENETICS
  • 1999. Scaling up Dynamic Time Warping to Massive Datasets in PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY
  • 2012-10. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-015-1994-2

    DOI

    http://dx.doi.org/10.1186/s12864-015-1994-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019195300

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26510534


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French Institute of Health and Medical Research", 
              "id": "https://www.grid.ac/institutes/grid.7429.8", 
              "name": [
                "CBIO-Centre for Computational Biology, Mines Paristech, PSL-Research University, 35 Rue Saint-Honore, F-77300, Fontainebleau, France", 
                "Department of Bioinformatics, Biostatistics and System Biology, Institut Curie, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France", 
                "U900, INSERM, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moarii", 
            "givenName": "Matahi", 
            "id": "sg:person.01240772774.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240772774.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French Institute of Health and Medical Research", 
              "id": "https://www.grid.ac/institutes/grid.7429.8", 
              "name": [
                "CBIO-Centre for Computational Biology, Mines Paristech, PSL-Research University, 35 Rue Saint-Honore, F-77300, Fontainebleau, France", 
                "Department of Bioinformatics, Biostatistics and System Biology, Institut Curie, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France", 
                "U900, INSERM, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boeva", 
            "givenName": "Valentina", 
            "id": "sg:person.0605545042.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605545042.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French Institute of Health and Medical Research", 
              "id": "https://www.grid.ac/institutes/grid.7429.8", 
              "name": [
                "CBIO-Centre for Computational Biology, Mines Paristech, PSL-Research University, 35 Rue Saint-Honore, F-77300, Fontainebleau, France", 
                "Department of Bioinformatics, Biostatistics and System Biology, Institut Curie, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France", 
                "U900, INSERM, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vert", 
            "givenName": "Jean-Philippe", 
            "id": "sg:person.01026504662.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026504662.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute Curie", 
              "id": "https://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "UMR932, Immunity and Cancer Team, Institut Curie, 26 Rue d\u2019Ulm, 75006, Paris, France", 
                "Department of Translational Research, Residual Tumor and Response to Treatment Team, Institut Curie, 26 Rue d\u2019Ulm, 75006, Paris, France", 
                "Department of Surgery, Institut Curie, 26 Rue d\u2019Ulm, 75006, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reyal", 
            "givenName": "Fabien", 
            "id": "sg:person.01104374270.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104374270.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature08514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001394004", 
              "https://doi.org/10.1038/nature08514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001394004", 
              "https://doi.org/10.1038/nature08514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001449742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddp011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001462470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddp011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001462470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-006-0647-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001579410", 
              "https://doi.org/10.1007/s10851-006-0647-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/omi.2011.0118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003008024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003944263", 
              "https://doi.org/10.1038/nmeth1153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddn308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004396087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)80599-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004510944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48247-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005141323", 
              "https://doi.org/10.1007/978-3-540-48247-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48247-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005141323", 
              "https://doi.org/10.1007/978-3-540-48247-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbagrm.2013.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006484526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bies.201300130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006970690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008244927", 
              "https://doi.org/10.1038/nature07107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1169786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010093223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1169786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010093223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-11-2023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010886279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.101907.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012488301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014738511", 
              "https://doi.org/10.1038/nrc3486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.15.8681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014931389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016511715", 
              "https://doi.org/10.1038/nrg3354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.147942.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017020136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017063597", 
              "https://doi.org/10.1038/ng1719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017063597", 
              "https://doi.org/10.1038/ng1719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019338154", 
