Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Camila U. Braz, Jeremy F. Taylor, Tiago Bresolin, Rafael Espigolan, Fabieli L. B. Feitosa, Roberto Carvalheiro, Fernando Baldi, Lucia G. de Albuquerque, Henrique N. de Oliveira

ABSTRACT

BACKGROUND: Traditional single nucleotide polymorphism (SNP) genome-wide association analysis (GWAA) can be inefficient because single SNPs provide limited genetic information about genomic regions. On the other hand, using haplotypes in the statistical analysis may increase the extent of linkage disequilibrium (LD) between haplotypes and causal variants and may also potentially capture epistastic interactions between variants within a haplotyped locus, providing an increase in the power and robustness of the association studies. We performed GWAA (413,355 SNP markers) using haplotypes based on variable-sized sliding windows and compared the results to a single-SNP GWAA using Warner-Bratzler shear force measured in the longissimus thorasis muscle of 3161 Nelore bulls to ascertain the optimal window size for identifying the genomic regions that influence meat tenderness. RESULTS: The GWAA using single SNPs identified eight variants influencing meat tenderness on BTA 3, 4, 9, 10 and 11. However, thirty-three putative meat tenderness QTL were detected on BTA 1, 3, 4, 5, 8, 9, 10, 11, 15, 17, 18, 24, 25, 26 and 29 using variable-sized sliding haplotype windows. Analyses using sliding window haplotypes of 3, 5, 7, 9 and 11 SNPs identified 57, 61, 42, 39, and 21% of all thirty-three putative QTL regions, respectively; however, the analyses using the 3 and 5 SNP haplotypes, cumulatively detected 88% of the putative QTL. The genes associated with variation in meat tenderness participate in myogenesis, neurogenesis, lipid and fatty acid metabolism and skeletal muscle structure or composition processes. CONCLUSIONS: GWAA using haplotypes based on variable-sized sliding windows allowed the detection of more QTL than traditional single-SNP GWAA. Analyses using smaller haplotypes (3 and 5 SNPs) detected a higher proportion of the putative QTL. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-019-0713-4

DOI

http://dx.doi.org/10.1186/s12863-019-0713-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111404089

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30642245


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braz", 
        "givenName": "Camila U.", 
        "id": "sg:person.01364346606.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364346606.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Division of Animal Sciences, University of Missouri, 65211, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Jeremy F.", 
        "id": "sg:person.01365227460.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365227460.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bresolin", 
        "givenName": "Tiago", 
        "id": "sg:person.0736122123.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736122123.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Espigolan", 
        "givenName": "Rafael", 
        "id": "sg:person.01304742356.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304742356.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feitosa", 
        "givenName": "Fabieli L. B.", 
        "id": "sg:person.015500002624.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500002624.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carvalheiro", 
        "givenName": "Roberto", 
        "id": "sg:person.0665117437.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665117437.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baldi", 
        "givenName": "Fernando", 
        "id": "sg:person.0662707420.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662707420.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Albuquerque", 
        "givenName": "Lucia G.", 
        "id": "sg:person.01223507267.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223507267.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Animal Science Department, S\u00e3o Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "Henrique N.", 
        "id": "sg:person.0727216210.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727216210.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2156-8-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000111034", 
          "https://doi.org/10.1186/1471-2156-8-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1740(96)00065-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002851354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003844567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004759157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005070991", 
          "https://doi.org/10.1186/s13059-016-0974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005070991", 
          "https://doi.org/10.1186/s13059-016-0974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006105205", 
          "https://doi.org/10.1186/1471-2164-14-305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m110.002113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006397743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1538/expanim.15-0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007365787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0029601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009252302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009353643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-014-0069-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010108593", 
          "https://doi.org/10.1186/s12711-014-0069-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-014-0069-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010108593", 
          "https://doi.org/10.1186/s12711-014-0069-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00543.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011480371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00543.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011480371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(01)00893-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012429603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gdata.2015.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014247125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-14-47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019490980", 
          "https://doi.org/10.1186/1471-2156-14-47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12985-014-0228-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020302414", 
          "https://doi.org/10.1186/s12985-014-0228-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12985-014-0228-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020302414", 
          "https://doi.org/10.1186/s12985-014-0228-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020552743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-41-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020885206", 
          "https://doi.org/10.1186/1297-9686-41-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021971381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0069202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024283694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025098925", 
          "https://doi.org/10.1186/1471-2164-15-478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/ijbs.3821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026665634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-6-24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027566742", 
          "https://doi.org/10.1186/1471-2156-6-24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbt037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027781202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-014-1768-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027992969", 
          "https://doi.org/10.1007/s00018-014-1768-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dvdy.22019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028460929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dvdy.22019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028460929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00066.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031061530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cm.20042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032358604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.3.1561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032725268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.3.1561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032725268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2012.02323.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032783061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033811079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038198686", 
