Identifying and characterising key alternative splicing events in Drosophila development View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-08-16

AUTHORS

Jonathan G. Lees, Juan A. Ranea, Christine A. Orengo

ABSTRACT

BACKGROUND: In complex Metazoans a given gene frequently codes for multiple protein isoforms, through processes such as alternative splicing. Large scale functional annotation of these isoforms is a key challenge for functional genomics. This annotation gap is increasing with the large numbers of multi transcript genes being identified by technologies such as RNASeq. Furthermore attempts to characterise the functions of splicing in an organism are complicated by the difficulty in distinguishing functional isoforms from those produced by splicing errors or transcription noise. Tools to help prioritise candidate isoforms for testing are largely absent. RESULTS: In this study we implement a Time-course Switch (TS) score for ranking isoforms by their likelihood of producing additional functions based on their developmental expression profiles, as reported by modENCODE. The TS score allows us to better investigate functional roles of different isoforms expressed in multi transcript genes. From this analysis, we find that isoforms with high TS scores have sequence feature changes consistent with more deterministic splicing and functional changes and tend to gain domains or whole exons which could carry additional functions. Furthermore these functions appear to be particularly important for essential regulatory roles, establishing functional isoform switching as key for regulatory processes. Based on the TS score we develop a Transcript Annotations Pipeline for Alternative Splicing (TAPAS) that identifies functional neighbourhoods of potentially interesting isoforms. CONCLUSIONS: We have identified a subset of protein isoforms which appear to have high functional significance, particularly in regulation. This has been made possible through the development of novel methods that make use of transcript expression profiles. The methods and analyses we present here represent important first steps in the development of tools to address the near complete lack of isoform specific function annotation. In turn the tools allow us to better characterise the regulatory functions of alternative splicing in more detail. More... »

PAGES

608

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2009-02-03. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists in BMC BIOINFORMATICS
  • 2013-07-01. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene in GENOME BIOLOGY
  • 2010-05-02. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms in NATURE BIOTECHNOLOGY
  • 2014-04-11. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism in NATURE COMMUNICATIONS
  • 2013-04-25. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2013-01-27. A large-scale evaluation of computational protein function prediction in NATURE METHODS
  • 2011-12-19. The relationship between proteome size, structural disorder and organism complexity in GENOME BIOLOGY
  • 2013-12-21. A new computational strategy for predicting essential genes in BMC GENOMICS
  • 2013-06-23. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons in NATURE NEUROSCIENCE
  • 2004-01-28. Creation of EcR isoform-specific mutations in Drosophila melanogaster via local P element transposition, imprecise P element excision, and male recombination in MOLECULAR GENETICS AND GENOMICS
  • 2010-12-22. The Developmental Transcriptome of Drosophila melanogaster in NATURE
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12864-015-1674-2

    DOI

    http://dx.doi.org/10.1186/s12864-015-1674-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017077488

