Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Lucas Simon Torati, John Bernard Taggart, Eduardo Sousa Varela, Juliana Araripe, Stefanie Wehner, Hervé Migaud

ABSTRACT

BACKGROUND: Arapaima gigas (Schinz, 1822) is the largest freshwater scaled fish in the world, and an emerging species for tropical aquaculture development. Conservation of the species, and the expansion of aquaculture requires the development of genetic tools to study polymorphism, differentiation, and stock structure. This study aimed to investigate genomic polymorphism through ddRAD sequencing, in order to identify a panel of single nucleotide polymorphisms (SNPs) and to simultaneously assess genetic diversity and structure in wild (from rivers Amazon, Solimões, Tocantins and Araguaia) and captive populations. RESULTS: Compared to many other teleosts, the degree of polymorphism in A. gigas was low with only 2.3% of identified RAD-tags (135 bases long) containing SNPs. A panel of 393 informative SNPs was identified and screened across the five populations. Higher genetic diversity indices (number of polymorphic loci and private alleles, Shannon's Index and HO) were found in populations from the Amazon and Solimões, intermediate levels in Tocantins and Captive, and very low levels in the Araguaia population. These results likely reflect larger population sizes from less urbanized environments in the Amazon basin compared to Araguaia. Populations were significantly differentiated with pairwise FST values ranging from 0.086 (Amazon × Solimões) to 0.556 (Amazon × Araguaia). Mean pairwise relatedness among individuals was significant in all populations (P < 0.01), reflecting a degree of inbreeding possibly due to severe depletion of natural stocks, the species sedentary behaviour and possible sampling biases. Although Mantel test was not significant (P = 0.104; R2 = 0.65), Bayesian analysis in STRUCTURE and discriminant analysis of principal components (DAPC) showed populations of Amazon and Solimões to be genetically differentiated from Araguaia, with Tocantins comprising individuals from both identified stocks. CONCLUSIONS: This relatively rapid genotyping by sequencing approach proved to be successful in delineating arapaima stocks. The approach and / or SNP panels identified should prove valuable for more detailed genetic studies of arapaima populations, including the elucidation of the genetic status of described discrete morphotypes and aid in delivery of conservation programs to maintain genetic diversity in reservoirs across the Amazon region. More... »

PAGES

13

References to SciGraph publications

  • 2017-12. Population genomics of an endemic Mediterranean fish: differentiation by fine scale dispersal and adaptation in SCIENTIFIC REPORTS
  • 2011-09. Modeling population dynamics and conservation of arapaima in the Amazon in REVIEWS IN FISH BIOLOGY AND FISHERIES
  • 2015-12. A new SNP-based vision of the genetics of sex determination in European sea bass (Dicentrarchus labrax) in GENETICS SELECTION EVOLUTION
  • 2016-12. Mapping the sex determination locus in the hāpuku (Polyprion oxygeneios) using ddRAD sequencing in BMC GENOMICS
  • 2016-12. Development of SNP markers for analysis of population structure in white perch (Morone americana) using double digest restriction site-associated DNA sequencing in CONSERVATION GENETICS RESOURCES
  • 2012. Population Genomic Analysis of Model and Nonmodel Organisms Using Sequenced RAD Tags in DATA PRODUCTION AND ANALYSIS IN POPULATION GENOMICS
  • 2016-09. Development of SNP and microsatellite markers for goldsinny wrasse (Ctenolabrus rupestris) from ddRAD sequencing data in CONSERVATION GENETICS RESOURCES
  • 2016-02. Harnessing the power of RADseq for ecological and evolutionary genomics in NATURE REVIEWS GENETICS
  • 2013-12. Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing in BMC GENOMICS
  • 2018-10. Population genetic structure after 125 years of stocking in sea trout (Salmo trutta L.) in CONSERVATION GENETICS
  • 1997-08. Genetically monomorphic brown trout (Salmo trutta L.) populations, as revealed by mitochondrial DNA, multilocus and single-locus minisatellite (VNTR) analyses in HEREDITY
  • 2015-12. A novel sex-determining QTL in Nile tilapia (Oreochromis niloticus) in BMC GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12863-018-0711-y

    DOI

    http://dx.doi.org/10.1186/s12863-018-0711-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111749581

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30691389


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Stirling", 
              "id": "https://www.grid.ac/institutes/grid.11918.30", 
              "name": [
                "EMBRAPA Pesca e Aquicultura, CEP 77008-900, Palmas, TO, Brazil", 
                "Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torati", 
            "givenName": "Lucas Simon", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Stirling", 
              "id": "https://www.grid.ac/institutes/grid.11918.30", 
              "name": [
                "Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taggart", 
            "givenName": "John Bernard", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "EMBRAPA Pesca e Aquicultura, CEP 77008-900, Palmas, TO, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varela", 
            "givenName": "Eduardo Sousa", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of Para", 
              "id": "https://www.grid.ac/institutes/grid.271300.7", 
              "name": [
                "Instituto de Estudos Costeiros, Campus de Bragan\u00e7a, Universidade Federal do Par\u00e1, CEP 68600-000, Bragan\u00e7a, PA, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Araripe", 
