A panel of 32 AIMs suitable for population stratification correction and global ancestry estimation in Mexican mestizos View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Alicia Huerta-Chagoya, Hortensia Moreno-Macías, Juan Carlos Fernández-López, María Luisa Ordóñez-Sánchez, Rosario Rodríguez-Guillén, Alejandra Contreras, Alfredo Hidalgo-Miranda, Luis Alberto Alfaro-Ruíz, Edgar Pavel Salazar-Fernandez, Andrés Moreno-Estrada, Carlos Alberto Aguilar-Salinas, Teresa Tusié-Luna

ABSTRACT

BACKGROUND: Association studies are useful to unravel the genetic basis of common human diseases. However, the presence of undetected population structure can lead to both false positive results and failures to detect genuine associations. Even when most of the approaches to deal with population stratification require genome-wide data, the use of a well-selected panel of ancestry informative markers (AIMs) may appropriately correct for population stratification. Few panels of AIMs have been developed for Latino populations and most contain a high number of markers (> 100 AIMs). For some association studies such as candidate gene approaches, it may be unfeasible to genotype a numerous set of markers to avoid false positive results. In such cases, methods that use fewer AIMs may be appropriate. RESULTS: We validated an accurate and cost-effective panel of AIMs, for use in population stratification correction of association studies and global ancestry estimation in Mexicans, as well as in populations having large proportions of both European and Native American ancestries. Based on genome-wide data from 1953 Mexican individuals, we performed a PCA and SNP weights were calculated to select subsets of unlinked AIMs within percentiles 0.10 and 0.90, ensuring that all chromosomes were represented. Correlations between PC1 calculated using genome-wide data versus each subset of AIMs (16, 32, 48 and 64) were r2 = 0.923, 0.959, 0.972 and 0.978, respectively. When evaluating PCs performance as population stratification adjustment covariates, no correlation was found between P values obtained from uncorrected and genome-wide corrected association analyses (r2 = 0.141), highlighting that population stratification correction is compulsory for association analyses in admixed populations. In contrast, high correlations were found when adjusting for both PC1 and PC2 for either subset of AIMs (r2 > 0.900). After multiple validations, including an independent sample, we selected a minimal panel of 32 AIMs, which are highly informative of the major ancestral components of Mexican mestizos, namely European and Native American ancestries. Finally, the correlation between the global ancestry proportions calculated using genome-wide data and our panel of 32 AIMs was r2 = 0.972. CONCLUSIONS: Our panel of 32 AIMs accurately estimated global ancestry and corrected for population stratification in association studies in Mexican individuals. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7

DOI

http://dx.doi.org/10.1186/s12863-018-0707-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111263905

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30621578


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "CONACYT, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huerta-Chagoya", 
        "givenName": "Alicia", 
        "id": "sg:person.01002751512.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002751512.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Aut\u00f3noma Metropolitana", 
          "id": "https://www.grid.ac/institutes/grid.7220.7", 
          "name": [
            "Departamento de Econom\u00eda, Universidad Aut\u00f3noma Metropolitana, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreno-Mac\u00edas", 
        "givenName": "Hortensia", 
        "id": "sg:person.01260157274.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260157274.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Genomic Medicine", 
          "id": "https://www.grid.ac/institutes/grid.452651.1", 
          "name": [
            "Departamento de Gen\u00f3mica Computacional, Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-L\u00f3pez", 
        "givenName": "Juan Carlos", 
        "id": "sg:person.0705361307.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705361307.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Unidad de Biolog\u00eda Molecular y Medicina Gen\u00f3mica, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ord\u00f3\u00f1ez-S\u00e1nchez", 
        "givenName": "Mar\u00eda Luisa", 
        "id": "sg:person.01313132553.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313132553.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Unidad de Biolog\u00eda Molecular y Medicina Gen\u00f3mica, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodr\u00edguez-Guill\u00e9n", 
        "givenName": "Rosario", 
        "id": "sg:person.0740212357.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740212357.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Temple University Health System", 
          "id": "https://www.grid.ac/institutes/grid.412530.1", 
          "name": [
            "Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico", 
            "Fox Chase Cancer Center, Philadelphia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Contreras", 
        "givenName": "Alejandra", 
        "id": "sg:person.013256061500.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013256061500.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Genomic Medicine", 
          "id": "https://www.grid.ac/institutes/grid.452651.1", 
