Genome-wide association study of four yield-related traits at the R6 stage in soybean View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xiangnan Li, Xiaoli Zhang, Longming Zhu, Yuanpeng Bu, Xinfang Wang, Xing Zhang, Yang Zhou, Xiaoting Wang, Na Guo, Lijuan Qiu, Jinming Zhao, Han Xing

ABSTRACT

BACKGROUND: The 100-pod fresh weight (PFW), 100-seed fresh weight (SFW), 100-seed dry weight (SDW) and moisture content of fresh seeds (MCFS) at the R6 stage are crucial factors for vegetable soybean yield. However, the genetic basis of yield at the R6 stage remains largely ambiguous in soybean. RESULTS: To better understand the molecular mechanism underlying yield, we investigated four yield-related traits of 133 soybean landraces in two consecutive years and conducted a genome-wide association study (GWAS) using 82,187 single nucleotide polymorphisms (SNPs). The GWAS results revealed a total of 14, 15, 63 and 48 SNPs for PFW, SFW, SDW and MCFS, respectively. Among these markers, 35 SNPs were repeatedly identified in all evaluated environments (2015, 2016, and the average across the two years), and most co-localized with yield-related QTLs identified in previous studies. AX-90496773 and AX-90460290 were large-effect markers for PFW and MCFS, respectively. The two markers were stably identified in all environments and tagged to linkage disequilibrium (LD) blocks. Six potential candidate genes were predicted in LD blocks; five of them showed significantly different expression levels between the extreme materials with large PFW or MCFS variation at the seed development stage. Therefore, the five genes Glyma.16g018200, Glyma.16g018300, Glyma.05g243400, Glyma.05g244100 and Glyma.05g245300 were regarded as candidate genes associated with PFW and MCFS. CONCLUSION: These results provide useful information for the development of functional markers and exploration of candidate genes in vegetable soybean high-yield breeding programs. More... »

PAGES

39

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-019-0737-9

DOI

http://dx.doi.org/10.1186/s12863-019-0737-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113063184