          "https://doi.org/10.1186/1471-2164-12-408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-015-0173-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038373209", 
          "https://doi.org/10.1186/s12711-015-0173-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2012.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039383276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-015-0105-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264989", 
          "https://doi.org/10.1186/s12711-015-0105-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-015-0105-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264989", 
          "https://doi.org/10.1186/s12711-015-0105-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-43-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041554413", 
          "https://doi.org/10.1186/1297-9686-43-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0014079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042454213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1740(03)00022-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042957690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1740(03)00022-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042957690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043279476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13353-016-0360-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043671150", 
          "https://doi.org/10.1007/s13353-016-0360-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13353-016-0360-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043671150", 
          "https://doi.org/10.1007/s13353-016-0360-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5713/ajas.14.0394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044855947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1203716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044873820", 
          "https://doi.org/10.1038/sj.onc.1203716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1203716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044873820", 
          "https://doi.org/10.1038/sj.onc.1203716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(90)90003-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045386743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(90)90003-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045386743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a008342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-33-3-209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045489495", 
          "https://doi.org/10.1186/1297-9686-33-3-209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046029840", 
          "https://doi.org/10.1038/ng.2310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-1171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047321275", 
          "https://doi.org/10.1186/1471-2164-15-1171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2008.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048020719", 
          "https://doi.org/10.1038/ejhg.2008.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.10200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050522556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2009.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050780889", 
          "https://doi.org/10.1038/ejhg.2009.7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1529-8817.2004.00140.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053128324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1529-8817.2004.00140.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053128324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0157845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053673807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672307008865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054057689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1969.10490731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/303003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/422174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058712504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/513205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058788814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/phgs.4.2.171.22636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067591541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2006-495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070885820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2010-3138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070887484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2011-4245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070887976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2016.1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083663127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2017.04.261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085442649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-4196-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092272967", 
          "https://doi.org/10.1186/s12864-017-4196-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17221/5478-cjas", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100967039"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Traditional single nucleotide polymorphism (SNP) genome-wide association analysis (GWAA) can be inefficient because single SNPs provide limited genetic information about genomic regions. On the other hand, using haplotypes in the statistical analysis may increase the extent of linkage disequilibrium (LD) between haplotypes and causal variants and may also potentially capture epistastic interactions between variants within a haplotyped locus, providing an increase in the power and robustness of the association studies. We performed GWAA (413,355 SNP markers) using haplotypes based on variable-sized sliding windows and compared the results to a single-SNP GWAA using Warner-Bratzler shear force measured in the longissimus thorasis muscle of 3161 Nelore bulls to ascertain the optimal window size for identifying the genomic regions that influence meat tenderness.\nRESULTS: The GWAA using single SNPs identified eight variants influencing meat tenderness on BTA 3, 4, 9, 10 and 11. However, thirty-three putative meat tenderness QTL were detected on BTA 1, 3, 4, 5, 8, 9, 10, 11, 15, 17, 18, 24, 25, 26 and 29 using variable-sized sliding haplotype windows. Analyses using sliding window haplotypes of 3, 5, 7, 9 and 11 SNPs identified 57, 61, 42, 39, and 21% of all thirty-three putative QTL regions, respectively; however, the analyses using the 3 and 5 SNP haplotypes, cumulatively detected 88% of the putative QTL. The genes associated with variation in meat tenderness participate in myogenesis, neurogenesis, lipid and fatty acid metabolism and skeletal muscle structure or composition processes.\nCONCLUSIONS: GWAA using haplotypes based on variable-sized sliding windows allowed the detection of more QTL than traditional single-SNP GWAA. Analyses using smaller haplotypes (3 and 5 SNPs) detected a higher proportion of the putative QTL.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-019-0713-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4475241", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4484734", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "516dabbbc50e68ffc0fabdbd63e3694b4fac849acbf8421a8083ef32acd829aa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30642245"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-019-0713-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111404089"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-019-0713-4", 
      "https://app.dimensions.ai/details/publication/pub.1111404089"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12863-019-0713-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0713-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0713-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0713-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-019-0713-4'


 

This table displays all metadata directly associated to this object as RDF triples.

