Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Fang Shao, Yaqi Wang, Yang Zhao, Sheng Yang

ABSTRACT

BACKGROUND: RNA sequencing (RNA-seq) technology has identified multiple differentially expressed (DE) genes associated to complex disease, however, these genes only explain a modest part of variance. Omnigenic model assumes that disease may be driven by genes with indirect relevance to disease and be propagated by functional pathways. Here, we focus on identifying the interactions between the external genes and functional pathways, referring to gene-pathway interactions (GPIs). Specifically, relying on the relationship between the garrote kernel machine (GKM) and variance component test and permutations for the empirical distributions of score statistics, we propose an efficient analysis procedure as Permutation based gEne-pAthway interaction identification in binary phenotype (PEA). RESULTS: Various simulations show that PEA has well-calibrated type I error rates and higher power than the traditional likelihood ratio test (LRT). In addition, we perform the gene set enrichment algorithms and PEA to identifying the GPIs from a pan-cancer data (GES68086). These GPIs and genes possibly further illustrate the potential etiology of cancers, most of which are identified and some external genes and significant pathways are consistent with previous studies. CONCLUSIONS: PEA is an efficient tool for identifying the GPIs from RNA-seq data. It can be further extended to identify the interactions between one variable and one functional set of other omics data for binary phenotypes. More... »

PAGES

36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-019-0739-7

DOI

http://dx.doi.org/10.1186/s12863-019-0739-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112881616

