An integrative U method for joint analysis of multi-level omic data. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Pei Geng, Xiaoran Tong, Qing Lu

ABSTRACT

BACKGROUND: The advance of high-throughput technologies has made it cost-effective to collect diverse types of omic data in large-scale clinical and biological studies. While the collection of the vast amounts of multi-level omic data from these studies provides a great opportunity for genetic research, the high dimensionality of omic data and complex relationships among multi-level omic data bring tremendous analytic challenges. RESULTS: To address these challenges, we develop an integrative U (IU) method for the design and analysis of multi-level omic data. While non-parametric methods make less model assumptions and are flexible for analyzing different types of phenotypes and omic data, they have been less developed for association analysis of omic data. The IU method is a nonparametric method that can accommodate various types of omic and phenotype data, and consider interactive relationship among different levels of omic data. Through simulations and a real data application, we compare the IU test with commonly used variance component tests. CONCLUSIONS: Results show that the proposed test attains more robust type I error performance and higher empirical power than variance component tests under various types of phenotypes and different underlying interaction effects. More... »

PAGES

40

Journal

TITLE

BMC Genetics

ISSUE

1

VOLUME

20

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12863-019-0742-z

    DOI

    http://dx.doi.org/10.1186/s12863-019-0742-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113327557

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30967125


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Illinois State University", 
              "id": "https://www.grid.ac/institutes/grid.257310.2", 
              "name": [
                "Department of Mathematics, Illinois State University, Normal, IL, 61761, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geng", 
            "givenName": "Pei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan State University", 
              "id": "https://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tong", 
            "givenName": "Xiaoran", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan State University", 
              "id": "https://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA. qlu@epi.msu.edu."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Qing", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001583272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001583272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002187418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002187418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.6877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002204664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cbi.2014.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003728348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.21864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016010814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017872565", 
              "https://doi.org/10.1038/nrg3868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jaci.2014.11.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019896871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.1205003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020374756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021543125", 
              "https://doi.org/10.1038/nrc3721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024942368", 
              "https://doi.org/10.1038/nature11412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025284665", 
              "https://doi.org/10.1038/nrg2795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025284665", 
              "https://doi.org/10.1038/nrg2795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0105074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028683069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmp1500523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033636982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jmedgenet-2012-100798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034710198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0017728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050429897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/biom.12206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051278553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052616209", 
              "https://doi.org/10.1038/nature12531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m116.730408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058215015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.2014.901223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058306219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.2014.908125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058306229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxu014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059424651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/13-aoas690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064393749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3967/bes2014.077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078932467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.22061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090576825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1105797823", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/b15005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105797823"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: The advance of high-throughput technologies has made it cost-effective to collect diverse types of omic data in large-scale clinical and biological studies. While the collection of the vast amounts of multi-level omic data from these studies provides a great opportunity for genetic research, the high dimensionality of omic data and complex relationships among multi-level omic data bring tremendous analytic challenges.