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26275604


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alternative Splicing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila melanogaster", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Developmental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Isoforms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK", 
              "id": "http://www.grid.ac/institutes/grid.509978.a", 
              "name": [
                "Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lees", 
            "givenName": "Jonathan G.", 
            "id": "sg:person.0773671220.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773671220.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Biology and Biochemistry\u2013CIBER de Enfermedades Raras, University of Malaga, Malaga, 29071 Spain", 
              "id": "http://www.grid.ac/institutes/grid.10215.37", 
              "name": [
                "Department of Molecular Biology and Biochemistry\u2013CIBER de Enfermedades Raras, University of Malaga, Malaga, 29071 Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ranea", 
            "givenName": "Juan A.", 
            "id": "sg:person.01255337153.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255337153.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK", 
              "id": "http://www.grid.ac/institutes/grid.509978.a", 
              "name": [
                "Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orengo", 
            "givenName": "Christine A.", 
            "id": "sg:person.01136244107.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms4650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499276", 
              "https://doi.org/10.1038/ncomms4650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032938366", 
              "https://doi.org/10.1038/nn.3438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002016129", 
              "https://doi.org/10.1186/1471-2164-14-910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035095", 
              "https://doi.org/10.1038/nbt.1621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048544728", 
              "https://doi.org/10.1186/1471-2105-10-48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046100259", 
              "https://doi.org/10.1038/nmeth.2340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-7-r70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000906548", 
              "https://doi.org/10.1186/gb-2013-14-7-r70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-12-r120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000586291", 
              "https://doi.org/10.1186/gb-2011-12-12-r120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-004-0976-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051522322", 
              "https://doi.org/10.1007/s00438-004-0976-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031240109", 
              "https://doi.org/10.1038/nature09715"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-08-16", 
        "datePublishedReg": "2015-08-16", 
        "description": "BACKGROUND: In complex Metazoans a given gene frequently codes for multiple protein isoforms, through processes such as alternative splicing. Large scale functional annotation of these isoforms is a key challenge for functional genomics. This annotation gap is increasing with the large numbers of multi transcript genes being identified by technologies such as RNASeq. Furthermore attempts to characterise the functions of splicing in an organism are complicated by the difficulty in distinguishing functional isoforms from those produced by splicing errors or transcription noise. Tools to help prioritise candidate isoforms for testing are largely absent.\nRESULTS: In this study we implement a Time-course Switch (TS) score for ranking isoforms by their likelihood of producing additional functions based on their developmental expression profiles, as reported by modENCODE. The TS score allows us to better investigate functional roles of different isoforms expressed in multi transcript genes. From this analysis, we find that isoforms with high TS scores have sequence feature changes consistent with more deterministic splicing and functional changes and tend to gain domains or whole exons which could carry additional functions. Furthermore these functions appear to be particularly important for essential regulatory roles, establishing functional isoform switching as key for regulatory processes. Based on the TS score we develop a Transcript Annotations Pipeline for Alternative Splicing (TAPAS) that identifies functional neighbourhoods of potentially interesting isoforms.\nCONCLUSIONS: We have identified a subset of protein isoforms which appear to have high functional significance, particularly in regulation. This has been made possible through the development of novel methods that make use of transcript expression profiles. The methods and analyses we present here represent important first steps in the development of tools to address the near complete lack of isoform specific function annotation. In turn the tools allow us to better characterise the regulatory functions of alternative splicing in more detail.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12864-015-1674-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3864644", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3783981", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023790", 
