A genome wide association study for the number of animals born dead in domestic pigs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Pingxian Wu, Kai Wang, Jie Zhou, Qiang Yang, Xidi Yang, Anan Jiang, Yanzhi Jiang, Mingzhou Li, Li Zhu, Lin Bai, Xuewei Li, Guoqing Tang

ABSTRACT

BACKGROUND: The number of animals born dead, which includes the number of mummified (NM) and stillborn (NS) animals, is the most important trait to directly quantify the reproductive loss in domestic pigs. In this study, 282 Landrace sows and 250 Large White sows were genotyped by sequencing (GBS). A total of 816 and 1068 litter records for NM and NS were collected from them. A genome-wide association study (GWAS) was conducted to reveal the genetic difference between NM and NS. RESULTS: A total of 248 and 10 genome-wide significant SNPs were detected for NM and NS across numerous parities in Landrace pigs. The corresponding numbers for Large White pigs were 175 and 6, respectively. All of the detected SNPs were parity specific for both NM and NS in two breeds. Based on significant SNPs, in total 242 (146 for Landrace pig, 96 for Large White pig) and 10 significant chromosome regions (8 for Landrace pigs, 2 for Large White pigs) were found for NM and NS, respectively. Among them, 237 (142 for Landrace pig, 95 for Large White pig) and 8 significant chromosome regions (6 for Landrace pigs, 2 for Large White pigs) for NM and NS were not reported in previous studies. A list of candidate genes at the identified loci was proposed, including HMGB1, SOX5, KCNJ8, ABCC9 and YY1 for NM, ASTN1 for NS. CONCLUSION: This is the first time when GBS data was used to identify genetic regions affecting NM and NS in Landrace and Large White pigs. Many identified informative SNPs and candidate genes advance our understanding of the genetic architecture of NM and NS in pigs. However, further studies are needed to validate using larger populations with more breeds. More... »

PAGES

4

References to SciGraph publications

Journal

TITLE

BMC Genetics

ISSUE

1

VOLUME

20

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-018-0692-x

DOI

http://dx.doi.org/10.1186/s12863-018-0692-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111248949