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30890140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Fang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Pharmaceutical University", 
          "id": "https://www.grid.ac/institutes/grid.254147.1", 
          "name": [
            "Department of Pharmacy Informatics, School of Science, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yaqi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Sheng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ajhg.2011.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001583272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005660075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.21720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2011.01598.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009943403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.21901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011217102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021371713", 
          "https://doi.org/10.1038/nrg2918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021371713", 
          "https://doi.org/10.1038/nrg2918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.21905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024750463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/93.24.1886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028785070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031289083", 
          "https://doi.org/10.1186/gb-2010-11-10-r106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000312643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039718594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccell.2015.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041965174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043673830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2007.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044849844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045066552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000312641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045524627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045725452", 
          "https://doi.org/10.1038/srep34159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1260419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048221082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.7094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.7094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051320695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3403-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601657", 
          "https://doi.org/10.1186/s12864-016-3403-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3403-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601657", 
          "https://doi.org/10.1186/s12864-016-3403-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxu014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059424651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/12-aoas545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-aoas690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064393749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084186706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2017.05.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086036175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090897067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.3797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091501146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092190077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-017-0506-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099710224", 
          "https://doi.org/10.1186/s13073-017-0506-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2018.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100723430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103168459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103168459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105642020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105642020"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: RNA sequencing (RNA-seq) technology has identified multiple differentially expressed (DE) genes associated to complex disease, however, these genes only explain a modest part of variance. Omnigenic model assumes that disease may be driven by genes with indirect relevance to disease and be propagated by functional pathways. Here, we focus on identifying the interactions between the external genes and functional pathways, referring to gene-pathway interactions (GPIs). Specifically, relying on the relationship between the garrote kernel machine (GKM) and variance component test and permutations for the empirical distributions of score statistics, we propose an efficient analysis procedure as Permutation based gEne-pAthway interaction identification in binary phenotype (PEA).\nRESULTS: Various simulations show that PEA has well-calibrated type I error rates and higher power than the traditional likelihood ratio test (LRT). In addition, we perform the gene set enrichment algorithms and PEA to identifying the GPIs from a pan-cancer data (GES68086). These GPIs and genes possibly further illustrate the potential etiology of cancers, most of which are identified and some external genes and significant pathways are consistent with previous studies.\nCONCLUSIONS: PEA is an efficient tool for identifying the GPIs from RNA-seq data. It can be further extended to identify the interactions between one variable and one functional set of other omics data for binary phenotypes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-019-0739-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype", 
    "pagination": "36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee38c0253c07653d7cc843513f962b1bc7a0e42a1edc5c6a3bcec022f3490618"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30890140"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-019-0739-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112881616"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-019-0739-7", 
      "https://app.dimensions.ai/details/publication/pub.1112881616"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78964_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12863-019-0739-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0739-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0739-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0739-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0739-7'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-019-0739-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N7679232fdecd439d87e3946123394854
4 schema:citation sg:pub.10.1038/75556
5 sg:pub.10.1038/nprot.2008.211
6 sg:pub.10.1038/nrg2918
7 sg:pub.10.1038/srep34159
8 sg:pub.10.1186/gb-2010-11-10-r106
9 sg:pub.10.1186/s12864-016-3403-x
10 sg:pub.10.1186/s13073-017-0506-1
11 https://doi.org/10.1002/gepi.21720
12 https://doi.org/10.1002/gepi.21901
13 https://doi.org/10.1002/gepi.21905
14 https://doi.org/10.1002/sim.7094
15 https://doi.org/10.1016/j.ajhg.2007.10.010
16 https://doi.org/10.1016/j.ajhg.2011.05.029
17 https://doi.org/10.1016/j.ccell.2015.09.018
18 https://doi.org/10.1016/j.cell.2017.05.038
19 https://doi.org/10.1016/j.cell.2018.03.027
20 https://doi.org/10.1016/j.jtbi.2018.01.027
21 https://doi.org/10.1073/pnas.0506580102
22 https://doi.org/10.1093/bioinformatics/bti525
23 https://doi.org/10.1093/bioinformatics/btn577
24 https://doi.org/10.1093/bioinformatics/btp616
25 https://doi.org/10.1093/bioinformatics/btq186
26 https://doi.org/10.1093/bioinformatics/bty644
27 https://doi.org/10.1093/biostatistics/kxu014
28 https://doi.org/10.1093/jnci/93.24.1886
29 https://doi.org/10.1093/nar/28.1.27
30 https://doi.org/10.1093/nar/gkx204
31 https://doi.org/10.1111/j.1541-0420.2011.01598.x
32 https://doi.org/10.1126/science.1260419
33 https://doi.org/10.1159/000312641
34 https://doi.org/10.1159/000312643
35 https://doi.org/10.1214/12-aoas545
36 https://doi.org/10.1214/13-aoas690
37 https://doi.org/10.1371/journal.pcbi.1005187
38 https://doi.org/10.1371/journal.pcbi.1005771
39 https://doi.org/10.1371/journal.pgen.1003321
40 https://doi.org/10.1371/journal.pgen.1006869
41 https://doi.org/10.7717/peerj.3797
42 schema:datePublished 2019-12
43 schema:datePublishedReg 2019-12-01