            "issn": [
              "1471-2164"
            ], 
            "name": "BMC Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "alternative splicing", 
          "protein isoforms", 
          "key alternative splicing events", 
          "functional isoforms", 
          "expression profiles", 
          "transcript gene", 
          "large-scale functional annotation", 
          "multiple protein isoforms", 
          "alternative splicing events", 
          "additional functions", 
          "developmental expression profiles", 
          "essential regulatory role", 
          "transcript expression profiles", 
          "high functional significance", 
          "Drosophila development", 
          "functional genomics", 
          "functional annotation", 
          "complex metazoans", 
          "splicing events", 
          "function annotation", 
          "annotation gap", 
          "annotation pipeline", 
          "functional neighborhoods", 
          "transcription noise", 
          "splicing", 
          "regulatory functions", 
          "regulatory role", 
          "candidate isoforms", 
          "different isoforms", 
          "functional role", 
          "genes", 
          "isoforms", 
          "functional significance", 
          "regulatory processes", 
          "whole exons", 
          "complete lack", 
          "annotation", 
          "modENCODE", 
          "development of tools", 
          "metazoans", 
          "genomics", 
          "RNAseq", 
          "important first step", 
          "exons", 
          "organisms", 
          "near complete lack", 
          "functional changes", 
          "regulation", 
          "function", 
          "role", 
          "large number", 
          "first step", 
          "domain", 
          "development", 
          "more detail", 
          "switch", 
          "changes", 
          "profile", 
          "analysis", 
          "tool", 
          "process", 
          "key", 
          "subset", 
          "events", 
          "pipeline", 
          "step", 
          "significance", 
          "TS score", 
          "number", 
          "lack", 
          "novel method", 
          "study", 
          "key challenges", 
          "detail", 
          "attempt", 
          "likelihood", 
          "challenges", 
          "use", 
          "method", 
          "feature changes", 
          "technology", 
          "gap", 
          "testing", 
          "difficulties", 
          "neighborhood", 
          "scores", 
          "error", 
          "noise", 
          "scale functional annotation", 
          "multi transcript genes", 
          "functions of splicing", 
          "Time-course Switch", 
          "high TS scores", 
          "sequence feature changes", 
          "deterministic splicing", 
          "Transcript Annotations Pipeline", 
          "interesting isoforms", 
          "isoform specific function annotation", 
          "specific function annotation"
        ], 
        "name": "Identifying and characterising key alternative splicing events in Drosophila development", 
        "pagination": "608", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017077488"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12864-015-1674-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26275604"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12864-015-1674-2", 
          "https://app.dimensions.ai/details/publication/pub.1017077488"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_672.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12864-015-1674-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1674-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1674-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1674-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1674-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      22 PREDICATES      147 URIs      126 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12864-015-1674-2 schema:about N127b2a08dd0247a7973340e649c4351e
    2 N571e0a23ddb8400aa12564929eb158d2
    3 N5d3b9e190df04dcf8a8b2d8e9d656fcf
    4 N73bf15b4c197456798828547e4a0d94e
    5 Nbbae05e86a2546a88d82d81d7ac00578
    6 Nd9cc6249eb9f4c80b7d157a18fb527ae
    7 Ndc35337dc8ab47db82641c3658ef0350
    8 Need1c2927e69454197166011e9f5ffae
    9 Nfeed28b6c3ee4af78c1d407ea0fe3af4
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N6f3d834ee85e455b9a6fb4b9f882e2e9
    13 schema:citation sg:pub.10.1007/s00438-004-0976-x
    14 sg:pub.10.1038/75556
    15 sg:pub.10.1038/nature09715
    16 sg:pub.10.1038/nbt.1621
    17 sg:pub.10.1038/ncomms4650
    18 sg:pub.10.1038/nmeth.1923
    19 sg:pub.10.1038/nmeth.2340
    20 sg:pub.10.1038/nn.3438
    21 sg:pub.10.1186/1471-2105-10-48
    22 sg:pub.10.1186/1471-2164-14-910
    23 sg:pub.10.1186/gb-2011-12-12-r120
    24 sg:pub.10.1186/gb-2013-14-4-r36
    25 sg:pub.10.1186/gb-2013-14-7-r70
    26 schema:datePublished 2015-08-16
    27 schema:datePublishedReg 2015-08-16
