Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Bu-Yeo Kim, Dong Wook Choi, Seon Rang Woo, Eun-Ran Park, Je-Geun Lee, Su-Hyeon Kim, Imhoi Koo, Sun-Hoo Park, Chul Ju Han, Sang Bum Kim, Young Il Yeom, Suk-Jin Yang, Ami Yu, Jae Won Lee, Ja June Jang, Myung-Haing Cho, Won Kyung Jeon, Young Nyun Park, Kyung-Suk Suh, Kee-Ho Lee

ABSTRACT

BACKGROUND: Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence. RESULTS: By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm). CONCLUSIONS: Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers. More... »

PAGES

279

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12864-015-1472-x

DOI

http://dx.doi.org/10.1186/s12864-015-1472-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016288325

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25888140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepacivirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatitis B", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatitis B virus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute of Oriental Medicine", 
          "id": "https://www.grid.ac/institutes/grid.418980.c", 
          "name": [
            "Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Bu-Yeo", 
        "id": "sg:person.01175133302.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175133302.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea", 
            "Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Dong Wook", 
        "id": "sg:person.01052673515.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052673515.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woo", 
        "givenName": "Seon Rang", 
        "id": "sg:person.01037621750.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037621750.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea", 
            "Department of Pathology and BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Eun-Ran", 
        "id": "sg:person.0661121250.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661121250.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Je-Geun", 
        "id": "sg:person.01164047255.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164047255.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Su-Hyeon", 
        "id": "sg:person.01203302065.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203302065.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Louisville", 
          "id": "https://www.grid.ac/institutes/grid.266623.5", 
          "name": [
            "Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koo", 
        "givenName": "Imhoi", 
        "id": "sg:person.01027663040.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027663040.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sun-Hoo", 
        "id": "sg:person.01007476232.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007476232.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea", 
            "Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Chul Ju", 
        "id": "sg:person.0623004755.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623004755.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea", 
            "Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang Bum", 
        "id": "sg:person.0671120155.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671120155.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Research Institute of Bioscience and Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.249967.7", 
          "name": [
            "Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeom", 
        "givenName": "Young Il", 
        "id": "sg:person.01357241774.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357241774.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Research Institute of Bioscience and Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.249967.7", 
          "name": [
            "Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Suk-Jin", 
        "id": "sg:person.0642641120.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642641120.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Statistics, Korea University, Seoul, Korea", 
            "Korean Medicine Clinical Trial Center, Kyung Hee University Oriental Medicine Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Ami", 
        "id": "sg:person.0733601605.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733601605.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Statistics, Korea University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jae Won", 
        "id": "sg:person.07756303620.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07756303620.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Pathology, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Ja June", 
        "id": "sg:person.01102152417.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102152417.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Laboratory of Toxicology and Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Myung-Haing", 
        "id": "sg:person.01157351221.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157351221.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Oriental Medicine", 