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30616509


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Pingxian", 
        "id": "sg:person.012021373563.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012021373563.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kai", 
        "id": "sg:person.013414334563.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013414334563.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jie", 
        "id": "sg:person.014211715163.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211715163.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qiang", 
        "id": "sg:person.01037276033.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037276033.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xidi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Anan", 
        "id": "sg:person.0630071426.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630071426.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Yanzhi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Mingzhou", 
        "id": "sg:person.01174413520.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174413520.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Lin", 
        "id": "sg:person.01272751370.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272751370.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xuewei", 
        "id": "sg:person.01242526720.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242526720.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Guoqing", 
        "id": "sg:person.01301305516.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301305516.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1681/asn.2007101078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002700271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2007101078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002700271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003865842", 
          "https://doi.org/10.1038/10338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003865842", 
          "https://doi.org/10.1038/10338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-0720(15)30708-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007930921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2011.02213.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009485775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010244476", 
          "https://doi.org/10.1038/ng.806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.19.10.7237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023887056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025573499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1534-5807(01)00003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027369151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028025360", 
          "https://doi.org/10.1038/ng.3034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmg.2013.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033184208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034382223", 
          "https://doi.org/10.1038/nrg3012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-8628(19980605)77:5<427::aid-ajmg14>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038282880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2007.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044682428", 
          "https://doi.org/10.1038/ng.2007.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051654714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5425.248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062565884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci15672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063415419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2001.793623x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-4278-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092618265", 
          "https://doi.org/10.1186/s12864-017-4278-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The number of animals born dead, which includes the number of mummified (NM) and stillborn (NS) animals, is the most important trait to directly quantify the reproductive loss in domestic pigs. In this study, 282 Landrace sows and 250 Large White sows were genotyped by sequencing (GBS). A total of 816 and 1068 litter records for NM and NS were collected from them. A genome-wide association study (GWAS) was conducted to reveal the genetic difference between NM and NS.\nRESULTS: A total of 248 and 10 genome-wide significant SNPs were detected for NM and NS across numerous parities in Landrace pigs. The corresponding numbers for Large White pigs were 175 and 6, respectively. All of the detected SNPs were parity specific for both NM and NS in two breeds. Based on significant SNPs, in total 242 (146 for Landrace pig, 96 for Large White pig) and 10 significant chromosome regions (8 for Landrace pigs, 2 for Large White pigs) were found for NM and NS, respectively. Among them, 237 (142 for Landrace pig, 95 for Large White pig) and 8 significant chromosome regions (6 for Landrace pigs, 2 for Large White pigs) for NM and NS were not reported in previous studies. A list of candidate genes at the identified loci was proposed, including HMGB1, SOX5, KCNJ8, ABCC9 and YY1 for NM, ASTN1 for NS.\nCONCLUSION: This is the first time when GBS data was used to identify genetic regions affecting NM and NS in Landrace and Large White pigs. Many identified informative SNPs and candidate genes advance our understanding of the genetic architecture of NM and NS in pigs. However, further studies are needed to validate using larger populations with more breeds.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-018-0692-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A genome wide association study for the number of animals born dead in domestic pigs", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8120fa23d0a959f22f6c633ccc39d360f7270afedd98038215a4e93848dad8fa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30616509"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-018-0692-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111248949"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-018-0692-x", 