    28 schema:description BACKGROUND: In complex Metazoans a given gene frequently codes for multiple protein isoforms, through processes such as alternative splicing. Large scale functional annotation of these isoforms is a key challenge for functional genomics. This annotation gap is increasing with the large numbers of multi transcript genes being identified by technologies such as RNASeq. Furthermore attempts to characterise the functions of splicing in an organism are complicated by the difficulty in distinguishing functional isoforms from those produced by splicing errors or transcription noise. Tools to help prioritise candidate isoforms for testing are largely absent. RESULTS: In this study we implement a Time-course Switch (TS) score for ranking isoforms by their likelihood of producing additional functions based on their developmental expression profiles, as reported by modENCODE. The TS score allows us to better investigate functional roles of different isoforms expressed in multi transcript genes. From this analysis, we find that isoforms with high TS scores have sequence feature changes consistent with more deterministic splicing and functional changes and tend to gain domains or whole exons which could carry additional functions. Furthermore these functions appear to be particularly important for essential regulatory roles, establishing functional isoform switching as key for regulatory processes. Based on the TS score we develop a Transcript Annotations Pipeline for Alternative Splicing (TAPAS) that identifies functional neighbourhoods of potentially interesting isoforms. CONCLUSIONS: We have identified a subset of protein isoforms which appear to have high functional significance, particularly in regulation. This has been made possible through the development of novel methods that make use of transcript expression profiles. The methods and analyses we present here represent important first steps in the development of tools to address the near complete lack of isoform specific function annotation. In turn the tools allow us to better characterise the regulatory functions of alternative splicing in more detail.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N161f6e8752334538a539bfc5196682e7
    33 N4a2186c211274dce97c51189622b3182
    34 sg:journal.1023790
    35 schema:keywords Drosophila development
    36 RNAseq
    37 TS score
    38 Time-course Switch
    39 Transcript Annotations Pipeline
    40 additional functions
    41 alternative splicing
    42 alternative splicing events
    43 analysis
    44 annotation
    45 annotation gap
    46 annotation pipeline
    47 attempt
    48 candidate isoforms
    49 challenges
    50 changes
    51 complete lack
    52 complex metazoans
    53 detail
    54 deterministic splicing
    55 development
    56 development of tools
    57 developmental expression profiles
    58 different isoforms
    59 difficulties
    60 domain
    61 error
    62 essential regulatory role
    63 events
    64 exons
    65 expression profiles
    66 feature changes
    67 first step
    68 function
    69 function annotation
    70 functional annotation
    71 functional changes
    72 functional genomics
    73 functional isoforms
    74 functional neighborhoods
    75 functional role
    76 functional significance
    77 functions of splicing
    78 gap
    79 genes
    80 genomics
    81 high TS scores
    82 high functional significance
    83 important first step
    84 interesting isoforms
    85 isoform specific function annotation
    86 isoforms
    87 key
    88 key alternative splicing events
    89 key challenges
    90 lack
    91 large number
    92 large-scale functional annotation
    93 likelihood
    94 metazoans
    95 method
    96 modENCODE
    97 more detail
    98 multi transcript genes
    99 multiple protein isoforms
    100 near complete lack
    101 neighborhood
    102 noise
    103 novel method
    104 number
    105 organisms
    106 pipeline
    107 process
    108 profile
    109 protein isoforms
    110 regulation
    111 regulatory functions
    112 regulatory processes
    113 regulatory role
    114 role
    115 scale functional annotation
    116 scores
    117 sequence feature changes
    118 significance
    119 specific function annotation
    120 splicing
    121 splicing events
    122 step
    123 study
    124 subset
    125 switch
    126 technology
    127 testing
    128 tool
    129 transcript expression profiles
    130 transcript gene
    131 transcription noise
    132 use
    133 whole exons
    134 schema:name Identifying and characterising key alternative splicing events in Drosophila development
    135 schema:pagination 608
    136 schema:productId N90b08c857f0149d0acff0465da27303e
    137 N90c45898e6634d13a19a425538dba882
    138 Nd1b8a8fa9bf3411e9418967eb5d11e57
    139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017077488
    140 https://doi.org/10.1186/s12864-015-1674-2
    141 schema:sdDatePublished 2021-12-01T19:34
    142 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    143 schema:sdPublisher N0043d57cb5294ba7b3c6d520f527ed86
    144 schema:url https://doi.org/10.1186/s12864-015-1674-2
    145 sgo:license sg:explorer/license/
    146 sgo:sdDataset articles
    147 rdf:type schema:ScholarlyArticle
    148 N0043d57cb5294ba7b3c6d520f527ed86 schema:name Springer Nature - SN SciGraph project
    149 rdf:type schema:Organization
    150 N127b2a08dd0247a7973340e649c4351e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Algorithms
    152 rdf:type schema:DefinedTerm
    153 N161f6e8752334538a539bfc5196682e7 schema:issueNumber 1
    154 rdf:type schema:PublicationIssue
    155 N4a2186c211274dce97c51189622b3182 schema:volumeNumber 16
    156 rdf:type schema:PublicationVolume
    157 N571e0a23ddb8400aa12564929eb158d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Protein Isoforms
    159 rdf:type schema:DefinedTerm
    160 N5d3b9e190df04dcf8a8b2d8e9d656fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Gene Expression Regulation, Developmental