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30922237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiangnan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiaoli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Longming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bu", 
        "givenName": "Yuanpeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinfang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaoting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Na", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Crop Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464345.4", 
          "name": [
            "The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Lijuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jinming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Han", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5352/jls.2010.20.8.1186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000172070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-005-0007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000802322", 
          "https://doi.org/10.1007/s00122-005-0007-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.201394398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001866470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-015-1441-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003150316", 
          "https://doi.org/10.1186/s12864-015-1441-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-015-1441-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003150316", 
          "https://doi.org/10.1186/s12864-015-1441-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tpj.12755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004354614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009890914", 
          "https://doi.org/10.1038/ng.695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009890914", 
          "https://doi.org/10.1038/ng.695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-012-1808-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013211578", 
          "https://doi.org/10.1007/s11033-012-1808-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12041-014-0383-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014912062", 
          "https://doi.org/10.1007/s12041-014-0383-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-012-9833-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015367889", 
          "https://doi.org/10.1007/s11032-012-9833-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-015-2614-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015491496", 
          "https://doi.org/10.1007/s00122-015-2614-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-015-2614-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015491496", 
          "https://doi.org/10.1007/s00122-015-2614-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.54.031902.134907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021273162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-015-0315-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022645034", 
          "https://doi.org/10.1186/s12863-015-0315-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023623483", 
          "https://doi.org/10.1186/1471-2164-15-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.109.073072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025762882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.027078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026865620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep20728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031421593", 
          "https://doi.org/10.1038/srep20728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1048-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575347", 
          "https://doi.org/10.1007/s00122-009-1048-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1048-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575347", 
          "https://doi.org/10.1007/s00122-009-1048-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1048-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575347", 
          "https://doi.org/10.1007/s00122-009-1048-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-011-1719-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031732728", 
          "https://doi.org/10.1007/s00122-011-1719-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-012-1859-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032203905", 
          "https://doi.org/10.1007/s00122-012-1859-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.063149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033181514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.063149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033181514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07352689109382313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033477808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008164925103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036432474", 
          "https://doi.org/10.1023/a:1008164925103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bfgp/elq001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037765048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2007.03092.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037850031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2007.03092.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037850031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-005-0257-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170512", 
          "https://doi.org/10.1007/s11103-005-0257-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2006.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041086945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.017004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046579069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010662911148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049203358", 
          "https://doi.org/10.1023/a:1010662911148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12892-010-0115-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050296256", 
          "https://doi.org/10.1007/s12892-010-0115-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-008-9306-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051295778", 
          "https://doi.org/10.1007/s11103-008-9306-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2010.03344.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053601483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1999.3961642x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2000.40130x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2002.1950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069027765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2003.3190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069028272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2004.2101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069028984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1006.2012.00935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071319572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076570279", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erx147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084823577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plantsci.2017.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085120251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1112115422", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The 100-pod fresh weight (PFW), 100-seed fresh weight (SFW), 100-seed dry weight (SDW) and moisture content of fresh seeds (MCFS) at the R6 stage are crucial factors for vegetable soybean yield. However, the genetic basis of yield at the R6 stage remains largely ambiguous in soybean.\nRESULTS: To better understand the molecular mechanism underlying yield, we investigated four yield-related traits of 133 soybean landraces in two consecutive years and conducted a genome-wide association study (GWAS) using 82,187 single nucleotide polymorphisms (SNPs). The GWAS results revealed a total of 14, 15, 63 and 48 SNPs for PFW, SFW, SDW and MCFS, respectively. Among these markers, 35 SNPs were repeatedly identified in all evaluated environments (2015, 2016, and the average across the two years), and most co-localized with yield-related QTLs identified in previous studies. AX-90496773 and AX-90460290 were large-effect markers for PFW and MCFS, respectively. The two markers were stably identified in all environments and tagged to linkage disequilibrium (LD) blocks. Six potential candidate genes were predicted in LD blocks; five of them showed significantly different expression levels between the extreme materials with large PFW or MCFS variation at the seed development stage. Therefore, the five genes Glyma.16g018200, Glyma.16g018300, Glyma.05g243400, Glyma.05g244100 and Glyma.05g245300 were regarded as candidate genes associated with PFW and MCFS.\nCONCLUSION: These results provide useful information for the development of functional markers and exploration of candidate genes in vegetable soybean high-yield breeding programs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-019-0737-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Genome-wide association study of four yield-related traits at the R6 stage in soybean", 
    "pagination": "39", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-019-0737-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113063184"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "efe67ee2a20c5c6346b19bbfa310f661649ab56833fa85988caec75755dacc03"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30922237"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-019-0737-9", 
      "https://app.dimensions.ai/details/publication/pub.1113063184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106807_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12863-019-0737-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0737-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0737-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0737-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0737-9'


 

This table displays all metadata directly associated to this object as RDF triples.