44 schema:description BACKGROUND: RNA sequencing (RNA-seq) technology has identified multiple differentially expressed (DE) genes associated to complex disease, however, these genes only explain a modest part of variance. Omnigenic model assumes that disease may be driven by genes with indirect relevance to disease and be propagated by functional pathways. Here, we focus on identifying the interactions between the external genes and functional pathways, referring to gene-pathway interactions (GPIs). Specifically, relying on the relationship between the garrote kernel machine (GKM) and variance component test and permutations for the empirical distributions of score statistics, we propose an efficient analysis procedure as Permutation based gEne-pAthway interaction identification in binary phenotype (PEA). RESULTS: Various simulations show that PEA has well-calibrated type I error rates and higher power than the traditional likelihood ratio test (LRT). In addition, we perform the gene set enrichment algorithms and PEA to identifying the GPIs from a pan-cancer data (GES68086). These GPIs and genes possibly further illustrate the potential etiology of cancers, most of which are identified and some external genes and significant pathways are consistent with previous studies. CONCLUSIONS: PEA is an efficient tool for identifying the GPIs from RNA-seq data. It can be further extended to identify the interactions between one variable and one functional set of other omics data for binary phenotypes.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N732d6e0ccf22435bb5b692df7195fa04
49 N75b94c9220874fad9357bee643070427
50 sg:journal.1024251
51 schema:name Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype
52 schema:pagination 36
53 schema:productId N0005a7adac1a4c0db89228056a06324e
54 N346a285ddb484059b875fa9aaf31ad26
55 N5bb148b56ada46a2aa2f422e79aef470
56 Nc9a5fcba137043a188334c170e46807e
57 Ne34b767830744a3db767e2827f74f0e2
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112881616
59 https://doi.org/10.1186/s12863-019-0739-7
60 schema:sdDatePublished 2019-04-11T13:20
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N9e77a4c2bdaf460c81f03ce3e136a00f
63 schema:url https://link.springer.com/10.1186%2Fs12863-019-0739-7
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0005a7adac1a4c0db89228056a06324e schema:name dimensions_id
68 schema:value pub.1112881616
69 rdf:type schema:PropertyValue
70 N18ea1b2bbbe541e2895dd31a7e650ddf schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
71 schema:familyName Yang
72 schema:givenName Sheng
73 rdf:type schema:Person
74 N1c20f7eef968463d8c3715863502ec86 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
75 schema:familyName Zhao
76 schema:givenName Yang
77 rdf:type schema:Person
78 N346a285ddb484059b875fa9aaf31ad26 schema:name doi
79 schema:value 10.1186/s12863-019-0739-7
80 rdf:type schema:PropertyValue
81 N4753b0da091540e9a3cf8756d4b69185 rdf:first N1c20f7eef968463d8c3715863502ec86
82 rdf:rest N61c1c3283d7c478d890b48635b815af8
83 N57cae88840de4c67abe7be0e7c8d5521 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
84 schema:familyName Shao
85 schema:givenName Fang
86 rdf:type schema:Person
87 N5bb148b56ada46a2aa2f422e79aef470 schema:name nlm_unique_id
88 schema:value 100966978
89 rdf:type schema:PropertyValue
90 N61c1c3283d7c478d890b48635b815af8 rdf:first N18ea1b2bbbe541e2895dd31a7e650ddf
91 rdf:rest rdf:nil
92 N732d6e0ccf22435bb5b692df7195fa04 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N75b94c9220874fad9357bee643070427 schema:volumeNumber 20
95 rdf:type schema:PublicationVolume
96 N7679232fdecd439d87e3946123394854 rdf:first N57cae88840de4c67abe7be0e7c8d5521
97 rdf:rest N85f0cb6a709f4300813b7324f1e31e20
98 N85f0cb6a709f4300813b7324f1e31e20 rdf:first Nf1f26cbd5ca34379a3d96322e059e6a6
99 rdf:rest N4753b0da091540e9a3cf8756d4b69185
100 N9e77a4c2bdaf460c81f03ce3e136a00f schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc9a5fcba137043a188334c170e46807e schema:name pubmed_id
103 schema:value 30890140
104 rdf:type schema:PropertyValue
105 Ne34b767830744a3db767e2827f74f0e2 schema:name readcube_id
106 schema:value ee38c0253c07653d7cc843513f962b1bc7a0e42a1edc5c6a3bcec022f3490618
107 rdf:type schema:PropertyValue
108 Nf1f26cbd5ca34379a3d96322e059e6a6 schema:affiliation https://www.grid.ac/institutes/grid.254147.1
109 schema:familyName Wang
110 schema:givenName Yaqi
111 rdf:type schema:Person
112 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
113 schema:name Biological Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
116 schema:name Genetics
117 rdf:type schema:DefinedTerm
118 sg:journal.1024251 schema:issn 1471-2156
119 schema:name BMC Genetics
120 rdf:type schema:Periodical
121 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
122 https://doi.org/10.1038/75556
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
125 https://doi.org/10.1038/nprot.2008.211
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nrg2918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371713
128 https://doi.org/10.1038/nrg2918
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/srep34159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045725452
131 https://doi.org/10.1038/srep34159
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
134 https://doi.org/10.1186/gb-2010-11-10-r106
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/s12864-016-3403-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601657
137 https://doi.org/10.1186/s12864-016-3403-x
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/s13073-017-0506-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099710224
140 https://doi.org/10.1186/s13073-017-0506-1
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/gepi.21720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934357
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/gepi.21901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011217102
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/gepi.21905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024750463
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/sim.7094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048275136
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ajhg.2007.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044849844
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ajhg.2011.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001583272
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ccell.2015.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041965174
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.cell.2017.05.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086036175
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cell.2018.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103168459
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jtbi.2018.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100723430
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/bioinformatics/bti525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045066552
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/btn577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005660075
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/btq186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043673830
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/bioinformatics/bty644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105642020
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/biostatistics/kxu014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424651
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/jnci/93.24.1886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028785070
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/nar/gkx204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084186706
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/j.1541-0420.2011.01598.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007880397
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1260419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048221082
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1159/000312641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045524627
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1159/000312643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039718594
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1214/12-aoas545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392868
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1214/13-aoas690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393749
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1371/journal.pcbi.1005187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051320695
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pcbi.1005771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092190077
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pgen.1003321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009943403
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pgen.1006869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090897067
201 rdf:type schema:CreativeWork
202 https://doi.org/10.7717/peerj.3797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091501146
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.254147.1 schema:alternateName China Pharmaceutical University
205 schema:name Department of Pharmacy Informatics, School of Science, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, Jiangsu, People’s Republic of China
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.89957.3a schema:alternateName Nanjing Medical University
208 schema:name Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, People’s Republic of China
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...