            "givenName": "Juliana", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Psychiatry", 
              "id": "https://www.grid.ac/institutes/grid.419548.5", 
              "name": [
                "Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wehner", 
            "givenName": "Stefanie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Stirling", 
              "id": "https://www.grid.ac/institutes/grid.11918.30", 
              "name": [
                "Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Migaud", 
            "givenName": "Herv\u00e9", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.tree.2004.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001481027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2007.01931.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001508219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1679-62252006000200007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002466244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11160-010-9197-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002473535", 
              "https://doi.org/10.1007/s11160-010-9197-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jai.12972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003077465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003335269", 
              "https://doi.org/10.1186/1471-2164-14-566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.13613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005930675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0102089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007253744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1600-0633.2007.00255.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007315801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1643/cg-15-293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008162298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0128247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011079516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.12354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011474911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011820832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/1982-0224-20150037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012773115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0054470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015777880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/1982-0224-20140010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018962055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1755-0998.12387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019918862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02943.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019931503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aqc.2491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020898628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2109.2011.02886.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022412239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0138640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022941728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2773-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024182816", 
              "https://doi.org/10.1186/s12864-016-2773-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2773-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024182816", 
              "https://doi.org/10.1186/s12864-016-2773-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026432648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0003376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028160249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1643/ci-12-013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030119754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1095-8649.2007.01778.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030427047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1367943005002210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030733489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1367943005002210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030733489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1997.144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033237054", 
              "https://doi.org/10.1038/hdy.1997.144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1997.144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033237054", 
              "https://doi.org/10.1038/hdy.1997.144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.12972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033458196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-61779-870-2_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036110008", 
              "https://doi.org/10.1007/978-1-61779-870-2_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0426.2009.01355.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036482039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0426.2009.01355.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036482039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1463-6395.2005.00213.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040498839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1463-6395.2005.00213.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040498839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aquaculture.2012.09.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041085792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tree.2010.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045559906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0164327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045589838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1383-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048517010", 