          "id": "https://www.grid.ac/institutes/grid.418980.c", 
          "name": [
            "Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeon", 
        "givenName": "Won Kyung", 
        "id": "sg:person.01151131246.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151131246.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Pathology and BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Young Nyun", 
        "id": "sg:person.01156046121.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156046121.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Surgery, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Kyung-Suk", 
        "id": "sg:person.01166661455.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166661455.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Oriental Medicine", 
          "id": "https://www.grid.ac/institutes/grid.418980.c", 
          "name": [
            "Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea", 
            "Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kee-Ho", 
        "id": "sg:person.012770135764.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012770135764.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1476-4598-9-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000899714", 
          "https://doi.org/10.1186/1476-4598-9-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2004.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001079793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007077161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1993.tb00130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007295616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1993.tb00130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007295616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-aoas101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008688091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.110.207514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011777111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.110.207514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011777111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.cmr.0000215034.00318.7a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011859509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.cmr.0000215034.00318.7a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011859509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0804525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013129482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014180729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014180729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbadis.2004.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014387384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1478-3231.2007.01475.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017053565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1478-3231.2007.01475.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017053565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2012.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017407182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0007431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019843166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2008-12-193326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020402776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020667046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022211122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-011-1709-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022870681", 
          "https://doi.org/10.1245/s10434-011-1709-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023289758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.24291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024990793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2007.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025032500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-10-2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026376902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.20375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027532643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6605468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028221807", 
          "https://doi.org/10.1038/sj.bjc.6605468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6605468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028221807", 
          "https://doi.org/10.1038/sj.bjc.6605468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2010.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033887055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2004.03.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037962383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.24813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038517941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2199-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040062143", 