\nRESULTS: To address these challenges, we develop an integrative U (IU) method for the design and analysis of multi-level omic data. While non-parametric methods make less model assumptions and are flexible for analyzing different types of phenotypes and omic data, they have been less developed for association analysis of omic data. The IU method is a nonparametric method that can accommodate various types of omic and phenotype data, and consider interactive relationship among different levels of omic data. Through simulations and a real data application, we compare the IU test with commonly used variance component tests.\nCONCLUSIONS: Results show that the proposed test attains more robust type I error performance and higher empirical power than variance component tests under various types of phenotypes and different underlying interaction effects.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12863-019-0742-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7614957", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7028547", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024251", 
            "issn": [
              "1471-2156"
            ], 
            "name": "BMC Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "An integrative U method for joint analysis of multi-level omic data.", 
        "pagination": "40", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12863-019-0742-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113327557"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100966978"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30967125"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12863-019-0742-z", 
          "https://app.dimensions.ai/details/publication/pub.1113327557"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91450_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://bmcgenet.biomedcentral.com/articles/10.1186/s12863-019-0742-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0742-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0742-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0742-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0742-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      21 PREDICATES      56 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12863-019-0742-z schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N512b93fe5c154015ad053ecf2bd2194f
    4 schema:citation sg:pub.10.1038/nature09534
    5 sg:pub.10.1038/nature11412
    6 sg:pub.10.1038/nature12531
    7 sg:pub.10.1038/nrc3721
    8 sg:pub.10.1038/nrg2795
    9 sg:pub.10.1038/nrg3868
    10 https://app.dimensions.ai/details/publication/pub.1105797823
    11 https://doi.org/10.1002/gepi.21864
    12 https://doi.org/10.1002/gepi.22061
    13 https://doi.org/10.1002/sim.6877
    14 https://doi.org/10.1016/j.ajhg.2011.05.029
    15 https://doi.org/10.1016/j.cbi.2014.07.008
    16 https://doi.org/10.1016/j.jaci.2014.11.017
    17 https://doi.org/10.1056/nejmp1500523
    18 https://doi.org/10.1074/jbc.m116.730408
    19 https://doi.org/10.1080/01621459.2014.901223
    20 https://doi.org/10.1080/01621459.2014.908125
    21 https://doi.org/10.1093/biostatistics/kxu014
    22 https://doi.org/10.1111/biom.12206
    23 https://doi.org/10.1136/jmedgenet-2012-100798
    24 https://doi.org/10.1201/b15005
    25 https://doi.org/10.1214/13-aoas690
    26 https://doi.org/10.1289/ehp.1205003
    27 https://doi.org/10.1371/journal.pone.0017728
    28 https://doi.org/10.1371/journal.pone.0105074
    29 https://doi.org/10.1534/genetics.115.178343
    30 https://doi.org/10.1534/genetics.115.180869
    31 https://doi.org/10.3967/bes2014.077
    32 schema:datePublished 2019-12
    33 schema:datePublishedReg 2019-12-01
    34 schema:description BACKGROUND: The advance of high-throughput technologies has made it cost-effective to collect diverse types of omic data in large-scale clinical and biological studies. While the collection of the vast amounts of multi-level omic data from these studies provides a great opportunity for genetic research, the high dimensionality of omic data and complex relationships among multi-level omic data bring tremendous analytic challenges. RESULTS: To address these challenges, we develop an integrative U (IU) method for the design and analysis of multi-level omic data. While non-parametric methods make less model assumptions and are flexible for analyzing different types of phenotypes and omic data, they have been less developed for association analysis of omic data. The IU method is a nonparametric method that can accommodate various types of omic and phenotype data, and consider interactive relationship among different levels of omic data. Through simulations and a real data application, we compare the IU test with commonly used variance component tests. CONCLUSIONS: Results show that the proposed test attains more robust type I error performance and higher empirical power than variance component tests under various types of phenotypes and different underlying interaction effects.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N45d3892e80ad45cbabbe1413898de855
    39 N8b4ee00d00f44ff08bca75c49c63c20b
    40 sg:journal.1024251
    41 schema:name An integrative U method for joint analysis of multi-level omic data.
    42 schema:pagination 40
    43 schema:productId N097110bd6a7b467a95989bdde3c7b0a4
    44 N3469f3967e1840ce89a75860ffd25bf1
    45 N420b23d6fa8e4f999d2292e1e7cb8e50
    46 Nc780d0886a7e4672b414e8dbd4b15cf2
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113327557
    48 https://doi.org/10.1186/s12863-019-0742-z
    49 schema:sdDatePublished 2019-04-15T09:02
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Nf1654876e0b04551b816581af8e82c58
    52 schema:url https://bmcgenet.biomedcentral.com/articles/10.1186/s12863-019-0742-z
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N097110bd6a7b467a95989bdde3c7b0a4 schema:name doi
    57 schema:value 10.1186/s12863-019-0742-z
    58 rdf:type schema:PropertyValue
    59 N3469f3967e1840ce89a75860ffd25bf1 schema:name dimensions_id
    60 schema:value pub.1113327557
    61 rdf:type schema:PropertyValue
    62 N3fc34b25b7dc470c968bffadf10f3519 rdf:first Nba079605bd9f40a0b4543e8d96b81e0f
    63 rdf:rest rdf:nil
    64 N420b23d6fa8e4f999d2292e1e7cb8e50 schema:name nlm_unique_id
