Ontology type: schema:ScholarlyArticle Open Access: True
2019-12
AUTHORSAlicia Huerta-Chagoya, Hortensia Moreno-Macías, Juan Carlos Fernández-López, María Luisa Ordóñez-Sánchez, Rosario Rodríguez-Guillén, Alejandra Contreras, Alfredo Hidalgo-Miranda, Luis Alberto Alfaro-Ruíz, Edgar Pavel Salazar-Fernandez, Andrés Moreno-Estrada, Carlos Alberto Aguilar-Salinas, Teresa Tusié-Luna
ABSTRACTBACKGROUND: Association studies are useful to unravel the genetic basis of common human diseases. However, the presence of undetected population structure can lead to both false positive results and failures to detect genuine associations. Even when most of the approaches to deal with population stratification require genome-wide data, the use of a well-selected panel of ancestry informative markers (AIMs) may appropriately correct for population stratification. Few panels of AIMs have been developed for Latino populations and most contain a high number of markers (> 100 AIMs). For some association studies such as candidate gene approaches, it may be unfeasible to genotype a numerous set of markers to avoid false positive results. In such cases, methods that use fewer AIMs may be appropriate. RESULTS: We validated an accurate and cost-effective panel of AIMs, for use in population stratification correction of association studies and global ancestry estimation in Mexicans, as well as in populations having large proportions of both European and Native American ancestries. Based on genome-wide data from 1953 Mexican individuals, we performed a PCA and SNP weights were calculated to select subsets of unlinked AIMs within percentiles 0.10 and 0.90, ensuring that all chromosomes were represented. Correlations between PC1 calculated using genome-wide data versus each subset of AIMs (16, 32, 48 and 64) were r2 = 0.923, 0.959, 0.972 and 0.978, respectively. When evaluating PCs performance as population stratification adjustment covariates, no correlation was found between P values obtained from uncorrected and genome-wide corrected association analyses (r2 = 0.141), highlighting that population stratification correction is compulsory for association analyses in admixed populations. In contrast, high correlations were found when adjusting for both PC1 and PC2 for either subset of AIMs (r2 > 0.900). After multiple validations, including an independent sample, we selected a minimal panel of 32 AIMs, which are highly informative of the major ancestral components of Mexican mestizos, namely European and Native American ancestries. Finally, the correlation between the global ancestry proportions calculated using genome-wide data and our panel of 32 AIMs was r2 = 0.972. CONCLUSIONS: Our panel of 32 AIMs accurately estimated global ancestry and corrected for population stratification in association studies in Mexican individuals. More... »
PAGES5
http://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7
DOIhttp://dx.doi.org/10.1186/s12863-018-0707-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111263905
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30621578
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"CONACYT, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Huerta-Chagoya",
"givenName": "Alicia",
"id": "sg:person.01002751512.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002751512.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Aut\u00f3noma Metropolitana",
"id": "https://www.grid.ac/institutes/grid.7220.7",
"name": [
"Departamento de Econom\u00eda, Universidad Aut\u00f3noma Metropolitana, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Moreno-Mac\u00edas",
"givenName": "Hortensia",
"id": "sg:person.01260157274.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260157274.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Institute of Genomic Medicine",
"id": "https://www.grid.ac/institutes/grid.452651.1",
"name": [
"Departamento de Gen\u00f3mica Computacional, Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Fern\u00e1ndez-L\u00f3pez",
"givenName": "Juan Carlos",
"id": "sg:person.0705361307.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705361307.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n",
"id": "https://www.grid.ac/institutes/grid.416850.e",
"name": [
"Unidad de Biolog\u00eda Molecular y Medicina Gen\u00f3mica, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Ord\u00f3\u00f1ez-S\u00e1nchez",
"givenName": "Mar\u00eda Luisa",
"id": "sg:person.01313132553.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313132553.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n",
"id": "https://www.grid.ac/institutes/grid.416850.e",
"name": [
"Unidad de Biolog\u00eda Molecular y Medicina Gen\u00f3mica, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Rodr\u00edguez-Guill\u00e9n",
"givenName": "Rosario",
"id": "sg:person.0740212357.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740212357.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Temple University Health System",
"id": "https://www.grid.ac/institutes/grid.412530.1",
"name": [
"Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico",
"Fox Chase Cancer Center, Philadelphia, USA"
],
"type": "Organization"
},
"familyName": "Contreras",
"givenName": "Alejandra",
"id": "sg:person.013256061500.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013256061500.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Institute of Genomic Medicine",
"id": "https://www.grid.ac/institutes/grid.452651.1",
"name": [
"Laboratorio de Gen\u00f3mica del C\u00e1ncer, Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Hidalgo-Miranda",
"givenName": "Alfredo",
"id": "sg:person.01316543563.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316543563.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Institute of Genomic Medicine",
"id": "https://www.grid.ac/institutes/grid.452651.1",
"name": [
"Laboratorio de Gen\u00f3mica del C\u00e1ncer, Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Alfaro-Ru\u00edz",
"givenName": "Luis Alberto",
"id": "sg:person.0753474507.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753474507.46"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad (LANGEBIO-UGA), CINVESTAV, Iraputato, Guanajuato, Mexico"
],
"type": "Organization"
},
"familyName": "Salazar-Fernandez",
"givenName": "Edgar Pavel",
"type": "Person"
},
{
"affiliation": {
"name": [
"Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad (LANGEBIO-UGA), CINVESTAV, Iraputato, Guanajuato, Mexico"
],
"type": "Organization"
},
"familyName": "Moreno-Estrada",
"givenName": "Andr\u00e9s",
"id": "sg:person.01077603534.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077603534.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n",
"id": "https://www.grid.ac/institutes/grid.416850.e",
"name": [
"Departamento de Endocrinolog\u00eda y Metabolismo, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Aguilar-Salinas",
"givenName": "Carlos Alberto",
"id": "sg:person.0757112137.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757112137.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Autonomous University of Mexico",
"id": "https://www.grid.ac/institutes/grid.9486.3",
"name": [
"Unidad de Biolog\u00eda Molecular y Medicina Gen\u00f3mica, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico",
"Departamento de Medicina Gen\u00f3mica y Toxicolog\u00eda Ambiental, Instituto de Investigaciones Biom\u00e9dicas, UNAM, Ciudad de Mexico, Mexico"
],
"type": "Organization"
},
"familyName": "Tusi\u00e9-Luna",
"givenName": "Teresa",
"id": "sg:person.01235475662.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235475662.03"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/ng1337",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002008100",
"https://doi.org/10.1038/ng1337"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng1337",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002008100",