      "https://app.dimensions.ai/details/publication/pub.1111248949"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55862_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12863-018-0692-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0692-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0692-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0692-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-018-0692-x'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-018-0692-x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N2a081c0342944067a1e3b4f156899153
4 schema:citation sg:pub.10.1038/10338
5 sg:pub.10.1038/ng.2007.25
6 sg:pub.10.1038/ng.3034
7 sg:pub.10.1038/ng.806
8 sg:pub.10.1038/nrg1521
9 sg:pub.10.1038/nrg3012
10 sg:pub.10.1186/s12864-017-4278-1
11 https://doi.org/10.1002/(sici)1096-8628(19980605)77:5<427::aid-ajmg14>3.0.co;2-k
12 https://doi.org/10.1016/j.ejmg.2013.09.009
13 https://doi.org/10.1016/s0749-0720(15)30708-8
14 https://doi.org/10.1016/s1534-5807(01)00003-x
15 https://doi.org/10.1093/bioinformatics/bth457
16 https://doi.org/10.1093/bioinformatics/btr330
17 https://doi.org/10.1093/nar/gkh029
18 https://doi.org/10.1093/nar/gkq603
19 https://doi.org/10.1093/nar/gks1150
20 https://doi.org/10.1111/j.1365-2052.2011.02213.x
21 https://doi.org/10.1126/science.285.5425.248
22 https://doi.org/10.1128/mcb.19.10.7237
23 https://doi.org/10.1172/jci15672
24 https://doi.org/10.1681/asn.2007101078
25 https://doi.org/10.2527/2001.793623x
26 schema:datePublished 2019-12
27 schema:datePublishedReg 2019-12-01
28 schema:description BACKGROUND: The number of animals born dead, which includes the number of mummified (NM) and stillborn (NS) animals, is the most important trait to directly quantify the reproductive loss in domestic pigs. In this study, 282 Landrace sows and 250 Large White sows were genotyped by sequencing (GBS). A total of 816 and 1068 litter records for NM and NS were collected from them. A genome-wide association study (GWAS) was conducted to reveal the genetic difference between NM and NS. RESULTS: A total of 248 and 10 genome-wide significant SNPs were detected for NM and NS across numerous parities in Landrace pigs. The corresponding numbers for Large White pigs were 175 and 6, respectively. All of the detected SNPs were parity specific for both NM and NS in two breeds. Based on significant SNPs, in total 242 (146 for Landrace pig, 96 for Large White pig) and 10 significant chromosome regions (8 for Landrace pigs, 2 for Large White pigs) were found for NM and NS, respectively. Among them, 237 (142 for Landrace pig, 95 for Large White pig) and 8 significant chromosome regions (6 for Landrace pigs, 2 for Large White pigs) for NM and NS were not reported in previous studies. A list of candidate genes at the identified loci was proposed, including HMGB1, SOX5, KCNJ8, ABCC9 and YY1 for NM, ASTN1 for NS. CONCLUSION: This is the first time when GBS data was used to identify genetic regions affecting NM and NS in Landrace and Large White pigs. Many identified informative SNPs and candidate genes advance our understanding of the genetic architecture of NM and NS in pigs. However, further studies are needed to validate using larger populations with more breeds.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N036d6126130c4ac790dff559f80fce45
33 N7b97b18b61224e56a521731a61c8de01
34 sg:journal.1024251
35 schema:name A genome wide association study for the number of animals born dead in domestic pigs
36 schema:pagination 4
37 schema:productId N3612942fbf0e41a192c5fd26c33d3c0f
38 N38dbcebcaf8747f88553f56239eaf300
39 N4f813995167d4d40a9f4cbb98d3aa288
40 Nb43c0f61858542a692078aac308a2cdd
41 Ne6362870f9fb4f9184b5aa4e793d72b2
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111248949
43 https://doi.org/10.1186/s12863-018-0692-x
44 schema:sdDatePublished 2019-04-11T08:37
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N7a245d021b994408875337cafbbb4f26
47 schema:url https://link.springer.com/10.1186%2Fs12863-018-0692-x
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N036d6126130c4ac790dff559f80fce45 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N179d92341f6c4b0684407a299bd4d0c6 rdf:first sg:person.01037276033.18
54 rdf:rest N469ca649d55343f89cead251a022f117
55 N1ee616b39da9444b84f60eb152a802a2 rdf:first sg:person.0630071426.18
56 rdf:rest N37c9c758540d4636b1761f8480df9aee
57 N2a081c0342944067a1e3b4f156899153 rdf:first sg:person.012021373563.68
58 rdf:rest Nb707713f0d494d63a153c2dd58f6d4cd
59 N3612942fbf0e41a192c5fd26c33d3c0f schema:name dimensions_id
60 schema:value pub.1111248949
61 rdf:type schema:PropertyValue
62 N37c9c758540d4636b1761f8480df9aee rdf:first Nfacb1b5683db4f998fa4ce2517343683
63 rdf:rest Nc4d4f98e335443f681ee21a381a3e834
64 N38dbcebcaf8747f88553f56239eaf300 schema:name doi
65 schema:value 10.1186/s12863-018-0692-x
66 rdf:type schema:PropertyValue
67 N3eec8e2f724b47eeaeeda6d6295d980c rdf:first sg:person.01272751370.15
68 rdf:rest N9a7b7c3375bd45c29ef3a31f04fbe33b
69 N469ca649d55343f89cead251a022f117 rdf:first Ne09d001a4b064d64a6dca80f6413de40
70 rdf:rest N1ee616b39da9444b84f60eb152a802a2
71 N4c645ed1e5ed4ad58094615ad28070b8 rdf:first sg:person.01301305516.30
72 rdf:rest rdf:nil
73 N4f813995167d4d40a9f4cbb98d3aa288 schema:name readcube_id
74 schema:value 8120fa23d0a959f22f6c633ccc39d360f7270afedd98038215a4e93848dad8fa
75 rdf:type schema:PropertyValue
76 N5d7e58972e93413cbffc0a0a6484f35e rdf:first sg:person.014211715163.88
77 rdf:rest N179d92341f6c4b0684407a299bd4d0c6
78 N7a245d021b994408875337cafbbb4f26 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N7b97b18b61224e56a521731a61c8de01 schema:volumeNumber 20
81 rdf:type schema:PublicationVolume
82 N9a7b7c3375bd45c29ef3a31f04fbe33b rdf:first sg:person.01242526720.81
83 rdf:rest N4c645ed1e5ed4ad58094615ad28070b8
84 Nb43c0f61858542a692078aac308a2cdd schema:name nlm_unique_id
85 schema:value 100966978
86 rdf:type schema:PropertyValue
87 Nb707713f0d494d63a153c2dd58f6d4cd rdf:first sg:person.013414334563.42
88 rdf:rest N5d7e58972e93413cbffc0a0a6484f35e