          "https://doi.org/10.1186/1471-2199-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2000.00337.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043727671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-1473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045013562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047937136", 
          "https://doi.org/10.1038/nm843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047937136", 
          "https://doi.org/10.1038/nm843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0032493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049504610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.24562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049722297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050418449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2005-871198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057448602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/187152012800228689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069218506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2009.7.jns081729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071074899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2009.7.jns081729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071074899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2009.7.jns081729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071074899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.14.6072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071360943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.29.2.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071516095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-0476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077039444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077811778", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078496046", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence.\nRESULTS: By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm).\nCONCLUSIONS: Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12864-015-1472-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7477549", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023790", 
        "issn": [
          "1471-2164"
        ], 
        "name": "BMC Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma", 
    "pagination": "279", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d9c3c5ec41622e36da3f23e3a438c944cecdffdf82b0afe9e0a17a340cbc81a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25888140"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12864-015-1472-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016288325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12864-015-1472-x", 
      "https://app.dimensions.ai/details/publication/pub.1016288325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12864-015-1472-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1472-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1472-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1472-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12864-015-1472-x'


 

This table displays all metadata directly associated to this object as RDF triples.

440 TRIPLES      21 PREDICATES      92 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12864-015-1472-x schema:about N08c7229f92154a9a9e4d365e4b66aad3
2 N124da1fcdccc4b32bcd5180acdca4db2
3 N2ee36d4210d241d19351929d5483d7ce
4 N2ff7461c5e96482f93747ab0c6b15898
5 N3339122b743747b7b9006d55a2a8da70
6 N483f16c60a954f8395d29deb5776c28c
7 N51ec79f3a88e4bc1a7cd5c8c4d72008b
8 N8785fe002fa74a3095895aa1c45bba30
9 N8854df9b6280400981fdafa380cd8399
10 N911f268726a94195bd3f0b094aaf63d3
11 N980a3d74513040958defafa16567f7e8
12 N99600861ee5e430294b213c820b4db72
13 Na258d865abe84d9ab85bbc5d47336f30
14 Na92e010e7e754d35942f2eb891371ad9
15 Nba4f298e5b0848cca35687cd28a55928
16 Nbe74373e838a45cc86e15778ff6ead55
17 Nd63769891111444ab6be628671d9a727
18 Nd70906e326c141dea0689b2251f135a2
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N3ab5c7d914c541ac8224511de246a074
22 schema:citation sg:pub.10.1038/nm843
23 sg:pub.10.1038/sj.bjc.6605468
24 sg:pub.10.1186/1471-2199-7-3
25 sg:pub.10.1186/1476-4598-9-74
26 sg:pub.10.1245/s10434-011-1709-0
27 https://app.dimensions.ai/details/publication/pub.1077811778
28 https://app.dimensions.ai/details/publication/pub.1078496046
29 https://doi.org/10.1002/hep.20375
30 https://doi.org/10.1002/hep.24291
31 https://doi.org/10.1002/hep.24562
32 https://doi.org/10.1002/hep.24813
33 https://doi.org/10.1002/ijc.24580
34 https://doi.org/10.1016/j.bbadis.2004.07.004
35 https://doi.org/10.1016/j.febslet.2004.03.081
36 https://doi.org/10.1016/j.jhep.2004.04.031
37 https://doi.org/10.1016/j.jhep.2010.05.019
38 https://doi.org/10.1016/j.jss.2007.07.013
39 https://doi.org/10.1016/j.ygeno.2012.04.004
40 https://doi.org/10.1055/s-2005-871198
41 https://doi.org/10.1056/nejmoa0804525
42 https://doi.org/10.1073/pnas.0506580102
43 https://doi.org/10.1073/pnas.95.25.14863
44 https://doi.org/10.1093/bioinformatics/19.2.185
45 https://doi.org/10.1093/bioinformatics/btm541
46 https://doi.org/10.1093/nar/30.4.e15