285 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-019-0737-9 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nb9b09034d5dc47a1bab41209276e15e5
4 schema:citation sg:pub.10.1007/s00122-005-0007-2
5 sg:pub.10.1007/s00122-009-1048-8
6 sg:pub.10.1007/s00122-011-1719-0
7 sg:pub.10.1007/s00122-012-1859-x
8 sg:pub.10.1007/s00122-015-2614-x
9 sg:pub.10.1007/s11032-012-9833-5
10 sg:pub.10.1007/s11033-012-1808-4
11 sg:pub.10.1007/s11103-005-0257-z
12 sg:pub.10.1007/s11103-008-9306-8
13 sg:pub.10.1007/s12041-014-0383-y
14 sg:pub.10.1007/s12892-010-0115-7
15 sg:pub.10.1023/a:1008164925103
16 sg:pub.10.1023/a:1010662911148
17 sg:pub.10.1038/ng.695
18 sg:pub.10.1038/ng1702
19 sg:pub.10.1038/srep20728
20 sg:pub.10.1186/1471-2164-15-1
21 sg:pub.10.1186/s12863-015-0315-8
22 sg:pub.10.1186/s12864-015-1441-4
23 https://app.dimensions.ai/details/publication/pub.1076570279
24 https://app.dimensions.ai/details/publication/pub.1112115422
25 https://doi.org/10.1006/meth.2001.1262
26 https://doi.org/10.1016/j.plantsci.2017.04.013
27 https://doi.org/10.1016/j.tplants.2006.12.001
28 https://doi.org/10.1073/pnas.201394398
29 https://doi.org/10.1080/07352689109382313
30 https://doi.org/10.1093/bfgp/elq001
31 https://doi.org/10.1093/jxb/erx147
32 https://doi.org/10.1104/pp.017004
33 https://doi.org/10.1105/tpc.104.027078
34 https://doi.org/10.1105/tpc.109.073072
35 https://doi.org/10.1111/j.1365-313x.2007.03092.x
36 https://doi.org/10.1111/j.1469-8137.2010.03344.x
37 https://doi.org/10.1111/tpj.12755
38 https://doi.org/10.1146/annurev.arplant.54.031902.134907
39 https://doi.org/10.1371/journal.pgen.1004573
40 https://doi.org/10.1534/genetics.106.063149
41 https://doi.org/10.2135/cropsci1999.3961642x
42 https://doi.org/10.2135/cropsci2000.40130x
43 https://doi.org/10.2135/cropsci2002.1950
44 https://doi.org/10.2135/cropsci2003.3190
45 https://doi.org/10.2135/cropsci2004.2101
46 https://doi.org/10.3724/sp.j.1006.2012.00935
47 https://doi.org/10.5352/jls.2010.20.8.1186
48 schema:datePublished 2019-12
49 schema:datePublishedReg 2019-12-01
50 schema:description BACKGROUND: The 100-pod fresh weight (PFW), 100-seed fresh weight (SFW), 100-seed dry weight (SDW) and moisture content of fresh seeds (MCFS) at the R6 stage are crucial factors for vegetable soybean yield. However, the genetic basis of yield at the R6 stage remains largely ambiguous in soybean. RESULTS: To better understand the molecular mechanism underlying yield, we investigated four yield-related traits of 133 soybean landraces in two consecutive years and conducted a genome-wide association study (GWAS) using 82,187 single nucleotide polymorphisms (SNPs). The GWAS results revealed a total of 14, 15, 63 and 48 SNPs for PFW, SFW, SDW and MCFS, respectively. Among these markers, 35 SNPs were repeatedly identified in all evaluated environments (2015, 2016, and the average across the two years), and most co-localized with yield-related QTLs identified in previous studies. AX-90496773 and AX-90460290 were large-effect markers for PFW and MCFS, respectively. The two markers were stably identified in all environments and tagged to linkage disequilibrium (LD) blocks. Six potential candidate genes were predicted in LD blocks; five of them showed significantly different expression levels between the extreme materials with large PFW or MCFS variation at the seed development stage. Therefore, the five genes Glyma.16g018200, Glyma.16g018300, Glyma.05g243400, Glyma.05g244100 and Glyma.05g245300 were regarded as candidate genes associated with PFW and MCFS. CONCLUSION: These results provide useful information for the development of functional markers and exploration of candidate genes in vegetable soybean high-yield breeding programs.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N564a2d1e4eb74d5ab329e0b92b522cf0
55 N9056fc6977bd46cfa422d1e3a02930ca
56 sg:journal.1024251
57 schema:name Genome-wide association study of four yield-related traits at the R6 stage in soybean
58 schema:pagination 39
59 schema:productId N2b2008461aa84a719a79c1b4077a8850
60 N6587ba5856004abf81f21c218566c98a
61 N899a942879b4407ebcbe64c65bc51cc9
62 Nb0ed6a077c8b47c39a7b4682520d52e2
63 Nb114f05daf0c4f9385154d6b9cb04a9d
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113063184
65 https://doi.org/10.1186/s12863-019-0737-9
66 schema:sdDatePublished 2019-04-16T06:21
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nfb41529a21b34b4cb9cbca99df60fa28
69 schema:url https://link.springer.com/10.1186%2Fs12863-019-0737-9
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0c344acda6784edab31ce962b7d05edf schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
74 schema:familyName Zhang
75 schema:givenName Xing
76 rdf:type schema:Person
77 N20d121d86fed4506953f006e9e6d5619 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
78 schema:familyName Li
79 schema:givenName Xiangnan
80 rdf:type schema:Person
81 N220d3ad584bb49a49a172b6eeb8db94a rdf:first Neab3407bc73c4acebdd11588afe37778
82 rdf:rest Nb4470c4f99c744a7873a3a3398efe75b
83 N2b2008461aa84a719a79c1b4077a8850 schema:name pubmed_id
84 schema:value 30922237
85 rdf:type schema:PropertyValue
86 N4fcad25832c047fe951d579dde958c5f rdf:first N92702932cead445a8dce80049c8bc58b
87 rdf:rest Ne6b27ec029c7486c94f284d7bd4d3421
88 N564a2d1e4eb74d5ab329e0b92b522cf0 schema:volumeNumber 20
89 rdf:type schema:PublicationVolume
90 N56816dae2d3d4905b2df95e1c175f3c0 rdf:first N99e9cbc86dd640d8b8dd524027464ec9
91 rdf:rest Nbd4db391f64f48d0b59ec25af97a267e