354 TRIPLES      21 PREDICATES      96 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-019-0713-4 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N838d05a06b844e76b673787bccd74be3
4 schema:citation sg:pub.10.1007/s00018-014-1768-z
5 sg:pub.10.1007/s13353-016-0360-7
6 sg:pub.10.1038/ejhg.2008.244
7 sg:pub.10.1038/ejhg.2009.7
8 sg:pub.10.1038/ng.2310
9 sg:pub.10.1038/sj.onc.1203716
10 sg:pub.10.1186/1297-9686-33-3-209
11 sg:pub.10.1186/1297-9686-41-11
12 sg:pub.10.1186/1297-9686-43-28
13 sg:pub.10.1186/1471-2156-14-47
14 sg:pub.10.1186/1471-2156-6-24
15 sg:pub.10.1186/1471-2156-8-74
16 sg:pub.10.1186/1471-2164-12-408
17 sg:pub.10.1186/1471-2164-14-305
18 sg:pub.10.1186/1471-2164-15-1171
19 sg:pub.10.1186/1471-2164-15-478
20 sg:pub.10.1186/s12711-014-0069-1
21 sg:pub.10.1186/s12711-015-0105-9
22 sg:pub.10.1186/s12711-015-0173-x
23 sg:pub.10.1186/s12864-017-4196-2
24 sg:pub.10.1186/s12985-014-0228-6
25 sg:pub.10.1186/s13059-016-0974-4
26 https://doi.org/10.1002/cm.20042
27 https://doi.org/10.1002/dvdy.22019
28 https://doi.org/10.1002/gepi.1012
29 https://doi.org/10.1002/gepi.10200
30 https://doi.org/10.1002/gepi.20025
31 https://doi.org/10.1002/gepi.20305
32 https://doi.org/10.1016/0166-2236(90)90003-s
33 https://doi.org/10.1016/0309-1740(96)00065-4
34 https://doi.org/10.1016/j.gdata.2015.12.023
35 https://doi.org/10.1016/j.meatsci.2012.05.007
36 https://doi.org/10.1016/j.meatsci.2017.04.261
37 https://doi.org/10.1016/s0309-1740(03)00022-6
38 https://doi.org/10.1016/s0378-1119(01)00893-9
39 https://doi.org/10.1017/s0016672307008865
40 https://doi.org/10.1046/j.1529-8817.2004.00140.x
41 https://doi.org/10.1074/mcp.m110.002113
42 https://doi.org/10.1080/00401706.1969.10490731
43 https://doi.org/10.1086/303003
44 https://doi.org/10.1086/422174
45 https://doi.org/10.1086/513205
46 https://doi.org/10.1093/bib/bbt037
47 https://doi.org/10.1093/bioinformatics/bth457
48 https://doi.org/10.1093/biostatistics/kxp023
49 https://doi.org/10.1093/nar/gkq537
50 https://doi.org/10.1101/cshperspect.a008342
51 https://doi.org/10.1111/j.1365-2052.2012.02323.x
52 https://doi.org/10.1111/j.1469-1809.2009.00543.x
53 https://doi.org/10.1126/science.1069424
54 https://doi.org/10.1152/physiolgenomics.00066.2013
55 https://doi.org/10.1371/journal.pgen.1006220
56 https://doi.org/10.1371/journal.pone.0005350
57 https://doi.org/10.1371/journal.pone.0014079
58 https://doi.org/10.1371/journal.pone.0029601
59 https://doi.org/10.1371/journal.pone.0069202
60 https://doi.org/10.1371/journal.pone.0157845
61 https://doi.org/10.1517/phgs.4.2.171.22636
62 https://doi.org/10.1534/genetics.166.3.1561
63 https://doi.org/10.1538/expanim.15-0016
64 https://doi.org/10.17221/5478-cjas
65 https://doi.org/10.2527/jas.2006-495
66 https://doi.org/10.2527/jas.2010-3138
67 https://doi.org/10.2527/jas.2011-4245
68 https://doi.org/10.2527/jas.2016.1003
69 https://doi.org/10.5713/ajas.14.0394
70 https://doi.org/10.7150/ijbs.3821
71 schema:datePublished 2019-12
72 schema:datePublishedReg 2019-12-01
73 schema:description BACKGROUND: Traditional single nucleotide polymorphism (SNP) genome-wide association analysis (GWAA) can be inefficient because single SNPs provide limited genetic information about genomic regions. On the other hand, using haplotypes in the statistical analysis may increase the extent of linkage disequilibrium (LD) between haplotypes and causal variants and may also potentially capture epistastic interactions between variants within a haplotyped locus, providing an increase in the power and robustness of the association studies. We performed GWAA (413,355 SNP markers) using haplotypes based on variable-sized sliding windows and compared the results to a single-SNP GWAA using Warner-Bratzler shear force measured in the longissimus thorasis muscle of 3161 Nelore bulls to ascertain the optimal window size for identifying the genomic regions that influence meat tenderness. RESULTS: The GWAA using single SNPs identified eight variants influencing meat tenderness on BTA 3, 4, 9, 10 and 11. However, thirty-three putative meat tenderness QTL were detected on BTA 1, 3, 4, 5, 8, 9, 10, 11, 15, 17, 18, 24, 25, 26 and 29 using variable-sized sliding haplotype windows. Analyses using sliding window haplotypes of 3, 5, 7, 9 and 11 SNPs identified 57, 61, 42, 39, and 21% of all thirty-three putative QTL regions, respectively; however, the analyses using the 3 and 5 SNP haplotypes, cumulatively detected 88% of the putative QTL. The genes associated with variation in meat tenderness participate in myogenesis, neurogenesis, lipid and fatty acid metabolism and skeletal muscle structure or composition processes. CONCLUSIONS: GWAA using haplotypes based on variable-sized sliding windows allowed the detection of more QTL than traditional single-SNP GWAA. Analyses using smaller haplotypes (3 and 5 SNPs) detected a higher proportion of the putative QTL.
74 schema:genre research_article
75 schema:inLanguage en
76 schema:isAccessibleForFree true
77 schema:isPartOf Nd99fec99cdee4d49b31e1ba81e8ab9c5
78 Nf56db62b65ea48df8bc2dee77dc649d5
79 sg:journal.1024251