"https://doi.org/10.1038/ng1337"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.3097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006357119",
"https://doi.org/10.1038/ng.3097"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btt144",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007629759"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pgen.1002554",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009453604"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.094052.109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010760027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.2897",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013812051",
"https://doi.org/10.1038/ng.2897"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.548",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016055940",
"https://doi.org/10.1038/ng.548"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.548",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016055940",
"https://doi.org/10.1038/ng.548"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/519795",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019061180"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1251688",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020705920"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature15393",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021812064",
"https://doi.org/10.1038/nature15393"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ajhg.2012.06.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024911758"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg1916",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029660577",
"https://doi.org/10.1038/nrg1916"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg1916",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029660577",
"https://doi.org/10.1038/nrg1916"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng1847",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031429813",
"https://doi.org/10.1038/ng1847"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng1847",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031429813",
"https://doi.org/10.1038/ng1847"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/humu.20822",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037984997"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00439-008-0612-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041941020",
"https://doi.org/10.1007/s00439-008-0612-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00439-008-0612-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041941020",
"https://doi.org/10.1007/s00439-008-0612-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00439-008-0612-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041941020",
"https://doi.org/10.1007/s00439-008-0612-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2813",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043354004",
"https://doi.org/10.1038/nrg2813"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2813",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043354004",
"https://doi.org/10.1038/nrg2813"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pgen.1000529",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043446290"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature12828",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046702365",
"https://doi.org/10.1038/nature12828"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0903045106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052061037"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng0205-118",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052564860",
"https://doi.org/10.1038/ng0205-118"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng0205-118",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052564860",
"https://doi.org/10.1038/ng0205-118"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1078880076",
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.21149/spm.v55s2.5111",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1078880076"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "BACKGROUND: Association studies are useful to unravel the genetic basis of common human diseases. However, the presence of undetected population structure can lead to both false positive results and failures to detect genuine associations. Even when most of the approaches to deal with population stratification require genome-wide data, the use of a well-selected panel of ancestry informative markers (AIMs) may appropriately correct for population stratification. Few panels of AIMs have been developed for Latino populations and most contain a high number of markers (>\u2009100 AIMs). For some association studies such as candidate gene approaches, it may be unfeasible to genotype a numerous set of markers to avoid false positive results. In such cases, methods that use fewer AIMs may be appropriate.\nRESULTS: We validated an accurate and cost-effective panel of AIMs, for use in population stratification correction of association studies and global ancestry estimation in Mexicans, as well as in populations having large proportions of both European and Native American ancestries. Based on genome-wide data from 1953 Mexican individuals, we performed a PCA and SNP weights were calculated to select subsets of unlinked AIMs within percentiles 0.10 and 0.90, ensuring that all chromosomes were represented. Correlations between PC1 calculated using genome-wide data versus each subset of AIMs (16, 32, 48 and 64) were r2\u2009=\u20090.923, 0.959, 0.972 and 0.978, respectively. When evaluating PCs performance as population stratification adjustment covariates, no correlation was found between P values obtained from uncorrected and genome-wide corrected association analyses (r2\u2009=\u20090.141), highlighting that population stratification correction is compulsory for association analyses in admixed populations. In contrast, high correlations were found when adjusting for both PC1 and PC2 for either subset of AIMs (r2\u2009>\u20090.900). After multiple validations, including an independent sample, we selected a minimal panel of 32 AIMs, which are highly informative of the major ancestral components of Mexican mestizos, namely European and Native American ancestries. Finally, the correlation between the global ancestry proportions calculated using genome-wide data and our panel of 32 AIMs was r2\u2009=\u20090.972.\nCONCLUSIONS: Our panel of 32 AIMs accurately estimated global ancestry and corrected for population stratification in association studies in Mexican individuals.",
"genre": "research_article",
"id": "sg:pub.10.1186/s12863-018-0707-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1024251",
"issn": [
"1471-2156"
],
"name": "BMC Genetics",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "20"
}
],
"name": "A panel of 32 AIMs suitable for population stratification correction and global ancestry estimation in Mexican mestizos",
"pagination": "5",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"8b9cde40f17261ab31f70eacfc20fde651ea001aa8c3b846b2141cf0510fdb4b"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30621578"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"100966978"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s12863-018-0707-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111263905"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s12863-018-0707-7",
"https://app.dimensions.ai/details/publication/pub.1111263905"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T08:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55852_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1186%2Fs12863-018-0707-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'
This table displays all metadata directly associated to this object as RDF triples.
242 TRIPLES
21 PREDICATES
51 URIs
21 LITERALS
9 BLANK NODES