          "name": [
            "Laboratorio de Gen\u00f3mica del C\u00e1ncer, Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hidalgo-Miranda", 
        "givenName": "Alfredo", 
        "id": "sg:person.01316543563.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316543563.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Genomic Medicine", 
          "id": "https://www.grid.ac/institutes/grid.452651.1", 
          "name": [
            "Laboratorio de Gen\u00f3mica del C\u00e1ncer, Instituto Nacional de Medicina Gen\u00f3mica, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alfaro-Ru\u00edz", 
        "givenName": "Luis Alberto", 
        "id": "sg:person.0753474507.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753474507.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad (LANGEBIO-UGA), CINVESTAV, Iraputato, Guanajuato, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salazar-Fernandez", 
        "givenName": "Edgar Pavel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad (LANGEBIO-UGA), CINVESTAV, Iraputato, Guanajuato, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreno-Estrada", 
        "givenName": "Andr\u00e9s", 
        "id": "sg:person.01077603534.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077603534.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aguilar-Salinas", 
        "givenName": "Carlos Alberto", 
        "id": "sg:person.0757112137.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757112137.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Autonomous University of Mexico", 
          "id": "https://www.grid.ac/institutes/grid.9486.3", 
          "name": [
            "Unidad de Biolog\u00eda Molecular y Medicina Gen\u00f3mica, Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n Salvador Zubir\u00e1n, Ciudad de Mexico, Mexico", 
            "Departamento de Medicina Gen\u00f3mica y Toxicolog\u00eda Ambiental, Instituto de Investigaciones Biom\u00e9dicas, UNAM, Ciudad de Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tusi\u00e9-Luna", 
        "givenName": "Teresa", 
        "id": "sg:person.01235475662.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235475662.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002008100", 
          "https://doi.org/10.1038/ng1337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002008100", 
          "https://doi.org/10.1038/ng1337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006357119", 
          "https://doi.org/10.1038/ng.3097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007629759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009453604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.094052.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010760027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013812051", 
          "https://doi.org/10.1038/ng.2897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055940", 
          "https://doi.org/10.1038/ng.548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055940", 
          "https://doi.org/10.1038/ng.548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020705920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812064", 
          "https://doi.org/10.1038/nature15393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2012.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024911758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.20822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037984997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0612-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041941020", 
          "https://doi.org/10.1007/s00439-008-0612-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0612-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041941020", 
          "https://doi.org/10.1007/s00439-008-0612-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0612-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041941020", 
          "https://doi.org/10.1007/s00439-008-0612-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043354004", 
          "https://doi.org/10.1038/nrg2813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043354004", 
          "https://doi.org/10.1038/nrg2813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043446290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046702365", 
          "https://doi.org/10.1038/nature12828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0903045106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052061037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0205-118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052564860", 
          "https://doi.org/10.1038/ng0205-118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0205-118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052564860", 