              "https://doi.org/10.1038/sj.onc.1205600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019338154", 
              "https://doi.org/10.1038/sj.onc.1205600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-10-r83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019663380", 
              "https://doi.org/10.1186/gb-2012-13-10-r83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1013224108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020116320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bfgp/els063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020237064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/366362a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020585492", 
              "https://doi.org/10.1038/366362a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ceb.2012.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021473447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/279069.279132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028540261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/279069.279132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028540261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2011.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029288477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1043-2760(00)00248-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030216511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030818607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1136678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031480762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032369744", 
              "https://doi.org/10.1038/ng.298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0506-500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033189636", 
              "https://doi.org/10.1038/ng0506-500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0506-500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033189636", 
              "https://doi.org/10.1038/ng0506-500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-10-r84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033852568", 
              "https://doi.org/10.1186/gb-2012-13-10-r84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033974084", 
              "https://doi.org/10.1038/sj.onc.1205651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033974084", 
              "https://doi.org/10.1038/sj.onc.1205651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4172/2153-0769.1000126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034832465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041043638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-380866-0.60002-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043706571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-10-3394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044465764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2013.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044972830", 
              "https://doi.org/10.1038/cr.2013.110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045760693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-12-4306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046776306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047820135", 
              "https://doi.org/10.1038/nrg2538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047820135", 
              "https://doi.org/10.1038/nrg2538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/epi.20837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049275210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-014-0061-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052049190", 
              "https://doi.org/10.1186/s13073-014-0061-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-014-0061-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052049190", 
              "https://doi.org/10.1186/s13073-014-0061-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052072352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1970.10488635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058284124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1958.10501452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058299418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2004.07.151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064204177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/000113403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069096162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/epi.29315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072302804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075024929", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/3.suppl_1.1487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082534655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.1994.323830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095494322"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: Methylation of high-density CpG regions known as CpG Islands (CGIs) has been widely described as a mechanism associated with gene expression regulation. Aberrant promoter methylation is considered a hallmark of cancer involved in silencing of tumor suppressor genes and activation of oncogenes. However, recent studies have also challenged the simple model of gene expression control by promoter methylation in cancer, and the precise mechanism of and role played by changes in DNA methylation in carcinogenesis remains elusive.\nRESULTS: Using a large dataset of 672 matched cancerous and healthy methylomes, gene expression, and copy number profiles accross 3 types of tissues from The Cancer Genome Atlas (TCGA), we perform a detailed meta-analysis to clarify the interplay between promoter methylation and gene expression in normal and cancer samples. On the one hand, we recover the existence of a CpG island methylator phenotype (CIMP) with prognostic value in a subset of breast, colon and lung cancer samples, where a common subset of promoter CGIs hypomethylated in normal samples become hypermethylated. However, this hypermethylation is not accompanied by a decrease in expression of the corresponding genes, which are already lowly expressed in the normal genes. On the other hand, we identify tissue-specific sets of genes, different between normal and cancer samples, whose inter-individual variation in expression is significantly correlated with the variation in methylation of the 3' flanking regions of the promoter CGIs. These subsets of genes are not the same in the different tissues, nor between normal and cancerous samples, but transcription factors are over-represented in all subsets.\nCONCLUSION: Our results suggest that epigenetic reprogramming in cancer does not contribute to cancer development via direct inhibition of gene expression through promoter hypermethylation. It may instead modify how the expression of a few specific genes, particularly transcription factors, are associated with DNA methylation variations in a tissue-dependent manner.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12864-015-1994-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3785250", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Changes in correlation between promoter methylation and gene expression in cancer", 