47 https://doi.org/10.1093/nar/gkm882
48 https://doi.org/10.1093/nar/gkn863
49 https://doi.org/10.1097/01.cmr.0000215034.00318.7a
50 https://doi.org/10.1111/j.0006-341x.2000.00337.x
51 https://doi.org/10.1111/j.1365-2559.1993.tb00130.x
52 https://doi.org/10.1111/j.1478-3231.2007.01475.x
53 https://doi.org/10.1158/0008-5472.can-05-0476
54 https://doi.org/10.1158/0008-5472.can-05-2277
55 https://doi.org/10.1158/0008-5472.can-10-2607
56 https://doi.org/10.1158/1078-0432.ccr-07-1473
57 https://doi.org/10.1161/atvbaha.110.207514
58 https://doi.org/10.1182/blood-2008-12-193326
59 https://doi.org/10.1214/07-aoas101
60 https://doi.org/10.1371/journal.pbio.0020108
61 https://doi.org/10.1371/journal.pone.0007431
62 https://doi.org/10.1371/journal.pone.0032493
63 https://doi.org/10.2174/187152012800228689
64 https://doi.org/10.3171/2009.7.jns081729
65 https://doi.org/10.3748/wjg.14.6072
66 https://doi.org/10.3892/ijo.29.2.315
67 schema:datePublished 2015-12
68 schema:datePublishedReg 2015-12-01
69 schema:description BACKGROUND: Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence. RESULTS: By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm). CONCLUSIONS: Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.
70 schema:genre research_article
71 schema:inLanguage en
72 schema:isAccessibleForFree true
73 schema:isPartOf Nac94c46b84c44dbe850d2c5797289116
74 Nb20706fd837d471b9c1dfa3988fb2b79
75 sg:journal.1023790
76 schema:name Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma
77 schema:pagination 279
78 schema:productId N6c2d63a4da5e41a2b9a6f3f99fa3c326
79 N87b6cfd81679452f8df30393ff9f11b5
80 N96dcd0fca88442f5a3de7f523ae9066d
81 Nb24957d295064956bdda082766d70d07
82 Ne51b7fc76265410a89f6f24a5a28e8a6
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016288325
84 https://doi.org/10.1186/s12864-015-1472-x
85 schema:sdDatePublished 2019-04-11T10:04
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Ncd3ac8a3602b440db94cf18f2757b89d
88 schema:url http://link.springer.com/10.1186%2Fs12864-015-1472-x
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N06abdfd6e79642fabb637ca760b21392 rdf:first sg:person.01203302065.20
93 rdf:rest N38e2425b56a4447eb52ba18f54256326
94 N08c7229f92154a9a9e4d365e4b66aad3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Hepacivirus
96 rdf:type schema:DefinedTerm
97 N0d3762ee998c4ff48f0d1ad0fb87699d rdf:first sg:person.01156046121.89
98 rdf:rest N951a70f8968340b0afdc509ea3b83a67
99 N124da1fcdccc4b32bcd5180acdca4db2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Hepatitis B
101 rdf:type schema:DefinedTerm
102 N177807832b354e24b1ac1f7445819f71 rdf:first sg:person.07756303620.20
103 rdf:rest N4e44eac67ae54261a0d47e50be1e6c3a
104 N1f4c0d370d25404fbb646aa741ec4f2f rdf:first sg:person.0661121250.47
105 rdf:rest N3fcc2f4175644934ae3e7797d15fec5d
106 N2ee36d4210d241d19351929d5483d7ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Adult
108 rdf:type schema:DefinedTerm
109 N2ff7461c5e96482f93747ab0c6b15898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Middle Aged
111 rdf:type schema:DefinedTerm
112 N3339122b743747b7b9006d55a2a8da70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Female
114 rdf:type schema:DefinedTerm
115 N38e2425b56a4447eb52ba18f54256326 rdf:first sg:person.01027663040.42
116 rdf:rest N63cbd0931e434661b8d56dc41305bb7b
117 N3ab5c7d914c541ac8224511de246a074 rdf:first sg:person.01175133302.08
118 rdf:rest Ne6b487e3d22544d6bcaf8b72b3c5b65f
119 N3fcc2f4175644934ae3e7797d15fec5d rdf:first sg:person.01164047255.89
120 rdf:rest N06abdfd6e79642fabb637ca760b21392
121 N483f16c60a954f8395d29deb5776c28c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Principal Component Analysis
123 rdf:type schema:DefinedTerm
124 N4e44eac67ae54261a0d47e50be1e6c3a rdf:first sg:person.01102152417.00
125 rdf:rest N599166625f1e4cdd9e21a20a0b7da443
126 N51ec79f3a88e4bc1a7cd5c8c4d72008b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Humans
128 rdf:type schema:DefinedTerm
129 N5348b13d4c144df4b60418221bfbe446 rdf:first sg:person.0623004755.80
130 rdf:rest Nbc8fe71ee28b4dbc90be3fc247eed5b4
131 N54b1bd90c1d740778827495426e89cd8 rdf:first sg:person.012770135764.22
132 rdf:rest rdf:nil
133 N599166625f1e4cdd9e21a20a0b7da443 rdf:first sg:person.01157351221.52
134 rdf:rest N75a509a1538f4e3eb51d4e79373a2427
135 N63cbd0931e434661b8d56dc41305bb7b rdf:first sg:person.01007476232.51
136 rdf:rest N5348b13d4c144df4b60418221bfbe446
137 N6c2d63a4da5e41a2b9a6f3f99fa3c326 schema:name readcube_id
138 schema:value 4d9c3c5ec41622e36da3f23e3a438c944cecdffdf82b0afe9e0a17a340cbc81a
139 rdf:type schema:PropertyValue
140 N75a509a1538f4e3eb51d4e79373a2427 rdf:first sg:person.01151131246.60
141 rdf:rest N0d3762ee998c4ff48f0d1ad0fb87699d
142 N8785fe002fa74a3095895aa1c45bba30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Carcinoma, Hepatocellular
144 rdf:type schema:DefinedTerm
145 N87b6cfd81679452f8df30393ff9f11b5 schema:name doi
146 schema:value 10.1186/s12864-015-1472-x
147 rdf:type schema:PropertyValue
148 N8854df9b6280400981fdafa380cd8399 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Hepatitis B virus
150 rdf:type schema:DefinedTerm
151 N911f268726a94195bd3f0b094aaf63d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Disease-Free Survival