              "https://doi.org/10.1186/s12864-015-1383-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1383-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048517010", 
              "https://doi.org/10.1186/s12864-015-1383-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2015.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049142423", 
              "https://doi.org/10.1038/nrg.2015.28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0037135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049371751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1519-69842007000500015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049882472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/faf.12020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049982306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12686-016-0532-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051317973", 
              "https://doi.org/10.1007/s12686-016-0532-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-294x.2000.105337.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051751864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0148-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052209652", 
              "https://doi.org/10.1186/s12711-015-0148-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2005.01155.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052284706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2005.01155.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052284706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12686-016-0571-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053581292", 
              "https://doi.org/10.1007/s12686-016-0571-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12686-016-0571-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053581292", 
              "https://doi.org/10.1007/s12686-016-0571-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1643/ci-12-017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068176195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1874196700902010091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069229173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1447399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069502985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4238/2013.december.4.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072391413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4238/vol7-1gmr394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072396742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074500469", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep43417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084131362", 
              "https://doi.org/10.1038/srep43417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24841/fa.v20i1-2.352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085315601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1558-5646.1989.tb04220.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085730062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1558-5646.1984.tb05657.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085737796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0183545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091377528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2017.00159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092333651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/eva.12628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101754465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-018-1083-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105016841", 
              "https://doi.org/10.1007/s10592-018-1083-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/eva.12689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105974239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/eva.12689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105974239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1107023407", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119174844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107023407"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Arapaima gigas (Schinz, 1822) is the largest freshwater scaled fish in the world, and an emerging species for tropical aquaculture development. Conservation of the species, and the expansion of aquaculture requires the development of genetic tools to study polymorphism, differentiation, and stock structure. This study aimed to investigate genomic polymorphism through ddRAD sequencing, in order to identify a panel of single nucleotide polymorphisms (SNPs) and to simultaneously assess genetic diversity and structure in wild (from rivers Amazon, Solim\u00f5es, Tocantins and Araguaia) and captive populations.