          "https://doi.org/10.1038/ng0205-118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078880076", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21149/spm.v55s2.5111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078880076"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Association studies are useful to unravel the genetic basis of common human diseases. However, the presence of undetected population structure can lead to both false positive results and failures to detect genuine associations. Even when most of the approaches to deal with population stratification require genome-wide data, the use of a well-selected panel of ancestry informative markers (AIMs) may appropriately correct for population stratification. Few panels of AIMs have been developed for Latino populations and most contain a high number of markers (>\u2009100 AIMs). For some association studies such as candidate gene approaches, it may be unfeasible to genotype a numerous set of markers to avoid false positive results. In such cases, methods that use fewer AIMs may be appropriate.\nRESULTS: We validated an accurate and cost-effective panel of AIMs, for use in population stratification correction of association studies and global ancestry estimation in Mexicans, as well as in populations having large proportions of both European and Native American ancestries. Based on genome-wide data from 1953 Mexican individuals, we performed a PCA and SNP weights were calculated to select subsets of unlinked AIMs within percentiles 0.10 and 0.90, ensuring that all chromosomes were represented. Correlations between PC1 calculated using genome-wide data versus each subset of AIMs (16, 32, 48 and 64) were r2\u2009=\u20090.923, 0.959, 0.972 and 0.978, respectively. When evaluating PCs performance as population stratification adjustment covariates, no correlation was found between P values obtained from uncorrected and genome-wide corrected association analyses (r2\u2009=\u20090.141), highlighting that population stratification correction is compulsory for association analyses in admixed populations. In contrast, high correlations were found when adjusting for both PC1 and PC2 for either subset of AIMs (r2\u2009>\u20090.900). After multiple validations, including an independent sample, we selected a minimal panel of 32 AIMs, which are highly informative of the major ancestral components of Mexican mestizos, namely European and Native American ancestries. Finally, the correlation between the global ancestry proportions calculated using genome-wide data and our panel of 32 AIMs was r2\u2009=\u20090.972.\nCONCLUSIONS: Our panel of 32 AIMs accurately estimated global ancestry and corrected for population stratification in association studies in Mexican individuals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-018-0707-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A panel of 32 AIMs suitable for population stratification correction and global ancestry estimation in Mexican mestizos", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8b9cde40f17261ab31f70eacfc20fde651ea001aa8c3b846b2141cf0510fdb4b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30621578"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-018-0707-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111263905"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-018-0707-7", 
      "https://app.dimensions.ai/details/publication/pub.1111263905"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55852_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12863-018-0707-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0707-7'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-018-0707-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nb7c3b73092084b6e9b4cbde75a94c427
4 schema:citation sg:pub.10.1007/s00439-008-0612-7
5 sg:pub.10.1038/nature12828
6 sg:pub.10.1038/nature15393
7 sg:pub.10.1038/ng.2897
8 sg:pub.10.1038/ng.3097
9 sg:pub.10.1038/ng.548
10 sg:pub.10.1038/ng0205-118
11 sg:pub.10.1038/ng1337
12 sg:pub.10.1038/ng1847
13 sg:pub.10.1038/nrg1916
14 sg:pub.10.1038/nrg2813
15 https://app.dimensions.ai/details/publication/pub.1078880076
16 https://doi.org/10.1002/humu.20822
17 https://doi.org/10.1016/j.ajhg.2012.06.013
18 https://doi.org/10.1073/pnas.0903045106
19 https://doi.org/10.1086/519795
20 https://doi.org/10.1093/bioinformatics/btt144
21 https://doi.org/10.1101/gr.094052.109
22 https://doi.org/10.1126/science.1251688
23 https://doi.org/10.1371/journal.pgen.1000529
24 https://doi.org/10.1371/journal.pgen.1002554
25 https://doi.org/10.21149/spm.v55s2.5111
26 schema:datePublished 2019-12
27 schema:datePublishedReg 2019-12-01
28 schema:description BACKGROUND: Association studies are useful to unravel the genetic basis of common human diseases. However, the presence of undetected population structure can lead to both false positive results and failures to detect genuine associations. Even when most of the approaches to deal with population stratification require genome-wide data, the use of a well-selected panel of ancestry informative markers (AIMs) may appropriately correct for population stratification. Few panels of AIMs have been developed for Latino populations and most contain a high number of markers (> 100 AIMs). For some association studies such as candidate gene approaches, it may be unfeasible to genotype a numerous set of markers to avoid false positive results. In such cases, methods that use fewer AIMs may be appropriate. RESULTS: We validated an accurate and cost-effective panel of AIMs, for use in population stratification correction of association studies and global ancestry estimation in Mexicans, as well as in populations having large proportions of both European and Native American ancestries. Based on genome-wide data from 1953 Mexican individuals, we performed a PCA and SNP weights were calculated to select subsets of unlinked AIMs within percentiles 0.10 and 0.90, ensuring that all chromosomes were represented. Correlations between PC1 calculated using genome-wide data versus each subset of AIMs (16, 32, 48 and 64) were r2 = 0.923, 0.959, 0.972 and 0.978, respectively. When evaluating PCs performance as population stratification adjustment covariates, no correlation was found between P values obtained from uncorrected and genome-wide corrected association analyses (r2 = 0.141), highlighting that population stratification correction is compulsory for association analyses in admixed populations. In contrast, high correlations were found when adjusting for both PC1 and PC2 for either subset of AIMs (r2 > 0.900). After multiple validations, including an independent sample, we selected a minimal panel of 32 AIMs, which are highly informative of the major ancestral components of Mexican mestizos, namely European and Native American ancestries. Finally, the correlation between the global ancestry proportions calculated using genome-wide data and our panel of 32 AIMs was r2 = 0.972. CONCLUSIONS: Our panel of 32 AIMs accurately estimated global ancestry and corrected for population stratification in association studies in Mexican individuals.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N45244b6973934c4dadabaab35117a0ec