153 rdf:type schema:DefinedTerm
154 N951a70f8968340b0afdc509ea3b83a67 rdf:first sg:person.01166661455.74
155 rdf:rest N54b1bd90c1d740778827495426e89cd8
156 N96dcd0fca88442f5a3de7f523ae9066d schema:name dimensions_id
157 schema:value pub.1016288325
158 rdf:type schema:PropertyValue
159 N980a3d74513040958defafa16567f7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Cluster Analysis
161 rdf:type schema:DefinedTerm
162 N99600861ee5e430294b213c820b4db72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Algorithms
164 rdf:type schema:DefinedTerm
165 Na258d865abe84d9ab85bbc5d47336f30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Male
167 rdf:type schema:DefinedTerm
168 Na92e010e7e754d35942f2eb891371ad9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Prognosis
170 rdf:type schema:DefinedTerm
171 Nac94c46b84c44dbe850d2c5797289116 schema:volumeNumber 16
172 rdf:type schema:PublicationVolume
173 Nb20706fd837d471b9c1dfa3988fb2b79 schema:issueNumber 1
174 rdf:type schema:PublicationIssue
175 Nb24957d295064956bdda082766d70d07 schema:name pubmed_id
176 schema:value 25888140
177 rdf:type schema:PropertyValue
178 Nba4f298e5b0848cca35687cd28a55928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Liver Neoplasms
180 rdf:type schema:DefinedTerm
181 Nbc8fe71ee28b4dbc90be3fc247eed5b4 rdf:first sg:person.0671120155.56
182 rdf:rest Nf7d1696e85bb4acd82f93bdbe066ea29
183 Nbe74373e838a45cc86e15778ff6ead55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Neoplasm Recurrence, Local
185 rdf:type schema:DefinedTerm
186 Ncd3ac8a3602b440db94cf18f2757b89d schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 Nd18b25107b0c4450beb49c0bb0bc2657 rdf:first sg:person.01037621750.32
189 rdf:rest N1f4c0d370d25404fbb646aa741ec4f2f
190 Nd63769891111444ab6be628671d9a727 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Risk
192 rdf:type schema:DefinedTerm
193 Nd70906e326c141dea0689b2251f135a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Databases, Factual
195 rdf:type schema:DefinedTerm
196 Nd87fa84046ca4a5db648b9d392fb654a rdf:first sg:person.0733601605.22
197 rdf:rest N177807832b354e24b1ac1f7445819f71
198 Ne51b7fc76265410a89f6f24a5a28e8a6 schema:name nlm_unique_id
199 schema:value 100965258
200 rdf:type schema:PropertyValue
201 Ne6b487e3d22544d6bcaf8b72b3c5b65f rdf:first sg:person.01052673515.72
202 rdf:rest Nd18b25107b0c4450beb49c0bb0bc2657
203 Nf0c3c8e25f594668a09d9fcb09ed9544 rdf:first sg:person.0642641120.46
204 rdf:rest Nd87fa84046ca4a5db648b9d392fb654a
205 Nf7d1696e85bb4acd82f93bdbe066ea29 rdf:first sg:person.01357241774.78
206 rdf:rest Nf0c3c8e25f594668a09d9fcb09ed9544
207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
208 schema:name Medical and Health Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
211 schema:name Oncology and Carcinogenesis
212 rdf:type schema:DefinedTerm
213 sg:grant.7477549 http://pending.schema.org/fundedItem sg:pub.10.1186/s12864-015-1472-x
214 rdf:type schema:MonetaryGrant
215 sg:journal.1023790 schema:issn 1471-2164
216 schema:name BMC Genomics
217 rdf:type schema:Periodical
218 sg:person.01007476232.51 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
219 schema:familyName Park
220 schema:givenName Sun-Hoo
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007476232.51
222 rdf:type schema:Person
223 sg:person.01027663040.42 schema:affiliation https://www.grid.ac/institutes/grid.266623.5
224 schema:familyName Koo
225 schema:givenName Imhoi
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027663040.42
227 rdf:type schema:Person
228 sg:person.01037621750.32 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
229 schema:familyName Woo
230 schema:givenName Seon Rang
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037621750.32
232 rdf:type schema:Person
233 sg:person.01052673515.72 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
234 schema:familyName Choi
235 schema:givenName Dong Wook
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052673515.72
237 rdf:type schema:Person
238 sg:person.01102152417.00 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
239 schema:familyName Jang
240 schema:givenName Ja June
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102152417.00
242 rdf:type schema:Person
243 sg:person.01151131246.60 schema:affiliation https://www.grid.ac/institutes/grid.418980.c
244 schema:familyName Jeon
245 schema:givenName Won Kyung
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151131246.60
247 rdf:type schema:Person
248 sg:person.01156046121.89 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
249 schema:familyName Park
250 schema:givenName Young Nyun
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156046121.89
252 rdf:type schema:Person
253 sg:person.01157351221.52 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
254 schema:familyName Cho
255 schema:givenName Myung-Haing
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157351221.52
257 rdf:type schema:Person
258 sg:person.01164047255.89 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
259 schema:familyName Lee
260 schema:givenName Je-Geun
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164047255.89