80 schema:name Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle
81 schema:pagination 8
82 schema:productId N0d7bedb502284fbebe5036930e869fe3
83 N9f096e08e8a049cdae1662e52b9873bb
84 Na6fd51a60bd44fcd880d04d69762419c
85 Nab33e6fcc7f24b078f47b5ca71a25ff8
86 Nb188f16c258d4db0b44e234e9578a72c
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111404089
88 https://doi.org/10.1186/s12863-019-0713-4
89 schema:sdDatePublished 2019-04-11T08:55
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N18d7ae012ce44952b7cceefa4a8798f3
92 schema:url https://link.springer.com/10.1186%2Fs12863-019-0713-4
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0d7bedb502284fbebe5036930e869fe3 schema:name doi
97 schema:value 10.1186/s12863-019-0713-4
98 rdf:type schema:PropertyValue
99 N18d7ae012ce44952b7cceefa4a8798f3 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N1ba11877ac2643c597cda96273679143 rdf:first sg:person.01365227460.97
102 rdf:rest N282c2b6e4beb4bbaba525335ea7cad36
103 N282c2b6e4beb4bbaba525335ea7cad36 rdf:first sg:person.0736122123.88
104 rdf:rest N3f05a4d74e894435a7cbd7f0b3f176fd
105 N35992ed13e4744aeb8f8a61f58723b54 rdf:first sg:person.0727216210.35
106 rdf:rest rdf:nil
107 N372f8e67d3b643ecb38a4cff492ca08d rdf:first sg:person.01223507267.77
108 rdf:rest N35992ed13e4744aeb8f8a61f58723b54
109 N3f05a4d74e894435a7cbd7f0b3f176fd rdf:first sg:person.01304742356.18
110 rdf:rest N714123790f864934b761f4994b641b61
111 N4f96f8a5c55c43c3a65fce8c4eb0be1b rdf:first sg:person.0665117437.43
112 rdf:rest N7ac3022a4f6848198372898f216272ee
113 N714123790f864934b761f4994b641b61 rdf:first sg:person.015500002624.52
114 rdf:rest N4f96f8a5c55c43c3a65fce8c4eb0be1b
115 N7ac3022a4f6848198372898f216272ee rdf:first sg:person.0662707420.57
116 rdf:rest N372f8e67d3b643ecb38a4cff492ca08d
117 N838d05a06b844e76b673787bccd74be3 rdf:first sg:person.01364346606.16
118 rdf:rest N1ba11877ac2643c597cda96273679143
119 N9f096e08e8a049cdae1662e52b9873bb schema:name nlm_unique_id
120 schema:value 100966978
121 rdf:type schema:PropertyValue
122 Na6fd51a60bd44fcd880d04d69762419c schema:name pubmed_id
123 schema:value 30642245
124 rdf:type schema:PropertyValue
125 Nab33e6fcc7f24b078f47b5ca71a25ff8 schema:name readcube_id
126 schema:value 516dabbbc50e68ffc0fabdbd63e3694b4fac849acbf8421a8083ef32acd829aa
127 rdf:type schema:PropertyValue
128 Nb188f16c258d4db0b44e234e9578a72c schema:name dimensions_id
129 schema:value pub.1111404089
130 rdf:type schema:PropertyValue
131 Nd99fec99cdee4d49b31e1ba81e8ab9c5 schema:volumeNumber 20
132 rdf:type schema:PublicationVolume
133 Nf56db62b65ea48df8bc2dee77dc649d5 schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
139 schema:name Genetics
140 rdf:type schema:DefinedTerm
141 sg:grant.4475241 http://pending.schema.org/fundedItem sg:pub.10.1186/s12863-019-0713-4
142 rdf:type schema:MonetaryGrant
143 sg:grant.4484734 http://pending.schema.org/fundedItem sg:pub.10.1186/s12863-019-0713-4
144 rdf:type schema:MonetaryGrant
145 sg:journal.1024251 schema:issn 1471-2156
146 schema:name BMC Genetics
147 rdf:type schema:Periodical
148 sg:person.01223507267.77 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
149 schema:familyName de Albuquerque
150 schema:givenName Lucia G.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223507267.77
152 rdf:type schema:Person
153 sg:person.01304742356.18 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
154 schema:familyName Espigolan
155 schema:givenName Rafael
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304742356.18
157 rdf:type schema:Person
158 sg:person.01364346606.16 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
159 schema:familyName Braz
160 schema:givenName Camila U.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364346606.16
162 rdf:type schema:Person
163 sg:person.01365227460.97 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
164 schema:familyName Taylor
165 schema:givenName Jeremy F.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365227460.97
167 rdf:type schema:Person
168 sg:person.015500002624.52 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
169 schema:familyName Feitosa
170 schema:givenName Fabieli L. B.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500002624.52
172 rdf:type schema:Person
173 sg:person.0662707420.57 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
174 schema:familyName Baldi
175 schema:givenName Fernando
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662707420.57
177 rdf:type schema:Person
178 sg:person.0665117437.43 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
179 schema:familyName Carvalheiro
180 schema:givenName Roberto
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665117437.43
182 rdf:type schema:Person
183 sg:person.0727216210.35 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
184 schema:familyName de Oliveira
185 schema:givenName Henrique N.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727216210.35
187 rdf:type schema:Person
188 sg:person.0736122123.88 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
189 schema:familyName Bresolin
190 schema:givenName Tiago