        "pagination": "873", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5b756092017e4cff051ced4cf9e85f75b751eb20b609f646b14f0efe848ecf99"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26510534"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-015-1994-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019195300"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-015-1994-2", 
          "https://app.dimensions.ai/details/publication/pub.1019195300"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs12864-015-1994-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1994-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1994-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1994-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1994-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      21 PREDICATES      89 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-015-1994-2 schema:about N0a8a3a305f3a4e8dad5f40b6fc8d42fa
    2 N4bdc6e469080426a9c30b74a4dca64c6
    3 Nccb978d5b91047268087550b62d7ed32
    4 Ne02bc96046b24445aeee394986336d10
    5 Nfff0164c4cd5499797ff217dbe9bce29
    6 anzsrc-for:06
    7 anzsrc-for:0604
    8 schema:author Naa6d6adc8b524d4ebe426c9e7dd2020e
    9 schema:citation sg:pub.10.1007/978-3-540-48247-5_1
    10 sg:pub.10.1007/s10851-006-0647-0
    11 sg:pub.10.1038/366362a0
    12 sg:pub.10.1038/cr.2013.110
    13 sg:pub.10.1038/nature07107
    14 sg:pub.10.1038/nature08514
    15 sg:pub.10.1038/ng.298
    16 sg:pub.10.1038/ng0506-500
    17 sg:pub.10.1038/ng1719
    18 sg:pub.10.1038/nmeth.1226
    19 sg:pub.10.1038/nmeth1153
    20 sg:pub.10.1038/nrc3486
    21 sg:pub.10.1038/nrg2538
    22 sg:pub.10.1038/nrg3354
    23 sg:pub.10.1038/sj.onc.1205600
    24 sg:pub.10.1038/sj.onc.1205651
    25 sg:pub.10.1186/gb-2012-13-10-r83
    26 sg:pub.10.1186/gb-2012-13-10-r84
    27 sg:pub.10.1186/s13073-014-0061-y
    28 https://app.dimensions.ai/details/publication/pub.1075024929
    29 https://doi.org/10.1002/bies.201300130
    30 https://doi.org/10.1016/b978-0-12-380866-0.60002-2
    31 https://doi.org/10.1016/j.bbagrm.2013.08.001
    32 https://doi.org/10.1016/j.ceb.2012.10.007
    33 https://doi.org/10.1016/j.ygeno.2011.07.007
    34 https://doi.org/10.1016/s0092-8674(00)80599-1
    35 https://doi.org/10.1016/s1043-2760(00)00248-4
    36 https://doi.org/10.1073/pnas.1013224108
    37 https://doi.org/10.1073/pnas.96.15.8681
    38 https://doi.org/10.1080/00401706.1970.10488635
    39 https://doi.org/10.1080/01621459.1958.10501452
    40 https://doi.org/10.1089/omi.2011.0118
    41 https://doi.org/10.1093/bfgp/els063
    42 https://doi.org/10.1093/bioinformatics/btp364
    43 https://doi.org/10.1093/hmg/3.suppl_1.1487
    44 https://doi.org/10.1093/hmg/ddn308
    45 https://doi.org/10.1093/hmg/ddp011
    46 https://doi.org/10.1093/nar/gkr053
    47 https://doi.org/10.1093/nar/gkr965
    48 https://doi.org/10.1093/nar/gkt482
    49 https://doi.org/10.1101/gr.101907.109
    50 https://doi.org/10.1101/gr.147942.112
    51 https://doi.org/10.1109/cvpr.1994.323830
    52 https://doi.org/10.1126/science.1136678
    53 https://doi.org/10.1126/science.1169786
    54 https://doi.org/10.1145/279069.279132
    55 https://doi.org/10.1158/0008-5472.can-11-2023
    56 https://doi.org/10.1158/0008-5472.can-12-4306
    57 https://doi.org/10.1158/1078-0432.ccr-10-3394
    58 https://doi.org/10.1200/jco.2004.07.151
    59 https://doi.org/10.18632/oncotarget.316
    60 https://doi.org/10.2144/000113403
    61 https://doi.org/10.4161/epi.20837
    62 https://doi.org/10.4161/epi.29315
    63 https://doi.org/10.4172/2153-0769.1000126
    64 schema:datePublished 2015-12
    65 schema:datePublishedReg 2015-12-01
    66 schema:description BACKGROUND: Methylation of high-density CpG regions known as CpG Islands (CGIs) has been widely described as a mechanism associated with gene expression regulation. Aberrant promoter methylation is considered a hallmark of cancer involved in silencing of tumor suppressor genes and activation of oncogenes. However, recent studies have also challenged the simple model of gene expression control by promoter methylation in cancer, and the precise mechanism of and role played by changes in DNA methylation in carcinogenesis remains elusive. RESULTS: Using a large dataset of 672 matched cancerous and healthy methylomes, gene expression, and copy number profiles accross 3 types of tissues from The Cancer Genome Atlas (TCGA), we perform a detailed meta-analysis to clarify the interplay between promoter methylation and gene expression in normal and cancer samples. On the one hand, we recover the existence of a CpG island methylator phenotype (CIMP) with prognostic value in a subset of breast, colon and lung cancer samples, where a common subset of promoter CGIs hypomethylated in normal samples become hypermethylated. However, this hypermethylation is not accompanied by a decrease in expression of the corresponding genes, which are already lowly expressed in the normal genes. On the other hand, we identify tissue-specific sets of genes, different between normal and cancer samples, whose inter-individual variation in expression is significantly correlated with the variation in methylation of the 3' flanking regions of the promoter CGIs. These subsets of genes are not the same in the different tissues, nor between normal and cancerous samples, but transcription factors are over-represented in all subsets. CONCLUSION: Our results suggest that epigenetic reprogramming in cancer does not contribute to cancer development via direct inhibition of gene expression through promoter hypermethylation. It may instead modify how the expression of a few specific genes, particularly transcription factors, are associated with DNA methylation variations in a tissue-dependent manner.