    65 schema:value 100966978
    66 rdf:type schema:PropertyValue
    67 N45d3892e80ad45cbabbe1413898de855 schema:volumeNumber 20
    68 rdf:type schema:PublicationVolume
    69 N512b93fe5c154015ad053ecf2bd2194f rdf:first N6264437ec9494fca8a8555d51dd294ef
    70 rdf:rest Nf9961d83c4f64de7ad39957ee85408cd
    71 N6264437ec9494fca8a8555d51dd294ef schema:affiliation https://www.grid.ac/institutes/grid.257310.2
    72 schema:familyName Geng
    73 schema:givenName Pei
    74 rdf:type schema:Person
    75 N8b4ee00d00f44ff08bca75c49c63c20b schema:issueNumber 1
    76 rdf:type schema:PublicationIssue
    77 Nba079605bd9f40a0b4543e8d96b81e0f schema:affiliation https://www.grid.ac/institutes/grid.17088.36
    78 schema:familyName Lu
    79 schema:givenName Qing
    80 rdf:type schema:Person
    81 Nc780d0886a7e4672b414e8dbd4b15cf2 schema:name pubmed_id
    82 schema:value 30967125
    83 rdf:type schema:PropertyValue
    84 Nc881fc1242f4449b8a40c9a1bbc55a68 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
    85 schema:familyName Tong
    86 schema:givenName Xiaoran
    87 rdf:type schema:Person
    88 Nf1654876e0b04551b816581af8e82c58 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 Nf9961d83c4f64de7ad39957ee85408cd rdf:first Nc881fc1242f4449b8a40c9a1bbc55a68
    91 rdf:rest N3fc34b25b7dc470c968bffadf10f3519
    92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Mathematical Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Statistics
    97 rdf:type schema:DefinedTerm
    98 sg:grant.7028547 http://pending.schema.org/fundedItem sg:pub.10.1186/s12863-019-0742-z
    99 rdf:type schema:MonetaryGrant
    100 sg:grant.7614957 http://pending.schema.org/fundedItem sg:pub.10.1186/s12863-019-0742-z
    101 rdf:type schema:MonetaryGrant
    102 sg:journal.1024251 schema:issn 1471-2156
    103 schema:name BMC Genetics
    104 rdf:type schema:Periodical
    105 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    106 https://doi.org/10.1038/nature09534
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1038/nature11412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942368
    109 https://doi.org/10.1038/nature11412
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1038/nature12531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052616209
    112 https://doi.org/10.1038/nature12531
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nrc3721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021543125
    115 https://doi.org/10.1038/nrc3721
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/nrg2795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025284665
    118 https://doi.org/10.1038/nrg2795
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/nrg3868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017872565
    121 https://doi.org/10.1038/nrg3868
    122 rdf:type schema:CreativeWork
    123 https://app.dimensions.ai/details/publication/pub.1105797823 schema:CreativeWork
    124 https://doi.org/10.1002/gepi.21864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016010814
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/gepi.22061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090576825
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1002/sim.6877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002204664
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.ajhg.2011.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001583272
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.cbi.2014.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003728348
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.jaci.2014.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019896871
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1056/nejmp1500523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033636982
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1074/jbc.m116.730408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058215015
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1080/01621459.2014.901223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306219
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1080/01621459.2014.908125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306229
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1093/biostatistics/kxu014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424651
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1111/biom.12206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051278553
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1136/jmedgenet-2012-100798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034710198
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1201/b15005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105797823
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1214/13-aoas690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393749
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1289/ehp.1205003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020374756
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1371/journal.pone.0017728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050429897
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1371/journal.pone.0105074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028683069
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1534/genetics.115.178343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002187418
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1534/genetics.115.180869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739473
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.3967/bes2014.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078932467
    165 rdf:type schema:CreativeWork
    166 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
    167 schema:name Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA.
    168 Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA. qlu@epi.msu.edu.
    169 rdf:type schema:Organization
    170 https://www.grid.ac/institutes/grid.257310.2 schema:alternateName Illinois State University
    171 schema:name Department of Mathematics, Illinois State University, Normal, IL, 61761, USA.
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...