92 N5e3e72c049064ceaa22762901612a8c9 rdf:first Ndf003496b5b841d9bece5b44fd8ee971
93 rdf:rest N56816dae2d3d4905b2df95e1c175f3c0
94 N5e7d2a641b754a47ad6c9b6bfca64096 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
95 schema:familyName Zhou
96 schema:givenName Yang
97 rdf:type schema:Person
98 N6587ba5856004abf81f21c218566c98a schema:name doi
99 schema:value 10.1186/s12863-019-0737-9
100 rdf:type schema:PropertyValue
101 N78b25e9b672d4dd6899cb6b7a994ba38 rdf:first N7a80dd771859476d91017b5de543643a
102 rdf:rest N4fcad25832c047fe951d579dde958c5f
103 N7a80dd771859476d91017b5de543643a schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
104 schema:familyName Zhu
105 schema:givenName Longming
106 rdf:type schema:Person
107 N7bdbbe02e7e04513bb61d5a99e03f7e2 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
108 schema:familyName Wang
109 schema:givenName Xinfang
110 rdf:type schema:Person
111 N839c74431f704ced8176bd40dca4703c rdf:first N0c344acda6784edab31ce962b7d05edf
112 rdf:rest Nb65b3339d20d47958412647369e2c2de
113 N899a942879b4407ebcbe64c65bc51cc9 schema:name readcube_id
114 schema:value efe67ee2a20c5c6346b19bbfa310f661649ab56833fa85988caec75755dacc03
115 rdf:type schema:PropertyValue
116 N9056fc6977bd46cfa422d1e3a02930ca schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 N92702932cead445a8dce80049c8bc58b schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
119 schema:familyName Bu
120 schema:givenName Yuanpeng
121 rdf:type schema:Person
122 N99e9cbc86dd640d8b8dd524027464ec9 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
123 schema:familyName Guo
124 schema:givenName Na
125 rdf:type schema:Person
126 Nac1d7b93976c453a8ec356a77221877f schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
127 schema:familyName Xing
128 schema:givenName Han
129 rdf:type schema:Person
130 Nb0ed6a077c8b47c39a7b4682520d52e2 schema:name nlm_unique_id
131 schema:value 100966978
132 rdf:type schema:PropertyValue
133 Nb114f05daf0c4f9385154d6b9cb04a9d schema:name dimensions_id
134 schema:value pub.1113063184
135 rdf:type schema:PropertyValue
136 Nb4470c4f99c744a7873a3a3398efe75b rdf:first Nac1d7b93976c453a8ec356a77221877f
137 rdf:rest rdf:nil
138 Nb65b3339d20d47958412647369e2c2de rdf:first N5e7d2a641b754a47ad6c9b6bfca64096
139 rdf:rest N5e3e72c049064ceaa22762901612a8c9
140 Nb9b09034d5dc47a1bab41209276e15e5 rdf:first N20d121d86fed4506953f006e9e6d5619
141 rdf:rest Nce9ca1b1bfb64488aa54dd6ffb479174
142 Nbd4db391f64f48d0b59ec25af97a267e rdf:first Nd6795ccb9a8d4896ab91fa35590e2838
143 rdf:rest N220d3ad584bb49a49a172b6eeb8db94a
144 Nce9ca1b1bfb64488aa54dd6ffb479174 rdf:first Nf6768bce2096434da32c75324c60dc31
145 rdf:rest N78b25e9b672d4dd6899cb6b7a994ba38
146 Nd6795ccb9a8d4896ab91fa35590e2838 schema:affiliation https://www.grid.ac/institutes/grid.464345.4
147 schema:familyName Qiu
148 schema:givenName Lijuan
149 rdf:type schema:Person
150 Ndf003496b5b841d9bece5b44fd8ee971 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
151 schema:familyName Wang
152 schema:givenName Xiaoting
153 rdf:type schema:Person
154 Ne6b27ec029c7486c94f284d7bd4d3421 rdf:first N7bdbbe02e7e04513bb61d5a99e03f7e2
155 rdf:rest N839c74431f704ced8176bd40dca4703c
156 Neab3407bc73c4acebdd11588afe37778 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
157 schema:familyName Zhao
158 schema:givenName Jinming
159 rdf:type schema:Person
160 Nf6768bce2096434da32c75324c60dc31 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
161 schema:familyName Zhang
162 schema:givenName Xiaoli
163 rdf:type schema:Person
164 Nfb41529a21b34b4cb9cbca99df60fa28 schema:name Springer Nature - SN SciGraph project
165 rdf:type schema:Organization
166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
167 schema:name Biological Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
170 schema:name Genetics
171 rdf:type schema:DefinedTerm
172 sg:journal.1024251 schema:issn 1471-2156
173 schema:name BMC Genetics
174 rdf:type schema:Periodical
175 sg:pub.10.1007/s00122-005-0007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802322
176 https://doi.org/10.1007/s00122-005-0007-2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00122-009-1048-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031575347
179 https://doi.org/10.1007/s00122-009-1048-8
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00122-011-1719-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031732728
182 https://doi.org/10.1007/s00122-011-1719-0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00122-012-1859-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032203905
185 https://doi.org/10.1007/s00122-012-1859-x
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00122-015-2614-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015491496
188 https://doi.org/10.1007/s00122-015-2614-x
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s11032-012-9833-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015367889
191 https://doi.org/10.1007/s11032-012-9833-5
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s11033-012-1808-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013211578
194 https://doi.org/10.1007/s11033-012-1808-4
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11103-005-0257-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170512
197 https://doi.org/10.1007/s11103-005-0257-z
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s11103-008-9306-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051295778