262 rdf:type schema:Person
263 sg:person.01166661455.74 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
264 schema:familyName Suh
265 schema:givenName Kyung-Suk
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166661455.74
267 rdf:type schema:Person
268 sg:person.01175133302.08 schema:affiliation https://www.grid.ac/institutes/grid.418980.c
269 schema:familyName Kim
270 schema:givenName Bu-Yeo
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175133302.08
272 rdf:type schema:Person
273 sg:person.01203302065.20 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
274 schema:familyName Kim
275 schema:givenName Su-Hyeon
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203302065.20
277 rdf:type schema:Person
278 sg:person.012770135764.22 schema:affiliation https://www.grid.ac/institutes/grid.418980.c
279 schema:familyName Lee
280 schema:givenName Kee-Ho
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012770135764.22
282 rdf:type schema:Person
283 sg:person.01357241774.78 schema:affiliation https://www.grid.ac/institutes/grid.249967.7
284 schema:familyName Yeom
285 schema:givenName Young Il
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357241774.78
287 rdf:type schema:Person
288 sg:person.0623004755.80 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
289 schema:familyName Han
290 schema:givenName Chul Ju
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623004755.80
292 rdf:type schema:Person
293 sg:person.0642641120.46 schema:affiliation https://www.grid.ac/institutes/grid.249967.7
294 schema:familyName Yang
295 schema:givenName Suk-Jin
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642641120.46
297 rdf:type schema:Person
298 sg:person.0661121250.47 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
299 schema:familyName Park
300 schema:givenName Eun-Ran
301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661121250.47
302 rdf:type schema:Person
303 sg:person.0671120155.56 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
304 schema:familyName Kim
305 schema:givenName Sang Bum
306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671120155.56
307 rdf:type schema:Person
308 sg:person.0733601605.22 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
309 schema:familyName Yu
310 schema:givenName Ami
311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733601605.22
312 rdf:type schema:Person
313 sg:person.07756303620.20 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
314 schema:familyName Lee
315 schema:givenName Jae Won
316 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07756303620.20
317 rdf:type schema:Person
318 sg:pub.10.1038/nm843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047937136
319 https://doi.org/10.1038/nm843
320 rdf:type schema:CreativeWork
321 sg:pub.10.1038/sj.bjc.6605468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028221807
322 https://doi.org/10.1038/sj.bjc.6605468
323 rdf:type schema:CreativeWork
324 sg:pub.10.1186/1471-2199-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040062143
325 https://doi.org/10.1186/1471-2199-7-3
326 rdf:type schema:CreativeWork
327 sg:pub.10.1186/1476-4598-9-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000899714
328 https://doi.org/10.1186/1476-4598-9-74
329 rdf:type schema:CreativeWork
330 sg:pub.10.1245/s10434-011-1709-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022870681
331 https://doi.org/10.1245/s10434-011-1709-0
332 rdf:type schema:CreativeWork
333 https://app.dimensions.ai/details/publication/pub.1077811778 schema:CreativeWork
334 https://app.dimensions.ai/details/publication/pub.1078496046 schema:CreativeWork
335 https://doi.org/10.1002/hep.20375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027532643
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1002/hep.24291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024990793
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1002/hep.24562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049722297
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1002/hep.24813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038517941
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1002/ijc.24580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014180729
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1016/j.bbadis.2004.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014387384
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1016/j.febslet.2004.03.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037962383
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1016/j.jhep.2004.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001079793
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1016/j.jhep.2010.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033887055
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1016/j.jss.2007.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025032500
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1016/j.ygeno.2012.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017407182
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1055/s-2005-871198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057448602