    162 rdf:type schema:DefinedTerm
    163 N6f3d834ee85e455b9a6fb4b9f882e2e9 rdf:first sg:person.0773671220.21
    164 rdf:rest Nf061af58f4f347d88de1267967121922
    165 N73bf15b4c197456798828547e4a0d94e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Databases, Genetic
    167 rdf:type schema:DefinedTerm
    168 N7622d0eeba6745f1af3ae2c57b672c40 rdf:first sg:person.01136244107.52
    169 rdf:rest rdf:nil
    170 N90b08c857f0149d0acff0465da27303e schema:name doi
    171 schema:value 10.1186/s12864-015-1674-2
    172 rdf:type schema:PropertyValue
    173 N90c45898e6634d13a19a425538dba882 schema:name dimensions_id
    174 schema:value pub.1017077488
    175 rdf:type schema:PropertyValue
    176 Nbbae05e86a2546a88d82d81d7ac00578 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Alternative Splicing
    178 rdf:type schema:DefinedTerm
    179 Nd1b8a8fa9bf3411e9418967eb5d11e57 schema:name pubmed_id
    180 schema:value 26275604
    181 rdf:type schema:PropertyValue
    182 Nd9cc6249eb9f4c80b7d157a18fb527ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Animals
    184 rdf:type schema:DefinedTerm
    185 Ndc35337dc8ab47db82641c3658ef0350 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Computational Biology
    187 rdf:type schema:DefinedTerm
    188 Need1c2927e69454197166011e9f5ffae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Drosophila melanogaster
    190 rdf:type schema:DefinedTerm
    191 Nf061af58f4f347d88de1267967121922 rdf:first sg:person.01255337153.71
    192 rdf:rest N7622d0eeba6745f1af3ae2c57b672c40
    193 Nfeed28b6c3ee4af78c1d407ea0fe3af4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name RNA, Messenger
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Biological Sciences
    198 rdf:type schema:DefinedTerm
    199 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Genetics
    201 rdf:type schema:DefinedTerm
    202 sg:grant.3783981 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-015-1674-2
    203 rdf:type schema:MonetaryGrant
    204 sg:grant.3864644 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-015-1674-2
    205 rdf:type schema:MonetaryGrant
    206 sg:journal.1023790 schema:issn 1471-2164
    207 schema:name BMC Genomics
    208 schema:publisher Springer Nature
    209 rdf:type schema:Periodical
    210 sg:person.01136244107.52 schema:affiliation grid-institutes:grid.509978.a
    211 schema:familyName Orengo
    212 schema:givenName Christine A.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52
    214 rdf:type schema:Person
    215 sg:person.01255337153.71 schema:affiliation grid-institutes:grid.10215.37
    216 schema:familyName Ranea
    217 schema:givenName Juan A.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255337153.71
    219 rdf:type schema:Person
    220 sg:person.0773671220.21 schema:affiliation grid-institutes:grid.509978.a
    221 schema:familyName Lees
    222 schema:givenName Jonathan G.
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773671220.21
    224 rdf:type schema:Person
    225 sg:pub.10.1007/s00438-004-0976-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051522322
    226 https://doi.org/10.1007/s00438-004-0976-x
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    229 https://doi.org/10.1038/75556
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nature09715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031240109
    232 https://doi.org/10.1038/nature09715
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
    235 https://doi.org/10.1038/nbt.1621
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/ncomms4650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499276
    238 https://doi.org/10.1038/ncomms4650
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    241 https://doi.org/10.1038/nmeth.1923
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nmeth.2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100259
    244 https://doi.org/10.1038/nmeth.2340
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nn.3438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032938366
    247 https://doi.org/10.1038/nn.3438
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1186/1471-2105-10-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048544728
    250 https://doi.org/10.1186/1471-2105-10-48
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1186/1471-2164-14-910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002016129
    253 https://doi.org/10.1186/1471-2164-14-910
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/gb-2011-12-12-r120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000586291
    256 https://doi.org/10.1186/gb-2011-12-12-r120
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    259 https://doi.org/10.1186/gb-2013-14-4-r36
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/gb-2013-14-7-r70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000906548
    262 https://doi.org/10.1186/gb-2013-14-7-r70
    263 rdf:type schema:CreativeWork
    264 grid-institutes:grid.10215.37 schema:alternateName Department of Molecular Biology and Biochemistry–CIBER de Enfermedades Raras, University of Malaga, Malaga, 29071 Spain
    265 schema:name Department of Molecular Biology and Biochemistry–CIBER de Enfermedades Raras, University of Malaga, Malaga, 29071 Spain
    266 rdf:type schema:Organization
    267 grid-institutes:grid.509978.a schema:alternateName Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK
    268 schema:name Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...