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736122123.88
192 rdf:type schema:Person
193 sg:pub.10.1007/s00018-014-1768-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027992969
194 https://doi.org/10.1007/s00018-014-1768-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s13353-016-0360-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043671150
197 https://doi.org/10.1007/s13353-016-0360-7
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ejhg.2008.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048020719
200 https://doi.org/10.1038/ejhg.2008.244
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ejhg.2009.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050780889
203 https://doi.org/10.1038/ejhg.2009.7
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ng.2310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046029840
206 https://doi.org/10.1038/ng.2310
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/sj.onc.1203716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044873820
209 https://doi.org/10.1038/sj.onc.1203716
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1297-9686-33-3-209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045489495
212 https://doi.org/10.1186/1297-9686-33-3-209
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1297-9686-41-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020885206
215 https://doi.org/10.1186/1297-9686-41-11
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/1297-9686-43-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041554413
218 https://doi.org/10.1186/1297-9686-43-28
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/1471-2156-14-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019490980
221 https://doi.org/10.1186/1471-2156-14-47
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1471-2156-6-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027566742
224 https://doi.org/10.1186/1471-2156-6-24
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1471-2156-8-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000111034
227 https://doi.org/10.1186/1471-2156-8-74
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/1471-2164-12-408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038198686
230 https://doi.org/10.1186/1471-2164-12-408
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/1471-2164-14-305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006105205
233 https://doi.org/10.1186/1471-2164-14-305
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1471-2164-15-1171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047321275
236 https://doi.org/10.1186/1471-2164-15-1171
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1471-2164-15-478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098925
239 https://doi.org/10.1186/1471-2164-15-478
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/s12711-014-0069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010108593
242 https://doi.org/10.1186/s12711-014-0069-1
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/s12711-015-0105-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040264989
245 https://doi.org/10.1186/s12711-015-0105-9
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/s12711-015-0173-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038373209
248 https://doi.org/10.1186/s12711-015-0173-x
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/s12864-017-4196-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092272967
251 https://doi.org/10.1186/s12864-017-4196-2
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/s12985-014-0228-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020302414
254 https://doi.org/10.1186/s12985-014-0228-6
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/s13059-016-0974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005070991
257 https://doi.org/10.1186/s13059-016-0974-4
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1002/cm.20042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032358604
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1002/dvdy.22019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028460929
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1002/gepi.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043279476
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1002/gepi.10200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050522556
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1002/gepi.20025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009353643
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1002/gepi.20305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004759157
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/0166-2236(90)90003-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1045386743
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/0309-1740(96)00065-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002851354
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/j.gdata.2015.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014247125