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1056/nejmoa0804525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013129482
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1093/bioinformatics/btm541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023289758
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1093/nar/gkm882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007077161
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1093/nar/gkn863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020667046
374 rdf:type schema:CreativeWork
375 https://doi.org/10.1097/01.cmr.0000215034.00318.7a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011859509
376 rdf:type schema:CreativeWork
377 https://doi.org/10.1111/j.0006-341x.2000.00337.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043727671
378 rdf:type schema:CreativeWork
379 https://doi.org/10.1111/j.1365-2559.1993.tb00130.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007295616
380 rdf:type schema:CreativeWork
381 https://doi.org/10.1111/j.1478-3231.2007.01475.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017053565
382 rdf:type schema:CreativeWork
383 https://doi.org/10.1158/0008-5472.can-05-0476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077039444
384 rdf:type schema:CreativeWork
385 https://doi.org/10.1158/0008-5472.can-05-2277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022211122
386 rdf:type schema:CreativeWork
387 https://doi.org/10.1158/0008-5472.can-10-2607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026376902
388 rdf:type schema:CreativeWork
389 https://doi.org/10.1158/1078-0432.ccr-07-1473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045013562
390 rdf:type schema:CreativeWork
391 https://doi.org/10.1161/atvbaha.110.207514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011777111
392 rdf:type schema:CreativeWork
393 https://doi.org/10.1182/blood-2008-12-193326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020402776
394 rdf:type schema:CreativeWork
395 https://doi.org/10.1214/07-aoas101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008688091
396 rdf:type schema:CreativeWork
397 https://doi.org/10.1371/journal.pbio.0020108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050418449
398 rdf:type schema:CreativeWork
399 https://doi.org/10.1371/journal.pone.0007431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019843166
400 rdf:type schema:CreativeWork
401 https://doi.org/10.1371/journal.pone.0032493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049504610
402 rdf:type schema:CreativeWork
403 https://doi.org/10.2174/187152012800228689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069218506
404 rdf:type schema:CreativeWork
405 https://doi.org/10.3171/2009.7.jns081729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071074899
406 rdf:type schema:CreativeWork
407 https://doi.org/10.3748/wjg.14.6072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071360943
408 rdf:type schema:CreativeWork
409 https://doi.org/10.3892/ijo.29.2.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071516095
410 rdf:type schema:CreativeWork
411 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
412 schema:name Department of Pathology and BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
413 Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea
414 rdf:type schema:Organization
415 https://www.grid.ac/institutes/grid.222754.4 schema:alternateName Korea University
416 schema:name Department of Statistics, Korea University, Seoul, Korea
417 Korean Medicine Clinical Trial Center, Kyung Hee University Oriental Medicine Hospital, Seoul, Korea
418 rdf:type schema:Organization
419 https://www.grid.ac/institutes/grid.249967.7 schema:alternateName Korea Research Institute of Bioscience and Biotechnology
420 schema:name Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
421 rdf:type schema:Organization
422 https://www.grid.ac/institutes/grid.266623.5 schema:alternateName University of Louisville
423 schema:name Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, USA
424 rdf:type schema:Organization
425 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
426 schema:name Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
427 Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
428 Laboratory of Toxicology and Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
429 rdf:type schema:Organization
430 https://www.grid.ac/institutes/grid.415464.6 schema:alternateName Korea Institute of Radiological and Medical Sciences
431 schema:name Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
432 Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
433 Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
434 Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
435 Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea
436 rdf:type schema:Organization
437 https://www.grid.ac/institutes/grid.418980.c schema:alternateName Korea Institute of Oriental Medicine
438 schema:name Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-ku, 139-706, Seoul, Korea
439 Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
440 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...