33 N63c96b7ee3c448ef954805deaed4b3d2
34 sg:journal.1024251
35 schema:name A panel of 32 AIMs suitable for population stratification correction and global ancestry estimation in Mexican mestizos
36 schema:pagination 5
37 schema:productId N6781a1a0a7724e46a62d03c66c3ee3c8
38 N9e39db036be3463e9274a18f716d8c07
39 Ncc5d2a691cb74ac9aa01583a8ea1e50a
40 Ncd137ca2cdc64b7590131d0c18d42168
41 Nd81cc75a111344228c289cd624ffe3e2
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111263905
43 https://doi.org/10.1186/s12863-018-0707-7
44 schema:sdDatePublished 2019-04-11T08:36
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N3acde30812314c0698a363cedc41ebe2
47 schema:url https://link.springer.com/10.1186%2Fs12863-018-0707-7
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N008b9b75673c4f1e850a96d154b3d1af rdf:first sg:person.0753474507.46
52 rdf:rest Nc712cc1eb8804978b4aebcb5378f9deb
53 N019f5afb84044e3a9a1eafc63fb0662e schema:affiliation N2ed56b07915940019d880c0405581133
54 schema:familyName Salazar-Fernandez
55 schema:givenName Edgar Pavel
56 rdf:type schema:Person
57 N2ed56b07915940019d880c0405581133 schema:name Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO-UGA), CINVESTAV, Iraputato, Guanajuato, Mexico
58 rdf:type schema:Organization
59 N3acde30812314c0698a363cedc41ebe2 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N4206a01d8ec547dcb9d75a8fd85e355e rdf:first sg:person.01313132553.30
62 rdf:rest Nb21fa9521b9646aa9091911ead7dec96
63 N45244b6973934c4dadabaab35117a0ec schema:volumeNumber 20
64 rdf:type schema:PublicationVolume
65 N636a6d91c08e47799e65117a6a971bf6 rdf:first sg:person.0705361307.07
66 rdf:rest N4206a01d8ec547dcb9d75a8fd85e355e
67 N63c96b7ee3c448ef954805deaed4b3d2 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N6781a1a0a7724e46a62d03c66c3ee3c8 schema:name doi
70 schema:value 10.1186/s12863-018-0707-7
71 rdf:type schema:PropertyValue
72 N7720f2c9608944e0b74902a734a68372 schema:name Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO-UGA), CINVESTAV, Iraputato, Guanajuato, Mexico
73 rdf:type schema:Organization
74 N8ae0e688f48845b0bdf6ed4cc120b790 rdf:first sg:person.01316543563.28
75 rdf:rest N008b9b75673c4f1e850a96d154b3d1af
76 N9beb939d72744008bed22f087814d6d4 rdf:first sg:person.01077603534.08
77 rdf:rest Ncd3b9eda0eb842fba10361fcb3918223
78 N9e39db036be3463e9274a18f716d8c07 schema:name nlm_unique_id
79 schema:value 100966978
80 rdf:type schema:PropertyValue
81 Nb21fa9521b9646aa9091911ead7dec96 rdf:first sg:person.0740212357.50
82 rdf:rest Nc1fd8804ffc8471e8c5ae532b4ba4c60
83 Nb452baadb2064950822e2e93e8650ce6 schema:name CONACYT, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
84 rdf:type schema:Organization
85 Nb7c3b73092084b6e9b4cbde75a94c427 rdf:first sg:person.01002751512.73
86 rdf:rest Nc2ff0635188c4726afd038c8ec9a9b5e
87 Nc1fd8804ffc8471e8c5ae532b4ba4c60 rdf:first sg:person.013256061500.14
88 rdf:rest N8ae0e688f48845b0bdf6ed4cc120b790
89 Nc2ff0635188c4726afd038c8ec9a9b5e rdf:first sg:person.01260157274.51
90 rdf:rest N636a6d91c08e47799e65117a6a971bf6
91 Nc712cc1eb8804978b4aebcb5378f9deb rdf:first N019f5afb84044e3a9a1eafc63fb0662e
92 rdf:rest N9beb939d72744008bed22f087814d6d4
93 Ncc5d2a691cb74ac9aa01583a8ea1e50a schema:name readcube_id
94 schema:value 8b9cde40f17261ab31f70eacfc20fde651ea001aa8c3b846b2141cf0510fdb4b
95 rdf:type schema:PropertyValue
96 Ncd137ca2cdc64b7590131d0c18d42168 schema:name dimensions_id
97 schema:value pub.1111263905
98 rdf:type schema:PropertyValue
99 Ncd3b9eda0eb842fba10361fcb3918223 rdf:first sg:person.0757112137.57
100 rdf:rest Nf7d94fbe1be9457ba997bef1985465b8
101 Nd81cc75a111344228c289cd624ffe3e2 schema:name pubmed_id
102 schema:value 30621578
103 rdf:type schema:PropertyValue
104 Nf7d94fbe1be9457ba997bef1985465b8 rdf:first sg:person.01235475662.03
105 rdf:rest rdf:nil
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
110 schema:name Genetics
111 rdf:type schema:DefinedTerm
112 sg:journal.1024251 schema:issn 1471-2156
113 schema:name BMC Genetics
114 rdf:type schema:Periodical
115 sg:person.01002751512.73 schema:affiliation Nb452baadb2064950822e2e93e8650ce6
116 schema:familyName Huerta-Chagoya
117 schema:givenName Alicia
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002751512.73
119 rdf:type schema:Person
120 sg:person.01077603534.08 schema:affiliation N7720f2c9608944e0b74902a734a68372
121 schema:familyName Moreno-Estrada
122 schema:givenName Andrés
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077603534.08
124 rdf:type schema:Person
125 sg:person.01235475662.03 schema:affiliation https://www.grid.ac/institutes/grid.9486.3
126 schema:familyName Tusié-Luna
127 schema:givenName Teresa
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235475662.03
129 rdf:type schema:Person
130 sg:person.01260157274.51 schema:affiliation https://www.grid.ac/institutes/grid.7220.7
131 schema:familyName Moreno-Macías