    67 schema:genre research_article
    68 schema:inLanguage en
    69 schema:isAccessibleForFree true
    70 schema:isPartOf N4a889ed6c72b42fe9fa782de3550fecf
    71 Ne7c14d1a007d41b78249d1fa62524053
    72 sg:journal.1023790
    73 schema:name Changes in correlation between promoter methylation and gene expression in cancer
    74 schema:pagination 873
    75 schema:productId N093b301c0dd74af6b84bd1b7fa68f528
    76 N2a16b78a48e74d0188b8f74c934864c2
    77 N7a51b0b3ed45412a8ce5c912bf65e9dc
    78 N7fadd0eec9f14a16994c57d90616fef0
    79 N89d0ca3ce873495b96007f04d80d1338
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019195300
    81 https://doi.org/10.1186/s12864-015-1994-2
    82 schema:sdDatePublished 2019-04-10T15:51
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher Nfef6e5da7fab4e2c8016d6574db4558b
    85 schema:url http://link.springer.com/10.1186%2Fs12864-015-1994-2
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N093b301c0dd74af6b84bd1b7fa68f528 schema:name pubmed_id
    90 schema:value 26510534
    91 rdf:type schema:PropertyValue
    92 N0a8a3a305f3a4e8dad5f40b6fc8d42fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Promoter Regions, Genetic
    94 rdf:type schema:DefinedTerm
    95 N1e710ff5940541dcbc5322f320380334 rdf:first sg:person.01026504662.21
    96 rdf:rest N4c7682613dcd484086fbd5a1d2d89a65
    97 N2a16b78a48e74d0188b8f74c934864c2 schema:name nlm_unique_id
    98 schema:value 100965258
    99 rdf:type schema:PropertyValue
    100 N4a889ed6c72b42fe9fa782de3550fecf schema:issueNumber 1
    101 rdf:type schema:PublicationIssue
    102 N4bdc6e469080426a9c30b74a4dca64c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name DNA Methylation
    104 rdf:type schema:DefinedTerm
    105 N4c7682613dcd484086fbd5a1d2d89a65 rdf:first sg:person.01104374270.94
    106 rdf:rest rdf:nil
    107 N7a51b0b3ed45412a8ce5c912bf65e9dc schema:name doi
    108 schema:value 10.1186/s12864-015-1994-2
    109 rdf:type schema:PropertyValue
    110 N7fadd0eec9f14a16994c57d90616fef0 schema:name readcube_id
    111 schema:value 5b756092017e4cff051ced4cf9e85f75b751eb20b609f646b14f0efe848ecf99
    112 rdf:type schema:PropertyValue
    113 N89d0ca3ce873495b96007f04d80d1338 schema:name dimensions_id
    114 schema:value pub.1019195300
    115 rdf:type schema:PropertyValue
    116 Naa6d6adc8b524d4ebe426c9e7dd2020e rdf:first sg:person.01240772774.09
    117 rdf:rest Ncda1d26a35ca4b83a0512206a1b3546d
    118 Nccb978d5b91047268087550b62d7ed32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Humans
    120 rdf:type schema:DefinedTerm
    121 Ncda1d26a35ca4b83a0512206a1b3546d rdf:first sg:person.0605545042.07
    122 rdf:rest N1e710ff5940541dcbc5322f320380334
    123 Ne02bc96046b24445aeee394986336d10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Gene Expression Regulation, Neoplastic
    125 rdf:type schema:DefinedTerm
    126 Ne7c14d1a007d41b78249d1fa62524053 schema:volumeNumber 16
    127 rdf:type schema:PublicationVolume
    128 Nfef6e5da7fab4e2c8016d6574db4558b schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 Nfff0164c4cd5499797ff217dbe9bce29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Neoplasms
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Biological Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Genetics
    138 rdf:type schema:DefinedTerm
    139 sg:grant.3785250 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-015-1994-2
    140 rdf:type schema:MonetaryGrant
    141 sg:journal.1023790 schema:issn 1471-2164
    142 schema:name BMC Genomics
    143 rdf:type schema:Periodical
    144 sg:person.01026504662.21 schema:affiliation https://www.grid.ac/institutes/grid.7429.8
    145 schema:familyName Vert
    146 schema:givenName Jean-Philippe
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026504662.21
    148 rdf:type schema:Person
    149 sg:person.01104374270.94 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
    150 schema:familyName Reyal
    151 schema:givenName Fabien
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104374270.94
    153 rdf:type schema:Person
    154 sg:person.01240772774.09 schema:affiliation https://www.grid.ac/institutes/grid.7429.8
    155 schema:familyName Moarii
    156 schema:givenName Matahi
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240772774.09
    158 rdf:type schema:Person
    159 sg:person.0605545042.07 schema:affiliation https://www.grid.ac/institutes/grid.7429.8
    160 schema:familyName Boeva
    161 schema:givenName Valentina
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605545042.07
    163 rdf:type schema:Person
    164 sg:pub.10.1007/978-3-540-48247-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005141323
    165 https://doi.org/10.1007/978-3-540-48247-5_1
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10851-006-0647-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001579410
    168 https://doi.org/10.1007/s10851-006-0647-0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/366362a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020585492
    171 https://doi.org/10.1038/366362a0
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/cr.2013.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044972830
    174 https://doi.org/10.1038/cr.2013.110
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nature07107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008244927
    177 https://doi.org/10.1038/nature07107
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nature08514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001394004
    180 https://doi.org/10.1038/nature08514
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ng.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032369744
    183 https://doi.org/10.1038/ng.298
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ng0506-500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033189636
    186 https://doi.org/10.1038/ng0506-500
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ng1719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017063597
    189 https://doi.org/10.1038/ng1719
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    192 https://doi.org/10.1038/nmeth.1226
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmeth1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003944263
    195 https://doi.org/10.1038/nmeth1153
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nrc3486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014738511
    198 https://doi.org/10.1038/nrc3486
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nrg2538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047820135
    201 https://doi.org/10.1038/nrg2538
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nrg3354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016511715