\nRESULTS: Compared to many other teleosts, the degree of polymorphism in A. gigas was low with only 2.3% of identified RAD-tags (135 bases long) containing SNPs. A panel of 393 informative SNPs was identified and screened across the five populations. Higher genetic diversity indices (number of polymorphic loci and private alleles, Shannon's Index and HO) were found in populations from the Amazon and Solim\u00f5es, intermediate levels in Tocantins and Captive, and very low levels in the Araguaia population. These results likely reflect larger population sizes from less urbanized environments in the Amazon basin compared to Araguaia. Populations were significantly differentiated with pairwise FST values ranging from 0.086 (Amazon \u00d7 Solim\u00f5es) to 0.556 (Amazon \u00d7 Araguaia). Mean pairwise relatedness among individuals was significant in all populations (P\u2009<\u20090.01), reflecting a degree of inbreeding possibly due to severe depletion of natural stocks, the species sedentary behaviour and possible sampling biases. Although Mantel test was not significant (P\u2009=\u20090.104; R2\u2009=\u20090.65), Bayesian analysis in STRUCTURE and discriminant analysis of principal components (DAPC) showed populations of Amazon and Solim\u00f5es to be genetically differentiated from Araguaia, with Tocantins comprising individuals from both identified stocks.\nCONCLUSIONS: This relatively rapid genotyping by sequencing approach proved to be successful in delineating arapaima stocks. The approach and / or SNP panels identified should prove valuable for more detailed genetic studies of arapaima populations, including the elucidation of the genetic status of described discrete morphotypes and aid in delivery of conservation programs to maintain genetic diversity in reservoirs across the Amazon region.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12863-018-0711-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024251", 
            "issn": [
              "1471-2156"
            ], 
            "name": "BMC Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins", 
        "pagination": "13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2860f04a50b7324d794e45887711b3631592eb90045b92322c258c0d42ec5172"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30691389"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100966978"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12863-018-0711-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111749581"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12863-018-0711-y", 
          "https://app.dimensions.ai/details/publication/pub.1111749581"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114964_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12863-018-0711-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0711-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0711-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0711-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0711-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    310 TRIPLES      21 PREDICATES      94 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12863-018-0711-y schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N440c108de00544bf9e97fc397e67103f
    4 schema:citation sg:pub.10.1007/978-1-61779-870-2_14
    5 sg:pub.10.1007/s10592-018-1083-6
    6 sg:pub.10.1007/s11160-010-9197-z
    7 sg:pub.10.1007/s12686-016-0532-0
    8 sg:pub.10.1007/s12686-016-0571-6
    9 sg:pub.10.1038/hdy.1997.144
    10 sg:pub.10.1038/nrg.2015.28
    11 sg:pub.10.1038/srep43417
    12 sg:pub.10.1186/1471-2164-14-566
    13 sg:pub.10.1186/s12711-015-0148-y
    14 sg:pub.10.1186/s12864-015-1383-x
    15 sg:pub.10.1186/s12864-016-2773-4
    16 https://app.dimensions.ai/details/publication/pub.1074500469
    17 https://app.dimensions.ai/details/publication/pub.1074647594
    18 https://app.dimensions.ai/details/publication/pub.1107023407
    19 https://doi.org/10.1002/9781119174844
    20 https://doi.org/10.1002/aqc.2491
    21 https://doi.org/10.1016/j.aquaculture.2012.09.027
    22 https://doi.org/10.1016/j.tree.2004.01.009
    23 https://doi.org/10.1016/j.tree.2010.09.002
    24 https://doi.org/10.1017/s1367943005002210
    25 https://doi.org/10.1046/j.1365-294x.2000.105337.x
    26 https://doi.org/10.1093/bioinformatics/btn129
    27 https://doi.org/10.1093/bioinformatics/bts460
    28 https://doi.org/10.1111/1755-0998.12387
    29 https://doi.org/10.1111/eva.12628
    30 https://doi.org/10.1111/eva.12689
    31 https://doi.org/10.1111/faf.12020
    32 https://doi.org/10.1111/j.1095-8649.2007.01778.x
    33 https://doi.org/10.1111/j.1365-2109.2011.02886.x
    34 https://doi.org/10.1111/j.1365-294x.2005.02553.x
    35 https://doi.org/10.1111/j.1439-0426.2009.01355.x
    36 https://doi.org/10.1111/j.1463-6395.2005.00213.x
    37 https://doi.org/10.1111/j.1471-8286.2005.01155.x
    38 https://doi.org/10.1111/j.1471-8286.2007.01931.x
    39 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
    40 https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
    41 https://doi.org/10.1111/j.1600-0633.2007.00255.x
    42 https://doi.org/10.1111/j.1755-0998.2010.02847.x
    43 https://doi.org/10.1111/j.1755-0998.2010.02943.x
    44 https://doi.org/10.1111/jai.12972
    45 https://doi.org/10.1111/mec.12354
    46 https://doi.org/10.1111/mec.12972
    47 https://doi.org/10.1111/mec.13613
    48 https://doi.org/10.1371/journal.pone.0003376
    49 https://doi.org/10.1371/journal.pone.0037135
    50 https://doi.org/10.1371/journal.pone.0054470
    51 https://doi.org/10.1371/journal.pone.0102089
    52 https://doi.org/10.1371/journal.pone.0128247
    53 https://doi.org/10.1371/journal.pone.0138640
    54 https://doi.org/10.1371/journal.pone.0164327
    55 https://doi.org/10.1371/journal.pone.0183545
    56 https://doi.org/10.1590/1982-0224-20140010
    57 https://doi.org/10.1590/1982-0224-20150037
    58 https://doi.org/10.1590/s1519-69842007000500015
    59 https://doi.org/10.1590/s1679-62252006000200007
    60 https://doi.org/10.1643/cg-15-293
    61 https://doi.org/10.1643/ci-12-013
    62 https://doi.org/10.1643/ci-12-017
    63 https://doi.org/10.2174/1874196700902010091