200 https://doi.org/10.1007/s11103-008-9306-8
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s12041-014-0383-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014912062
203 https://doi.org/10.1007/s12041-014-0383-y
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s12892-010-0115-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050296256
206 https://doi.org/10.1007/s12892-010-0115-7
207 rdf:type schema:CreativeWork
208 sg:pub.10.1023/a:1008164925103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036432474
209 https://doi.org/10.1023/a:1008164925103
210 rdf:type schema:CreativeWork
211 sg:pub.10.1023/a:1010662911148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049203358
212 https://doi.org/10.1023/a:1010662911148
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/ng.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009890914
215 https://doi.org/10.1038/ng.695
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
218 https://doi.org/10.1038/ng1702
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/srep20728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031421593
221 https://doi.org/10.1038/srep20728
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1471-2164-15-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023623483
224 https://doi.org/10.1186/1471-2164-15-1
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/s12863-015-0315-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022645034
227 https://doi.org/10.1186/s12863-015-0315-8
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/s12864-015-1441-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003150316
230 https://doi.org/10.1186/s12864-015-1441-4
231 rdf:type schema:CreativeWork
232 https://app.dimensions.ai/details/publication/pub.1076570279 schema:CreativeWork
233 https://app.dimensions.ai/details/publication/pub.1112115422 schema:CreativeWork
234 https://doi.org/10.1006/meth.2001.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621591
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.plantsci.2017.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085120251
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.tplants.2006.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041086945
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1073/pnas.201394398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001866470
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1080/07352689109382313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033477808
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bfgp/elq001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037765048
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/jxb/erx147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084823577
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1104/pp.017004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046579069
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1105/tpc.104.027078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026865620
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1105/tpc.109.073072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025762882
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/j.1365-313x.2007.03092.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037850031
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1111/j.1469-8137.2010.03344.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053601483
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1111/tpj.12755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004354614
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1146/annurev.arplant.54.031902.134907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021273162
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pgen.1004573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002708732
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1534/genetics.106.063149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033181514
265 rdf:type schema:CreativeWork
266 https://doi.org/10.2135/cropsci1999.3961642x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026563
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2135/cropsci2000.40130x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026738
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2135/cropsci2002.1950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027765
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2135/cropsci2003.3190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028272
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2135/cropsci2004.2101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028984
275 rdf:type schema:CreativeWork
276 https://doi.org/10.3724/sp.j.1006.2012.00935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071319572
277 rdf:type schema:CreativeWork
278 https://doi.org/10.5352/jls.2010.20.8.1186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000172070
279 rdf:type schema:CreativeWork
280 https://www.grid.ac/institutes/grid.27871.3b schema:alternateName Nanjing Agricultural University
281 schema:name National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, People’s Republic of China
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.464345.4 schema:alternateName Institute of Crop Sciences
284 schema:name The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, People’s Republic of China
285 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...