132 schema:givenName Hortensia
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260157274.51
134 rdf:type schema:Person
135 sg:person.01313132553.30 schema:affiliation https://www.grid.ac/institutes/grid.416850.e
136 schema:familyName Ordóñez-Sánchez
137 schema:givenName María Luisa
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313132553.30
139 rdf:type schema:Person
140 sg:person.01316543563.28 schema:affiliation https://www.grid.ac/institutes/grid.452651.1
141 schema:familyName Hidalgo-Miranda
142 schema:givenName Alfredo
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316543563.28
144 rdf:type schema:Person
145 sg:person.013256061500.14 schema:affiliation https://www.grid.ac/institutes/grid.412530.1
146 schema:familyName Contreras
147 schema:givenName Alejandra
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013256061500.14
149 rdf:type schema:Person
150 sg:person.0705361307.07 schema:affiliation https://www.grid.ac/institutes/grid.452651.1
151 schema:familyName Fernández-López
152 schema:givenName Juan Carlos
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705361307.07
154 rdf:type schema:Person
155 sg:person.0740212357.50 schema:affiliation https://www.grid.ac/institutes/grid.416850.e
156 schema:familyName Rodríguez-Guillén
157 schema:givenName Rosario
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740212357.50
159 rdf:type schema:Person
160 sg:person.0753474507.46 schema:affiliation https://www.grid.ac/institutes/grid.452651.1
161 schema:familyName Alfaro-Ruíz
162 schema:givenName Luis Alberto
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753474507.46
164 rdf:type schema:Person
165 sg:person.0757112137.57 schema:affiliation https://www.grid.ac/institutes/grid.416850.e
166 schema:familyName Aguilar-Salinas
167 schema:givenName Carlos Alberto
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757112137.57
169 rdf:type schema:Person
170 sg:pub.10.1007/s00439-008-0612-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041941020
171 https://doi.org/10.1007/s00439-008-0612-7
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature12828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046702365
174 https://doi.org/10.1038/nature12828
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
177 https://doi.org/10.1038/nature15393
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ng.2897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013812051
180 https://doi.org/10.1038/ng.2897
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ng.3097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006357119
183 https://doi.org/10.1038/ng.3097
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055940
186 https://doi.org/10.1038/ng.548
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng0205-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052564860
189 https://doi.org/10.1038/ng0205-118
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ng1337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002008100
192 https://doi.org/10.1038/ng1337
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
195 https://doi.org/10.1038/ng1847
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nrg1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660577
198 https://doi.org/10.1038/nrg1916
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nrg2813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043354004
201 https://doi.org/10.1038/nrg2813
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1078880076 schema:CreativeWork
204 https://doi.org/10.1002/humu.20822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037984997
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.ajhg.2012.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024911758
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1073/pnas.0903045106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052061037
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/btt144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007629759
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1101/gr.094052.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010760027
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.1251688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020705920
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1371/journal.pgen.1002554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009453604
221 rdf:type schema:CreativeWork
222 https://doi.org/10.21149/spm.v55s2.5111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078880076
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.412530.1 schema:alternateName Temple University Health System
225 schema:name Fox Chase Cancer Center, Philadelphia, USA
226 Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.416850.e schema:alternateName Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
229 schema:name Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
230 Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.452651.1 schema:alternateName National Institute of Genomic Medicine
233 schema:name Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico
234 Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.7220.7 schema:alternateName Universidad Autónoma Metropolitana
237 schema:name Departamento de Economía, Universidad Autónoma Metropolitana, Ciudad de Mexico, Mexico
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.9486.3 schema:alternateName National Autonomous University of Mexico
240 schema:name Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de Mexico, Mexico
241 Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...