    64 https://doi.org/10.2307/1447399
    65 https://doi.org/10.24841/fa.v20i1-2.352
    66 https://doi.org/10.3389/fgene.2017.00159
    67 https://doi.org/10.4238/2013.december.4.17
    68 https://doi.org/10.4238/vol7-1gmr394
    69 schema:datePublished 2019-12
    70 schema:datePublishedReg 2019-12-01
    71 schema:description BACKGROUND: Arapaima gigas (Schinz, 1822) is the largest freshwater scaled fish in the world, and an emerging species for tropical aquaculture development. Conservation of the species, and the expansion of aquaculture requires the development of genetic tools to study polymorphism, differentiation, and stock structure. This study aimed to investigate genomic polymorphism through ddRAD sequencing, in order to identify a panel of single nucleotide polymorphisms (SNPs) and to simultaneously assess genetic diversity and structure in wild (from rivers Amazon, Solimões, Tocantins and Araguaia) and captive populations. RESULTS: Compared to many other teleosts, the degree of polymorphism in A. gigas was low with only 2.3% of identified RAD-tags (135 bases long) containing SNPs. A panel of 393 informative SNPs was identified and screened across the five populations. Higher genetic diversity indices (number of polymorphic loci and private alleles, Shannon's Index and HO) were found in populations from the Amazon and Solimões, intermediate levels in Tocantins and Captive, and very low levels in the Araguaia population. These results likely reflect larger population sizes from less urbanized environments in the Amazon basin compared to Araguaia. Populations were significantly differentiated with pairwise FST values ranging from 0.086 (Amazon × Solimões) to 0.556 (Amazon × Araguaia). Mean pairwise relatedness among individuals was significant in all populations (P < 0.01), reflecting a degree of inbreeding possibly due to severe depletion of natural stocks, the species sedentary behaviour and possible sampling biases. Although Mantel test was not significant (P = 0.104; R2 = 0.65), Bayesian analysis in STRUCTURE and discriminant analysis of principal components (DAPC) showed populations of Amazon and Solimões to be genetically differentiated from Araguaia, with Tocantins comprising individuals from both identified stocks. CONCLUSIONS: This relatively rapid genotyping by sequencing approach proved to be successful in delineating arapaima stocks. The approach and / or SNP panels identified should prove valuable for more detailed genetic studies of arapaima populations, including the elucidation of the genetic status of described discrete morphotypes and aid in delivery of conservation programs to maintain genetic diversity in reservoirs across the Amazon region.
    72 schema:genre research_article
    73 schema:inLanguage en
    74 schema:isAccessibleForFree true
    75 schema:isPartOf N3aad7fbd190542fcb280c6992e81e10b
    76 N7011e5e328f64d1792d35abc841c2eba
    77 sg:journal.1024251
    78 schema:name Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins
    79 schema:pagination 13
    80 schema:productId N397e9c9d106141489a417f9e794589a2
    81 N4bd4f876ec1d4b19b780ff9d7d957ebc
    82 N6a176fcbdab4466baed9ca46c1b13deb
    83 N866389bcd7de4c1d9b592affeee5688f
    84 Ne35c18c2b15b420d9fceed8fe0c56ba8
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111749581
    86 https://doi.org/10.1186/s12863-018-0711-y
    87 schema:sdDatePublished 2019-04-11T08:59
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N6c5cfe0c2ca94795b1f8f1e769d54cf5
    90 schema:url https://link.springer.com/10.1186%2Fs12863-018-0711-y
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N040272a3f2124bbcaf4ca7fd618d8ad0 schema:affiliation https://www.grid.ac/institutes/grid.271300.7
    95 schema:familyName Araripe
    96 schema:givenName Juliana
    97 rdf:type schema:Person
    98 N32526080b74a403a97fbc5497d77669a rdf:first Nf431b5b91728404986aa7ccbffa46e46
    99 rdf:rest Na8e4aec1b39145cc9e0485239a7d497c
    100 N3368aa1521bb453e8802b7da9d330fcf rdf:first N5a46b63d99fc45a49aeae69c1bd938c8
    101 rdf:rest rdf:nil
    102 N397e9c9d106141489a417f9e794589a2 schema:name dimensions_id
    103 schema:value pub.1111749581
    104 rdf:type schema:PropertyValue
    105 N3aad7fbd190542fcb280c6992e81e10b schema:issueNumber 1
    106 rdf:type schema:PublicationIssue
    107 N440c108de00544bf9e97fc397e67103f rdf:first N6fef2b0d1cfc4a77a916a338ad00e052
    108 rdf:rest N810e116b39a7471bb6dfc2e8135a9fab
    109 N4bd4f876ec1d4b19b780ff9d7d957ebc schema:name doi
    110 schema:value 10.1186/s12863-018-0711-y
    111 rdf:type schema:PropertyValue
    112 N5a46b63d99fc45a49aeae69c1bd938c8 schema:affiliation https://www.grid.ac/institutes/grid.11918.30
    113 schema:familyName Migaud
    114 schema:givenName Hervé
    115 rdf:type schema:Person
    116 N6a176fcbdab4466baed9ca46c1b13deb schema:name readcube_id
    117 schema:value 2860f04a50b7324d794e45887711b3631592eb90045b92322c258c0d42ec5172
    118 rdf:type schema:PropertyValue
    119 N6c5cfe0c2ca94795b1f8f1e769d54cf5 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 N6fef2b0d1cfc4a77a916a338ad00e052 schema:affiliation https://www.grid.ac/institutes/grid.11918.30
    122 schema:familyName Torati
    123 schema:givenName Lucas Simon
    124 rdf:type schema:Person
    125 N7011e5e328f64d1792d35abc841c2eba schema:volumeNumber 20
    126 rdf:type schema:PublicationVolume
    127 N810e116b39a7471bb6dfc2e8135a9fab rdf:first Naa58590e634f42809b55623b15514350
    128 rdf:rest N32526080b74a403a97fbc5497d77669a
    129 N866389bcd7de4c1d9b592affeee5688f schema:name nlm_unique_id
    130 schema:value 100966978
    131 rdf:type schema:PropertyValue