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.meatsci.2012.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039383276
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1016/j.meatsci.2017.04.261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085442649
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1016/s0309-1740(03)00022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042957690
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1016/s0378-1119(01)00893-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012429603
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1017/s0016672307008865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054057689
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1046/j.1529-8817.2004.00140.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053128324
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1074/mcp.m110.002113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006397743
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1080/00401706.1969.10490731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284097
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1086/303003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610549
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1086/422174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058712504
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1086/513205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058788814
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1093/bib/bbt037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027781202
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1093/biostatistics/kxp023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003844567
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1093/nar/gkq537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021971381
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1101/cshperspect.a008342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401312
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1111/j.1365-2052.2012.02323.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032783061
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1111/j.1469-1809.2009.00543.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011480371
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1152/physiolgenomics.00066.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031061530
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1371/journal.pgen.1006220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033811079
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1371/journal.pone.0005350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020552743
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1371/journal.pone.0014079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042454213
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1371/journal.pone.0029601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009252302
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1371/journal.pone.0069202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024283694
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1371/journal.pone.0157845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053673807
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1517/phgs.4.2.171.22636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067591541
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1534/genetics.166.3.1561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032725268
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1538/expanim.15-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007365787
334 rdf:type schema:CreativeWork
335 https://doi.org/10.17221/5478-cjas schema:sameAs https://app.dimensions.ai/details/publication/pub.1100967039
336 rdf:type schema:CreativeWork
337 https://doi.org/10.2527/jas.2006-495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070885820
338 rdf:type schema:CreativeWork
339 https://doi.org/10.2527/jas.2010-3138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887484
340 rdf:type schema:CreativeWork
341 https://doi.org/10.2527/jas.2011-4245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887976
342 rdf:type schema:CreativeWork
343 https://doi.org/10.2527/jas.2016.1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083663127
344 rdf:type schema:CreativeWork
345 https://doi.org/10.5713/ajas.14.0394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044855947
346 rdf:type schema:CreativeWork
347 https://doi.org/10.7150/ijbs.3821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026665634
348 rdf:type schema:CreativeWork
349 https://www.grid.ac/institutes/grid.134936.a schema:alternateName University of Missouri
350 schema:name Division of Animal Sciences, University of Missouri, 65211, Columbia, MO, USA
351 rdf:type schema:Organization
352 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
353 schema:name Animal Science Department, São Paulo State University (Unesp), 144884-900, Jaboticabal, SP, Brazil
354 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...