    204 https://doi.org/10.1038/nrg3354
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/sj.onc.1205600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019338154
    207 https://doi.org/10.1038/sj.onc.1205600
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/sj.onc.1205651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033974084
    210 https://doi.org/10.1038/sj.onc.1205651
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/gb-2012-13-10-r83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019663380
    213 https://doi.org/10.1186/gb-2012-13-10-r83
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/gb-2012-13-10-r84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033852568
    216 https://doi.org/10.1186/gb-2012-13-10-r84
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/s13073-014-0061-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052049190
    219 https://doi.org/10.1186/s13073-014-0061-y
    220 rdf:type schema:CreativeWork
    221 https://app.dimensions.ai/details/publication/pub.1075024929 schema:CreativeWork
    222 https://doi.org/10.1002/bies.201300130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006970690
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/b978-0-12-380866-0.60002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043706571
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.bbagrm.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006484526
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.ceb.2012.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021473447
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.ygeno.2011.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029288477
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/s0092-8674(00)80599-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004510944
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/s1043-2760(00)00248-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030216511
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1073/pnas.1013224108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020116320
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.96.15.8681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014931389
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1080/00401706.1970.10488635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284124
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1080/01621459.1958.10501452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299418
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1089/omi.2011.0118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003008024
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/bfgp/els063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020237064
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/bioinformatics/btp364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041043638
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/hmg/3.suppl_1.1487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082534655
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/hmg/ddn308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004396087
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/hmg/ddp011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001462470
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/nar/gkr053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001449742
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/nar/gkr965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045760693
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/gkt482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052072352
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1101/gr.101907.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012488301
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1101/gr.147942.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017020136
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1109/cvpr.1994.323830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095494322
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1126/science.1136678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031480762
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1126/science.1169786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010093223
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1145/279069.279132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540261
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1158/0008-5472.can-11-2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010886279
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1158/0008-5472.can-12-4306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046776306
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1158/1078-0432.ccr-10-3394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044465764
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1200/jco.2004.07.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204177
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.18632/oncotarget.316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030818607
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.2144/000113403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096162
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.4161/epi.20837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049275210
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.4161/epi.29315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072302804
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.4172/2153-0769.1000126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034832465
    291 rdf:type schema:CreativeWork
    292 https://www.grid.ac/institutes/grid.418596.7 schema:alternateName Institute Curie
    293 schema:name Department of Surgery, Institut Curie, 26 Rue d’Ulm, 75006, Paris, France
    294 Department of Translational Research, Residual Tumor and Response to Treatment Team, Institut Curie, 26 Rue d’Ulm, 75006, Paris, France
    295 UMR932, Immunity and Cancer Team, Institut Curie, 26 Rue d’Ulm, 75006, Paris, France
    296 rdf:type schema:Organization
    297 https://www.grid.ac/institutes/grid.7429.8 schema:alternateName French Institute of Health and Medical Research
    298 schema:name CBIO-Centre for Computational Biology, Mines Paristech, PSL-Research University, 35 Rue Saint-Honore, F-77300, Fontainebleau, France
    299 Department of Bioinformatics, Biostatistics and System Biology, Institut Curie, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France
    300 U900, INSERM, 11-13 Rue Pierre et Marie Curie, F-75248, Paris, France
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...