    132 N8cf2757d90494304a8a1412634046811 rdf:first Nd009bffa3aa34f0f88320c21f1600cb3
    133 rdf:rest N3368aa1521bb453e8802b7da9d330fcf
    134 Na8e4aec1b39145cc9e0485239a7d497c rdf:first N040272a3f2124bbcaf4ca7fd618d8ad0
    135 rdf:rest N8cf2757d90494304a8a1412634046811
    136 Naa58590e634f42809b55623b15514350 schema:affiliation https://www.grid.ac/institutes/grid.11918.30
    137 schema:familyName Taggart
    138 schema:givenName John Bernard
    139 rdf:type schema:Person
    140 Nd009bffa3aa34f0f88320c21f1600cb3 schema:affiliation https://www.grid.ac/institutes/grid.419548.5
    141 schema:familyName Wehner
    142 schema:givenName Stefanie
    143 rdf:type schema:Person
    144 Ne35c18c2b15b420d9fceed8fe0c56ba8 schema:name pubmed_id
    145 schema:value 30691389
    146 rdf:type schema:PropertyValue
    147 Nf431b5b91728404986aa7ccbffa46e46 schema:affiliation Nf6f24cefc25d4e4fa9bcf71ea5019d35
    148 schema:familyName Varela
    149 schema:givenName Eduardo Sousa
    150 rdf:type schema:Person
    151 Nf6f24cefc25d4e4fa9bcf71ea5019d35 schema:name EMBRAPA Pesca e Aquicultura, CEP 77008-900, Palmas, TO, Brazil
    152 rdf:type schema:Organization
    153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Biological Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Genetics
    158 rdf:type schema:DefinedTerm
    159 sg:journal.1024251 schema:issn 1471-2156
    160 schema:name BMC Genetics
    161 rdf:type schema:Periodical
    162 sg:pub.10.1007/978-1-61779-870-2_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036110008
    163 https://doi.org/10.1007/978-1-61779-870-2_14
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10592-018-1083-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105016841
    166 https://doi.org/10.1007/s10592-018-1083-6
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11160-010-9197-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002473535
    169 https://doi.org/10.1007/s11160-010-9197-z
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s12686-016-0532-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051317973
    172 https://doi.org/10.1007/s12686-016-0532-0
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s12686-016-0571-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053581292
    175 https://doi.org/10.1007/s12686-016-0571-6
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/hdy.1997.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237054
    178 https://doi.org/10.1038/hdy.1997.144
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nrg.2015.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049142423
    181 https://doi.org/10.1038/nrg.2015.28
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/srep43417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131362
    184 https://doi.org/10.1038/srep43417
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1186/1471-2164-14-566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003335269
    187 https://doi.org/10.1186/1471-2164-14-566
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/s12711-015-0148-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052209652
    190 https://doi.org/10.1186/s12711-015-0148-y
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/s12864-015-1383-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048517010
    193 https://doi.org/10.1186/s12864-015-1383-x
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1186/s12864-016-2773-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024182816
    196 https://doi.org/10.1186/s12864-016-2773-4
    197 rdf:type schema:CreativeWork
    198 https://app.dimensions.ai/details/publication/pub.1074500469 schema:CreativeWork
    199 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
    200 https://app.dimensions.ai/details/publication/pub.1107023407 schema:CreativeWork
    201 https://doi.org/10.1002/9781119174844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107023407
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1002/aqc.2491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020898628
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.aquaculture.2012.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041085792
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.tree.2004.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001481027
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.tree.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045559906
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1017/s1367943005002210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030733489
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1046/j.1365-294x.2000.105337.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051751864
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1093/bioinformatics/btn129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011820832
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/bioinformatics/bts460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026432648
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1111/1755-0998.12387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019918862
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1111/eva.12628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101754465
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1111/eva.12689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105974239
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1111/faf.12020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049982306
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1111/j.1095-8649.2007.01778.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030427047