89 Nc4d4f98e335443f681ee21a381a3e834 rdf:first sg:person.01174413520.47
90 rdf:rest Nf25f84ea5fc74b6b8b472440ca3e69eb
91 Ndfa77f0ea9be4de89b880284e1ec0788 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
92 schema:familyName Zhu
93 schema:givenName Li
94 rdf:type schema:Person
95 Ne09d001a4b064d64a6dca80f6413de40 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
96 schema:familyName Yang
97 schema:givenName Xidi
98 rdf:type schema:Person
99 Ne6362870f9fb4f9184b5aa4e793d72b2 schema:name pubmed_id
100 schema:value 30616509
101 rdf:type schema:PropertyValue
102 Nf25f84ea5fc74b6b8b472440ca3e69eb rdf:first Ndfa77f0ea9be4de89b880284e1ec0788
103 rdf:rest N3eec8e2f724b47eeaeeda6d6295d980c
104 Nfacb1b5683db4f998fa4ce2517343683 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
105 schema:familyName Jiang
106 schema:givenName Yanzhi
107 rdf:type schema:Person
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
112 schema:name Genetics
113 rdf:type schema:DefinedTerm
114 sg:journal.1024251 schema:issn 1471-2156
115 schema:name BMC Genetics
116 rdf:type schema:Periodical
117 sg:person.01037276033.18 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
118 schema:familyName Yang
119 schema:givenName Qiang
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037276033.18
121 rdf:type schema:Person
122 sg:person.01174413520.47 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
123 schema:familyName Li
124 schema:givenName Mingzhou
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174413520.47
126 rdf:type schema:Person
127 sg:person.012021373563.68 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
128 schema:familyName Wu
129 schema:givenName Pingxian
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012021373563.68
131 rdf:type schema:Person
132 sg:person.01242526720.81 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
133 schema:familyName Li
134 schema:givenName Xuewei
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242526720.81
136 rdf:type schema:Person
137 sg:person.01272751370.15 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
138 schema:familyName Bai
139 schema:givenName Lin
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272751370.15
141 rdf:type schema:Person
142 sg:person.01301305516.30 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
143 schema:familyName Tang
144 schema:givenName Guoqing
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301305516.30
146 rdf:type schema:Person
147 sg:person.013414334563.42 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
148 schema:familyName Wang
149 schema:givenName Kai
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013414334563.42
151 rdf:type schema:Person
152 sg:person.014211715163.88 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
153 schema:familyName Zhou
154 schema:givenName Jie
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211715163.88
156 rdf:type schema:Person
157 sg:person.0630071426.18 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
158 schema:familyName Jiang
159 schema:givenName Anan
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630071426.18
161 rdf:type schema:Person
162 sg:pub.10.1038/10338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003865842
163 https://doi.org/10.1038/10338
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/ng.2007.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044682428
166 https://doi.org/10.1038/ng.2007.25
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ng.3034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028025360
169 https://doi.org/10.1038/ng.3034
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ng.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244476
172 https://doi.org/10.1038/ng.806
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nrg1521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022754728
175 https://doi.org/10.1038/nrg1521
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nrg3012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382223
178 https://doi.org/10.1038/nrg3012
179 rdf:type schema:CreativeWork
180 sg:pub.10.1186/s12864-017-4278-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092618265
181 https://doi.org/10.1186/s12864-017-4278-1
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/(sici)1096-8628(19980605)77:5<427::aid-ajmg14>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1038282880
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.ejmg.2013.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033184208
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0749-0720(15)30708-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007930921
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s1534-5807(01)00003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027369151
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/nar/gkh029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025573499
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/gks1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051654714
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1365-2052.2011.02213.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485775
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.285.5425.248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565884
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1128/mcb.19.10.7237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023887056
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1172/jci15672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063415419
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1681/asn.2007101078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002700271
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2527/2001.793623x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881553
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.80510.3c schema:alternateName Sichuan Agricultural University
214 schema:name College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
215 College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, China
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...