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1111/j.1365-2109.2011.02886.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022412239
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1111/j.1365-294x.2005.02553.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045105386
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1111/j.1439-0426.2009.01355.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036482039
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1111/j.1463-6395.2005.00213.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040498839
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1111/j.1471-8286.2005.01155.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052284706
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1111/j.1471-8286.2007.01931.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001508219
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737796
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1111/j.1558-5646.1989.tb04220.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085730062
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1111/j.1600-0633.2007.00255.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007315801
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1111/j.1755-0998.2010.02847.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020645983
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1111/j.1755-0998.2010.02943.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019931503
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1111/jai.12972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003077465
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1111/mec.12354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011474911
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1111/mec.12972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033458196
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1111/mec.13613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005930675
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1371/journal.pone.0003376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028160249
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1371/journal.pone.0037135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049371751
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1371/journal.pone.0054470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015777880
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1371/journal.pone.0102089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007253744
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1371/journal.pone.0128247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011079516
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1371/journal.pone.0138640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022941728
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1371/journal.pone.0164327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045589838
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1371/journal.pone.0183545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091377528
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1590/1982-0224-20140010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018962055
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1590/1982-0224-20150037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012773115
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1590/s1519-69842007000500015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049882472
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1590/s1679-62252006000200007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002466244
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1643/cg-15-293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008162298
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1643/ci-12-013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030119754
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1643/ci-12-017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068176195
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.2174/1874196700902010091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069229173
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.2307/1447399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069502985
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.24841/fa.v20i1-2.352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085315601
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.3389/fgene.2017.00159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092333651
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.4238/2013.december.4.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072391413
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.4238/vol7-1gmr394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072396742
    300 rdf:type schema:CreativeWork
    301 https://www.grid.ac/institutes/grid.11918.30 schema:alternateName University of Stirling
    302 schema:name EMBRAPA Pesca e Aquicultura, CEP 77008-900, Palmas, TO, Brazil
    303 Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK
    304 rdf:type schema:Organization
    305 https://www.grid.ac/institutes/grid.271300.7 schema:alternateName Federal University of Para
    306 schema:name Instituto de Estudos Costeiros, Campus de Bragança, Universidade Federal do Pará, CEP 68600-000, Bragança, PA, Brazil
    307 rdf:type schema:Organization
    308 https://www.grid.ac/institutes/grid.419548.5 schema:alternateName Max Planck Institute of Psychiatry
    309 schema:name Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
    310 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...